xref: /openbmc/linux/crypto/vmac.c (revision 3821a065)
1  /*
2   * Modified to interface to the Linux kernel
3   * Copyright (c) 2009, Intel Corporation.
4   *
5   * This program is free software; you can redistribute it and/or modify it
6   * under the terms and conditions of the GNU General Public License,
7   * version 2, as published by the Free Software Foundation.
8   *
9   * This program is distributed in the hope it will be useful, but WITHOUT
10   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   * more details.
13   *
14   * You should have received a copy of the GNU General Public License along with
15   * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16   * Place - Suite 330, Boston, MA 02111-1307 USA.
17   */
18  
19  /* --------------------------------------------------------------------------
20   * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
21   * This implementation is herby placed in the public domain.
22   * The authors offers no warranty. Use at your own risk.
23   * Please send bug reports to the authors.
24   * Last modified: 17 APR 08, 1700 PDT
25   * ----------------------------------------------------------------------- */
26  
27  #include <linux/init.h>
28  #include <linux/types.h>
29  #include <linux/crypto.h>
30  #include <linux/module.h>
31  #include <linux/scatterlist.h>
32  #include <asm/byteorder.h>
33  #include <crypto/scatterwalk.h>
34  #include <crypto/vmac.h>
35  #include <crypto/internal/hash.h>
36  
37  /*
38   * Constants and masks
39   */
40  #define UINT64_C(x) x##ULL
41  static const u64 p64   = UINT64_C(0xfffffffffffffeff);	/* 2^64 - 257 prime  */
42  static const u64 m62   = UINT64_C(0x3fffffffffffffff);	/* 62-bit mask       */
43  static const u64 m63   = UINT64_C(0x7fffffffffffffff);	/* 63-bit mask       */
44  static const u64 m64   = UINT64_C(0xffffffffffffffff);	/* 64-bit mask       */
45  static const u64 mpoly = UINT64_C(0x1fffffff1fffffff);	/* Poly key mask     */
46  
47  #define pe64_to_cpup le64_to_cpup		/* Prefer little endian */
48  
49  #ifdef __LITTLE_ENDIAN
50  #define INDEX_HIGH 1
51  #define INDEX_LOW 0
52  #else
53  #define INDEX_HIGH 0
54  #define INDEX_LOW 1
55  #endif
56  
57  /*
58   * The following routines are used in this implementation. They are
59   * written via macros to simulate zero-overhead call-by-reference.
60   *
61   * MUL64: 64x64->128-bit multiplication
62   * PMUL64: assumes top bits cleared on inputs
63   * ADD128: 128x128->128-bit addition
64   */
65  
66  #define ADD128(rh, rl, ih, il)						\
67  	do {								\
68  		u64 _il = (il);						\
69  		(rl) += (_il);						\
70  		if ((rl) < (_il))					\
71  			(rh)++;						\
72  		(rh) += (ih);						\
73  	} while (0)
74  
75  #define MUL32(i1, i2)	((u64)(u32)(i1)*(u32)(i2))
76  
77  #define PMUL64(rh, rl, i1, i2)	/* Assumes m doesn't overflow */	\
78  	do {								\
79  		u64 _i1 = (i1), _i2 = (i2);				\
80  		u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2);	\
81  		rh = MUL32(_i1>>32, _i2>>32);				\
82  		rl = MUL32(_i1, _i2);					\
83  		ADD128(rh, rl, (m >> 32), (m << 32));			\
84  	} while (0)
85  
86  #define MUL64(rh, rl, i1, i2)						\
87  	do {								\
88  		u64 _i1 = (i1), _i2 = (i2);				\
89  		u64 m1 = MUL32(_i1, _i2>>32);				\
90  		u64 m2 = MUL32(_i1>>32, _i2);				\
91  		rh = MUL32(_i1>>32, _i2>>32);				\
92  		rl = MUL32(_i1, _i2);					\
93  		ADD128(rh, rl, (m1 >> 32), (m1 << 32));			\
94  		ADD128(rh, rl, (m2 >> 32), (m2 << 32));			\
95  	} while (0)
96  
97  /*
98   * For highest performance the L1 NH and L2 polynomial hashes should be
99   * carefully implemented to take advantage of one's target architecture.
