1 /* 2 * Modified to interface to the Linux kernel 3 * Copyright (c) 2009, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 */ 18 19 /* -------------------------------------------------------------------------- 20 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. 21 * This implementation is herby placed in the public domain. 22 * The authors offers no warranty. Use at your own risk. 23 * Please send bug reports to the authors. 24 * Last modified: 17 APR 08, 1700 PDT 25 * ----------------------------------------------------------------------- */ 26 27 #include <linux/init.h> 28 #include <linux/types.h> 29 #include <linux/crypto.h> 30 #include <linux/module.h> 31 #include <linux/scatterlist.h> 32 #include <asm/byteorder.h> 33 #include <crypto/scatterwalk.h> 34 #include <crypto/vmac.h> 35 #include <crypto/internal/hash.h> 36 37 /* 38 * Constants and masks 39 */ 40 #define UINT64_C(x) x##ULL 41 const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */ 42 const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */ 43 const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */ 44 const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */ 45 const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */ 46 47 #define pe64_to_cpup le64_to_cpup /* Prefer little endian */ 48 49 #ifdef __LITTLE_ENDIAN 50 #define INDEX_HIGH 1 51 #define INDEX_LOW 0 52 #else 53 #define INDEX_HIGH 0 54 #define INDEX_LOW 1 55 #endif 56 57 /* 58 * The following routines are used in this implementation. They are 59 * written via macros to simulate zero-overhead call-by-reference. 60 * 61 * MUL64: 64x64->128-bit multiplication 62 * PMUL64: assumes top bits cleared on inputs 63 * ADD128: 128x128->128-bit addition 64 */ 65 66 #define ADD128(rh, rl, ih, il) \ 67 do { \ 68 u64 _il = (il); \ 69 (rl) += (_il); \ 70 if ((rl) < (_il)) \ 71 (rh)++; \ 72 (rh) += (ih); \ 73 } while (0) 74 75 #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2)) 76 77 #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \ 78 do { \ 79 u64 _i1 = (i1), _i2 = (i2); \ 80 u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \ 81 rh = MUL32(_i1>>32, _i2>>32); \ 82 rl = MUL32(_i1, _i2); \ 83 ADD128(rh, rl, (m >> 32), (m << 32)); \ 84 } while (0) 85 86 #define MUL64(rh, rl, i1, i2) \ 87 do { \ 88 u64 _i1 = (i1), _i2 = (i2); \ 89 u64 m1 = MUL32(_i1, _i2>>32); \ 90 u64 m2 = MUL32(_i1>>32, _i2); \ 91 rh = MUL32(_i1>>32, _i2>>32); \ 92 rl = MUL32(_i1, _i2); \ 93 ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \ 94 ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \ 95 } while (0) 96 97 /* 98 * For highest performance the L1 NH and L2 polynomial hashes should be 99 * carefully implemented to take advantage of one's target architecture. 100 * Here these two hash functions are defined multiple time; once for 101 * 64-bit architectures, once for 32-bit SSE2 architectures, and once 102 * for the rest (32-bit) architectures. 103 * For each, nh_16 *must* be defined (works on multiples of 16 bytes). 104 * Optionally, nh_vmac_nhbytes can be defined (for multiples of 105 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two 106 * NH computations at once). 107 */ 108 109 #ifdef CONFIG_64BIT 110 111 #define nh_16(mp, kp, nw, rh, rl) \ 112 do { \ 113 int i; u64 th, tl; \ 114 rh = rl = 0; \ 115 for (i = 0; i < nw; i += 2) { \ 116 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ 117 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ 118 ADD128(rh, rl, th, tl); \ 119 } \ 120 } while (0) 121 122 #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \ 123 do { \ 124 int i; u64 th, tl; \ 125 rh1 = rl1 = rh = rl = 0; \ 126 for (i = 0; i < nw; i += 2) { \ 127 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ 128 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ 129 ADD128(rh, rl, th, tl); \ 130 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ 131 pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ 132 ADD128(rh1, rl1, th, tl); \ 133 } \ 134 } while (0) 135 136 #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ 137 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ 138 do { \ 139 int i; u64 th, tl; \ 140 rh = rl = 0; \ 141 for (i = 0; i < nw; i += 8) { \ 142 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ 143 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ 144 ADD128(rh, rl, th, tl); \ 145 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ 146 pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ 147 ADD128(rh, rl, th, tl); \ 148 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ 149 pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ 150 ADD128(rh, rl, th, tl); \ 151 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ 152 pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ 153 ADD128(rh, rl, th, tl); \ 154 } \ 155 } while (0) 156 157 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \ 158 do { \ 159 int i; u64 th, tl; \ 160 rh1 = rl1 = rh = rl = 0; \ 161 for (i = 0; i < nw; i += 8) { \ 162 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ 163 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ 164 ADD128(rh, rl, th, tl); \ 165 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ 166 pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ 167 ADD128(rh1, rl1, th, tl); \ 168 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ 169 pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ 170 ADD128(rh, rl, th, tl); \ 171 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \ 172 pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \ 173 ADD128(rh1, rl1, th, tl); \ 174 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ 175 pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ 176 ADD128(rh, rl, th, tl); \ 177 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \ 178 pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \ 179 ADD128(rh1, rl1, th, tl); \ 180 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ 181 pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ 182 ADD128(rh, rl, th, tl); \ 183 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \ 184 pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \ 185 ADD128(rh1, rl1, th, tl); \ 186 } \ 187 } while (0) 188 #endif 189 190 #define poly_step(ah, al, kh, kl, mh, ml) \ 191 do { \ 192 u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \ 193 /* compute ab*cd, put bd into result registers */ \ 194 PMUL64(t3h, t3l, al, kh); \ 195 PMUL64(t2h, t2l, ah, kl); \ 196 PMUL64(t1h, t1l, ah, 2*kh); \ 197 PMUL64(ah, al, al, kl); \ 198 /* add 2 * ac to result */ \ 199 ADD128(ah, al, t1h, t1l); \ 200 /* add together ad + bc */ \ 201 ADD128(t2h, t2l, t3h, t3l); \ 202 /* now (ah,al), (t2l,2*t2h) need summing */ \ 203 /* first add the high registers, carrying into t2h */ \ 204 ADD128(t2h, ah, z, t2l); \ 205 /* double t2h and add top bit of ah */ \ 206 t2h = 2 * t2h + (ah >> 63); \ 207 ah &= m63; \ 208 /* now add the low registers */ \ 209 ADD128(ah, al, mh, ml); \ 210 ADD128(ah, al, z, t2h); \ 211 } while (0) 212 213 #else /* ! CONFIG_64BIT */ 214 215 #ifndef nh_16 216 #define nh_16(mp, kp, nw, rh, rl) \ 217 do { \ 218 u64 t1, t2, m1, m2, t; \ 219 int i; \ 220 rh = rl = t = 0; \ 221 for (i = 0; i < nw; i += 2) { \ 222 t1 = pe64_to_cpup(mp+i) + kp[i]; \ 223 t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \ 224 m2 = MUL32(t1 >> 32, t2); \ 225 m1 = MUL32(t1, t2 >> 32); \ 226 ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \ 227 MUL32(t1, t2)); \ 228 rh += (u64)(u32)(m1 >> 32) \ 229 + (u32)(m2 >> 32); \ 230 t += (u64)(u32)m1 + (u32)m2; \ 231 } \ 232 ADD128(rh, rl, (t >> 32), (t << 32)); \ 233 } while (0) 234 #endif 235 236 static void poly_step_func(u64 *ahi, u64 *alo, 237 const u64 *kh, const u64 *kl, 238 const u64 *mh, const u64 *ml) 239 { 240 #define a0 (*(((u32 *)alo)+INDEX_LOW)) 241 #define a1 (*(((u32 *)alo)+INDEX_HIGH)) 242 #define a2 (*(((u32 *)ahi)+INDEX_LOW)) 243 #define a3 (*(((u32 *)ahi)+INDEX_HIGH)) 244 #define k0 (*(((u32 *)kl)+INDEX_LOW)) 245 #define k1 (*(((u32 *)kl)+INDEX_HIGH)) 246 #define k2 (*(((u32 *)kh)+INDEX_LOW)) 247 #define k3 (*(((u32 *)kh)+INDEX_HIGH)) 248 249 u64 p, q, t; 250 u32 t2; 251 252 p = MUL32(a3, k3); 253 p += p; 254 p += *(u64 *)mh; 255 p += MUL32(a0, k2); 256 p += MUL32(a1, k1); 257 p += MUL32(a2, k0); 258 t = (u32)(p); 259 p >>= 32; 260 p += MUL32(a0, k3); 261 p += MUL32(a1, k2); 262 p += MUL32(a2, k1); 263 p += MUL32(a3, k0); 264 t |= ((u64)((u32)p & 0x7fffffff)) << 32; 265 p >>= 31; 266 p += (u64)(((u32 *)ml)[INDEX_LOW]); 267 p += MUL32(a0, k0); 268 q = MUL32(a1, k3); 269 q += MUL32(a2, k2); 270 q += MUL32(a3, k1); 271 q += q; 272 p += q; 273 t2 = (u32)(p); 274 p >>= 32; 275 p += (u64)(((u32 *)ml)[INDEX_HIGH]); 276 p += MUL32(a0, k1); 277 p += MUL32(a1, k0); 278 q = MUL32(a2, k3); 279 q += MUL32(a3, k2); 280 q += q; 281 p += q; 282 *(u64 *)(alo) = (p << 32) | t2; 283 p >>= 32; 284 *(u64 *)(ahi) = p + t; 285 286 #undef a0 287 #undef a1 288 #undef a2 289 #undef a3 290 #undef k0 291 #undef k1 292 #undef k2 293 #undef k3 294 } 295 296 #define poly_step(ah, al, kh, kl, mh, ml) \ 297 poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) 298 299 #endif /* end of specialized NH and poly definitions */ 300 301 /* At least nh_16 is defined. Defined others as needed here */ 302 #ifndef nh_16_2 303 #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ 304 do { \ 305 nh_16(mp, kp, nw, rh, rl); \ 306 nh_16(mp, ((kp)+2), nw, rh2, rl2); \ 307 } while (0) 308 #endif 309 #ifndef nh_vmac_nhbytes 310 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ 311 nh_16(mp, kp, nw, rh, rl) 312 #endif 313 #ifndef nh_vmac_nhbytes_2 314 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ 315 do { \ 316 nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ 317 nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \ 318 } while (0) 319 #endif 320 321 static void vhash_abort(struct vmac_ctx *ctx) 322 { 323 ctx->polytmp[0] = ctx->polykey[0] ; 324 ctx->polytmp[1] = ctx->polykey[1] ; 325 ctx->first_block_processed = 0; 326 } 327 328 static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len) 329 { 330 u64 rh, rl, t, z = 0; 331 332 /* fully reduce (p1,p2)+(len,0) mod p127 */ 333 t = p1 >> 63; 334 p1 &= m63; 335 ADD128(p1, p2, len, t); 336 /* At this point, (p1,p2) is at most 2^127+(len<<64) */ 337 t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); 338 ADD128(p1, p2, z, t); 339 p1 &= m63; 340 341 /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ 342 t = p1 + (p2 >> 32); 343 t += (t >> 32); 344 t += (u32)t > 0xfffffffeu; 345 p1 += (t >> 32); 346 p2 += (p1 << 32); 347 348 /* compute (p1+k1)%p64 and (p2+k2)%p64 */ 349 p1 += k1; 350 p1 += (0 - (p1 < k1)) & 257; 351 p2 += k2; 352 p2 += (0 - (p2 < k2)) & 257; 353 354 /* compute (p1+k1)*(p2+k2)%p64 */ 355 MUL64(rh, rl, p1, p2); 356 t = rh >> 56; 357 ADD128(t, rl, z, rh); 358 rh <<= 8; 359 ADD128(t, rl, z, rh); 360 t += t << 8; 361 rl += t; 362 rl += (0 - (rl < t)) & 257; 363 rl += (0 - (rl > p64-1)) & 257; 364 return rl; 365 } 366 367 static void vhash_update(const unsigned char *m, 368 unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ 369 struct vmac_ctx *ctx) 370 { 371 u64 rh, rl, *mptr; 372 const u64 *kptr = (u64 *)ctx->nhkey; 373 int i; 374 u64 ch, cl; 375 u64 pkh = ctx->polykey[0]; 376 u64 pkl = ctx->polykey[1]; 377 378 mptr = (u64 *)m; 379 i = mbytes / VMAC_NHBYTES; /* Must be non-zero */ 380 381 ch = ctx->polytmp[0]; 382 cl = ctx->polytmp[1]; 383 384 if (!ctx->first_block_processed) { 385 ctx->first_block_processed = 1; 386 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); 387 rh &= m62; 388 ADD128(ch, cl, rh, rl); 389 mptr += (VMAC_NHBYTES/sizeof(u64)); 390 i--; 391 } 392 393 while (i--) { 394 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); 