100   * Here these two hash functions are defined multiple time; once for
101   * 64-bit architectures, once for 32-bit SSE2 architectures, and once
102   * for the rest (32-bit) architectures.
103   * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
104   * Optionally, nh_vmac_nhbytes can be defined (for multiples of
105   * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
106   * NH computations at once).
107   */
108  
109  #ifdef CONFIG_64BIT
110  
111  #define nh_16(mp, kp, nw, rh, rl)					\
112  	do {								\
113  		int i; u64 th, tl;					\
114  		rh = rl = 0;						\
115  		for (i = 0; i < nw; i += 2) {				\
116  			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
117  				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
118  			ADD128(rh, rl, th, tl);				\
119  		}							\
120  	} while (0)
121  
122  #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1)				\
123  	do {								\
124  		int i; u64 th, tl;					\
125  		rh1 = rl1 = rh = rl = 0;				\
126  		for (i = 0; i < nw; i += 2) {				\
127  			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
128  				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
129  			ADD128(rh, rl, th, tl);				\
130  			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],	\
131  				pe64_to_cpup((mp)+i+1)+(kp)[i+3]);	\
132  			ADD128(rh1, rl1, th, tl);			\
133  		}							\
134  	} while (0)
135  
136  #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
137  #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\
138  	do {								\
139  		int i; u64 th, tl;					\
140  		rh = rl = 0;						\
141  		for (i = 0; i < nw; i += 8) {				\
142  			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
143  				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
144  			ADD128(rh, rl, th, tl);				\
145  			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2],	\
146  				pe64_to_cpup((mp)+i+3)+(kp)[i+3]);	\
147  			ADD128(rh, rl, th, tl);				\
148  			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4],	\
149  				pe64_to_cpup((mp)+i+5)+(kp)[i+5]);	\
150  			ADD128(rh, rl, th, tl);				\
151  			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6],	\
152  				pe64_to_cpup((mp)+i+7)+(kp)[i+7]);	\
153  			ADD128(rh, rl, th, tl);				\
154  		}							\
155  	} while (0)
156  
157  #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1)			\
158  	do {								\
159  		int i; u64 th, tl;					\
160  		rh1 = rl1 = rh = rl = 0;				\
161  		for (i = 0; i < nw; i += 8) {				\
162  			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
163  				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
164  			ADD128(rh, rl, th, tl);				\
165  			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],	\
166  				pe64_to_cpup((mp)+i+1)+(kp)[i+3]);	\
167  			ADD128(rh1, rl1, th, tl);			\
168  			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2],	\
169  				pe64_to_cpup((mp)+i+3)+(kp)[i+3]);	\
170  			ADD128(rh, rl, th, tl);				\
171  			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4],	\
172  				pe64_to_cpup((mp)+i+3)+(kp)[i+5]);	\
173  			ADD128(rh1, rl1, th, tl);			\
174  			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4],	\
175  				pe64_to_cpup((mp)+i+5)+(kp)[i+5]);	\
176  			ADD128(rh, rl, th, tl);				\
177  			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6],	\
178  				pe64_to_cpup((mp)+i+5)+(kp)[i+7]);	\
179  			ADD128(rh1, rl1, th, tl);			\
180  			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6],	\
181  				pe64_to_cpup((mp)+i+7)+(kp)[i+7]);	\