395 rh &= m62; 396 poly_step(ch, cl, pkh, pkl, rh, rl); 397 mptr += (VMAC_NHBYTES/sizeof(u64)); 398 } 399 400 ctx->polytmp[0] = ch; 401 ctx->polytmp[1] = cl; 402 } 403 404 static u64 vhash(unsigned char m[], unsigned int mbytes, 405 u64 *tagl, struct vmac_ctx *ctx) 406 { 407 u64 rh, rl, *mptr; 408 const u64 *kptr = (u64 *)ctx->nhkey; 409 int i, remaining; 410 u64 ch, cl; 411 u64 pkh = ctx->polykey[0]; 412 u64 pkl = ctx->polykey[1]; 413 414 mptr = (u64 *)m; 415 i = mbytes / VMAC_NHBYTES; 416 remaining = mbytes % VMAC_NHBYTES; 417 418 if (ctx->first_block_processed) { 419 ch = ctx->polytmp[0]; 420 cl = ctx->polytmp[1]; 421 } else if (i) { 422 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl); 423 ch &= m62; 424 ADD128(ch, cl, pkh, pkl); 425 mptr += (VMAC_NHBYTES/sizeof(u64)); 426 i--; 427 } else if (remaining) { 428 nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl); 429 ch &= m62; 430 ADD128(ch, cl, pkh, pkl); 431 mptr += (VMAC_NHBYTES/sizeof(u64)); 432 goto do_l3; 433 } else {/* Empty String */ 434 ch = pkh; cl = pkl; 435 goto do_l3; 436 } 437 438 while (i--) { 439 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); 440 rh &= m62; 441 poly_step(ch, cl, pkh, pkl, rh, rl); 442 mptr += (VMAC_NHBYTES/sizeof(u64)); 443 } 444 if (remaining) { 445 nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl); 446 rh &= m62; 447 poly_step(ch, cl, pkh, pkl, rh, rl); 448 } 449 450 do_l3: 451 vhash_abort(ctx); 452 remaining *= 8; 453 return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining); 454 } 455 456 static u64 vmac(unsigned char m[], unsigned int mbytes, 457 unsigned char n[16], u64 *tagl, 458 struct vmac_ctx_t *ctx) 459 { 460 u64 *in_n, *out_p; 461 u64 p, h; 462 int i; 463 464 in_n = ctx->__vmac_ctx.cached_nonce; 465 out_p = ctx->__vmac_ctx.cached_aes; 466 467 i = n[15] & 1; 468 if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) { 469 in_n[0] = *(u64 *)(n); 470 in_n[1] = *(u64 *)(n+8); 471 ((unsigned char *)in_n)[15] &= 0xFE; 472 crypto_cipher_encrypt_one(ctx->child, 473 (unsigned char *)out_p, (unsigned char *)in_n); 474 475 ((unsigned char *)in_n)[15] |= (unsigned char)(1-i); 476 } 477 p = be64_to_cpup(out_p + i); 478 h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx); 479 return le64_to_cpu(p + h); 480 } 481 482 static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx) 483 { 484 u64 in[2] = {0}, out[2]; 485 unsigned i; 486 int err = 0; 487 488 err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN); 489 if (err) 490 return err; 491 492 /* Fill nh key */ 493 ((unsigned char *)in)[0] = 0x80; 494 for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) { 495 crypto_cipher_encrypt_one(ctx->child, 496 (unsigned char *)out, (unsigned char *)in); 497 ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out); 498 ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1); 499 ((unsigned char *)in)[15] += 1; 500 } 501 502 /* Fill poly key */ 503 ((unsigned char *)in)[0] = 0xC0; 504 in[1] = 0; 505 for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) { 506 crypto_cipher_encrypt_one(ctx->child, 507 (unsigned char *)out, (unsigned char *)in); 508 ctx->__vmac_ctx.polytmp[i] = 509 ctx->__vmac_ctx.polykey[i] = 510 be64_to_cpup(out) & mpoly; 511 ctx->__vmac_ctx.polytmp[i+1] = 512 ctx->__vmac_ctx.polykey[i+1] = 513 be64_to_cpup(out+1) & mpoly; 514 ((unsigned char *)in)[15] += 1; 515 } 516 517 /* Fill ip key */ 518 ((unsigned char *)in)[0] = 0xE0; 519 in[1] = 0; 520 for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) { 521 do { 522 crypto_cipher_encrypt_one(ctx->child, 523 (unsigned char *)out, (unsigned char *)in); 524 ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out); 525 ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1); 526 ((unsigned char *)in)[15] += 1; 527 } while (ctx->__vmac_ctx.l3key[i] >= p64 528 || ctx->__vmac_ctx.l3key[i+1] >= p64); 529 } 530 531 /* Invalidate nonce/aes cache and reset other elements */ 532 ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */ 533 ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */ 534 ctx->__vmac_ctx.first_block_processed = 0; 535 536 return err; 537 } 538 539 static int vmac_setkey(struct crypto_shash *parent, 540 const u8 *key, unsigned int keylen) 541 { 542 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); 543 544 if (keylen != VMAC_KEY_LEN) { 545 crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN); 546 return -EINVAL; 547 } 548 549 return vmac_set_key((u8 *)key, ctx); 550 } 551 552 static int vmac_init(struct shash_desc *pdesc) 553 { 554 return 0; 555 } 556 557 static int vmac_update(struct shash_desc *pdesc, const u8 *p, 558 unsigned int len) 559 { 560 struct crypto_shash *parent = pdesc->tfm; 561 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); 562 563 vhash_update(p, len, &ctx->__vmac_ctx); 564 565 return 0; 566 } 567 568 static int vmac_final(struct shash_desc *pdesc, u8 *out) 569 { 570 struct crypto_shash *parent = pdesc->tfm; 571 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); 572 vmac_t mac; 573 u8 nonce[16] = {}; 574 575 mac = vmac(NULL, 0, nonce, NULL, ctx); 576 memcpy(out, &mac, sizeof(vmac_t)); 577 memset(&mac, 0, sizeof(vmac_t)); 578 memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); 579 return 0; 580 } 581 582 static int vmac_init_tfm(struct crypto_tfm *tfm) 583 { 584 struct crypto_cipher *cipher; 585 struct crypto_instance *inst = (void *)tfm->__crt_alg; 586 struct crypto_spawn *spawn = crypto_instance_ctx(inst); 587 struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); 588 589 cipher = crypto_spawn_cipher(spawn); 590 if (IS_ERR(cipher)) 591 return PTR_ERR(cipher); 592 593 ctx->child = cipher; 594 return 0; 595 } 596 597 static void vmac_exit_tfm(struct crypto_tfm *tfm) 598 { 599 struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); 600 crypto_free_cipher(ctx->child); 601 } 602 603 static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) 604 { 605 struct shash_instance *inst; 606 struct crypto_alg *alg; 607 int err; 608 609 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH); 610 if (err) 611 return err; 612 613 alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, 614 CRYPTO_ALG_TYPE_MASK); 615 if (IS_ERR(alg)) 616 return PTR_ERR(alg); 617 618 inst = shash_alloc_instance("vmac", alg); 619 err = PTR_ERR(inst); 620 if (IS_ERR(inst)) 621 goto out_put_alg; 622 623 err = crypto_init_spawn(shash_instance_ctx(inst), alg, 624 shash_crypto_instance(inst), 625 CRYPTO_ALG_TYPE_MASK); 626 if (err) 627 goto out_free_inst; 628 629 inst->alg.base.cra_priority = alg->cra_priority; 630 inst->alg.base.cra_blocksize = alg->cra_blocksize; 631 inst->alg.base.cra_alignmask = alg->cra_alignmask; 632 633 inst->alg.digestsize = sizeof(vmac_t); 634 inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t); 635 inst->alg.base.cra_init = vmac_init_tfm; 636 inst->alg.base.cra_exit = vmac_exit_tfm; 637 638 inst->alg.init = vmac_init; 639 inst->alg.update = vmac_update; 640 inst->alg.final = vmac_final; 641 inst->alg.setkey = vmac_setkey; 642 643 err = shash_register_instance(tmpl, inst); 644 if (err) { 645 out_free_inst: 646 shash_free_instance(shash_crypto_instance(inst)); 647 } 648 649 out_put_alg: 650 crypto_mod_put(alg); 651 return err; 652 } 653 654 static struct crypto_template vmac_tmpl = { 655 .name = "vmac", 656 .create = vmac_create, 657 .free = shash_free_instance, 658 .module = THIS_MODULE, 659 }; 660 661 static int __init vmac_module_init(void) 662 { 663 return crypto_register_template(&vmac_tmpl); 664 } 665 666 static void __exit vmac_module_exit(void) 667 { 668 crypto_unregister_template(&vmac_tmpl); 669 } 670 671 module_init(vmac_module_init); 672 module_exit(vmac_module_exit); 673 674 MODULE_LICENSE("GPL"); 675 MODULE_DESCRIPTION("VMAC hash algorithm"); 676 677