182  			ADD128(rh, rl, th, tl);				\
183  			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8],	\
184  				pe64_to_cpup((mp)+i+7)+(kp)[i+9]);	\
185  			ADD128(rh1, rl1, th, tl);			\
186  		}							\
187  	} while (0)
188  #endif
189  
190  #define poly_step(ah, al, kh, kl, mh, ml)				\
191  	do {								\
192  		u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0;		\
193  		/* compute ab*cd, put bd into result registers */	\
194  		PMUL64(t3h, t3l, al, kh);				\
195  		PMUL64(t2h, t2l, ah, kl);				\
196  		PMUL64(t1h, t1l, ah, 2*kh);				\
197  		PMUL64(ah, al, al, kl);					\
198  		/* add 2 * ac to result */				\
199  		ADD128(ah, al, t1h, t1l);				\
200  		/* add together ad + bc */				\
201  		ADD128(t2h, t2l, t3h, t3l);				\
202  		/* now (ah,al), (t2l,2*t2h) need summing */		\
203  		/* first add the high registers, carrying into t2h */	\
204  		ADD128(t2h, ah, z, t2l);				\
205  		/* double t2h and add top bit of ah */			\
206  		t2h = 2 * t2h + (ah >> 63);				\
207  		ah &= m63;						\
208  		/* now add the low registers */				\
209  		ADD128(ah, al, mh, ml);					\
210  		ADD128(ah, al, z, t2h);					\
211  	} while (0)
212  
213  #else /* ! CONFIG_64BIT */
214  
215  #ifndef nh_16
216  #define nh_16(mp, kp, nw, rh, rl)					\
217  	do {								\
218  		u64 t1, t2, m1, m2, t;					\
219  		int i;							\
220  		rh = rl = t = 0;					\
221  		for (i = 0; i < nw; i += 2)  {				\
222  			t1 = pe64_to_cpup(mp+i) + kp[i];		\
223  			t2 = pe64_to_cpup(mp+i+1) + kp[i+1];		\
224  			m2 = MUL32(t1 >> 32, t2);			\
225  			m1 = MUL32(t1, t2 >> 32);			\
226  			ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32),	\
227  				MUL32(t1, t2));				\
228  			rh += (u64)(u32)(m1 >> 32)			\
229  				+ (u32)(m2 >> 32);			\
230  			t += (u64)(u32)m1 + (u32)m2;			\
231  		}							\
232  		ADD128(rh, rl, (t >> 32), (t << 32));			\
233  	} while (0)
234  #endif
235  
236  static void poly_step_func(u64 *ahi, u64 *alo,
237  			const u64 *kh, const u64 *kl,
238  			const u64 *mh, const u64 *ml)
239  {
240  #define a0 (*(((u32 *)alo)+INDEX_LOW))
241  #define a1 (*(((u32 *)alo)+INDEX_HIGH))
242  #define a2 (*(((u32 *)ahi)+INDEX_LOW))
243  #define a3 (*(((u32 *)ahi)+INDEX_HIGH))
244  #define k0 (*(((u32 *)kl)+INDEX_LOW))
245  #define k1 (*(((u32 *)kl)+INDEX_HIGH))
246  #define k2 (*(((u32 *)kh)+INDEX_LOW))
247  #define k3 (*(((u32 *)kh)+INDEX_HIGH))
248  
249  	u64 p, q, t;
250  	u32 t2;
251  
252  	p = MUL32(a3, k3);
253  	p += p;
254  	p += *(u64 *)mh;
255  	p += MUL32(a0, k2);
256  	p += MUL32(a1, k1);
257  	p += MUL32(a2, k0);
258  	t = (u32)(p);
259  	p >>= 32;
260  	p += MUL32(a0, k3);
261  	p += MUL32(a1, k2);
262  	p += MUL32(a2, k1);
263  	p += MUL32(a3, k0);
264  	t |= ((u64)((u32)p & 0x7fffffff)) << 32;
265  	p >>= 31;
266  	p += (u64)(((u32 *)ml)[INDEX_LOW]);
267  	p += MUL32(a0, k0);
268  	q =  MUL32(a1, k3);
269  	q += MUL32(a2, k2);
270  	q += MUL32(a3, k1);
271  	q += q;
272  	p += q;
273  	t2 = (u32)(p);
274  	p >>= 32;
275  	p += (u64)(((u32 *)ml)[INDEX_HIGH]);
276  	p += MUL32(a0, k1);
277  	p += MUL32(a1, k0);
278  	q =  MUL32(a2, k3);
279  	q += MUL32(a3, k2);
280  	q += q;
281  	p += q;
282  	*(u64 *)(alo) = (p << 32) | t2;
283  	p >>= 32;
284  	*(u64 *)(ahi) = p + t;
285  
286  #undef a0
287  #undef a1
288  #undef a2
289  #undef a3
290  #undef k0
291  #undef k1
292  #undef k2
293  #undef k3
294  }
295  
296  #define poly_step(ah, al, kh, kl, mh, ml)				\
297  	poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
298  
299  #endif  /* end of specialized NH and poly definitions */
300  
301  /* At least nh_16 is defined. Defined others as needed here */
302  #ifndef nh_16_2
303  #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2)				\
304  	do { 								\
305  		nh_16(mp, kp, nw, rh, rl);				\
306  		nh_16(mp, ((kp)+2), nw, rh2, rl2);			\
307  	} while (0)
308  #endif
309  #ifndef nh_vmac_nhbytes
310  #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\
311  	nh_16(mp, kp, nw, rh, rl)
312  #endif
313  #ifndef nh_vmac_nhbytes_2
314  #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2)			\
315  	do {								\
316  		nh_vmac_nhbytes(mp, kp, nw, rh, rl);			\
317  		nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2);		\
318  	} while (0)
319  #endif
320  
321  static void vhash_abort(struct vmac_ctx *ctx)
322  {
323  	ctx->polytmp[0] = ctx->polykey[0] ;
324  	ctx->polytmp[1] = ctx->polykey[1] ;
325  	ctx->first_block_processed = 0;
326  }
327  
328  static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
329  {
330  	u64 rh, rl, t, z = 0;
331  
332  	/* fully reduce (p1,p2)+(len,0) mod p127 */
333  	t = p1 >> 63;
334  	p1 &= m63;
335  	ADD128(p1, p2, len, t);
336  	/* At this point, (p1,p2) is at most 2^127+(len<<64) */
337  	t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
338  	ADD128(p1, p2, z, t);
339  	p1 &= m63;
340  
341  	/* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
342  	t = p1 + (p2 >> 32);
343  	t += (t >> 32);
344  	t += (u32)t > 0xfffffffeu;
345  	p1 += (t >> 32);
346  	p2 += (p1 << 32);
347  
348  	/* compute (p1+k1)%p64 and (p2+k2)%p64 */
349  	p1 += k1;
350  	p1 += (0 - (p1 < k1)) & 257;
351  	p2 += k2;
352  	p2 += (0 - (p2 < k2)) & 257;
353  
354  	/* compute (p1+k1)*(p2+k2)%p64 */
355  	MUL64(rh, rl, p1, p2);
356  	t = rh >> 56;
357  	ADD128(t, rl, z, rh);
358  	rh <<= 8;
359  	ADD128(t, rl, z, rh);
360  	t += t << 8;
361  	rl += t;
362  	rl += (0 - (rl < t)) & 257;
363  	rl += (0 - (rl > p64-1)) & 257;
364  	return rl;
365  }
366  
367  static void vhash_update(const unsigned char *m,
368  			unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */
369  			struct vmac_ctx *ctx)
370  {
371  	u64 rh, rl, *mptr;
372  	const u64 *kptr = (u64 *)ctx->nhkey;
373  	int i;
374  	u64 ch, cl;
375  	u64 pkh = ctx->polykey[0];
376  	u64 pkl = ctx->polykey[1];
377  
378  	if (!mbytes)
379  		return;
380  
381  	BUG_ON(mbytes % VMAC_NHBYTES);
382  
383  	mptr = (u64 *)m;
384  	i = mbytes / VMAC_NHBYTES;  /* Must be non-zero */
385  
386  	ch = ctx->polytmp[0];
387  	cl = ctx->polytmp[1];
388  
389  	if (!ctx->first_block_processed) {
390  		ctx->first_block_processed = 1;
391  		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
392  		rh &= m62;
393  		ADD128(ch, cl, rh, rl);
394  		mptr += (VMAC_NHBYTES/sizeof(u64));
395  		i--;
396  	}
397  
398  	while (i--) {
399  		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
400  		rh &= m62;
401  		poly_step(ch, cl, pkh, pkl, rh, rl);
402  		mptr += (VMAC_NHBYTES/sizeof(u64));
403  	}
404  
405  	ctx->polytmp[0] = ch;
406  	ctx->polytmp[1] = cl;
407  }
408  
409  static u64 vhash(unsigned char m[], unsigned int mbytes,
410  			u64 *tagl, struct vmac_ctx *ctx)
411  {
412  	u64 rh, rl, *mptr;
413  	const u64 *kptr = (u64 *)ctx->nhkey;
414  	int i, remaining;
415  	u64 ch, cl;
416  	u64 pkh = ctx->polykey[0];
417  	u64 pkl = ctx->polykey[1];
418  
419  	mptr = (u64 *)m;
420  	i = mbytes / VMAC_NHBYTES;
421  	remaining = mbytes % VMAC_NHBYTES;
422  
423  	if (ctx->first_block_processed) {
424  		ch = ctx->polytmp[0];
425  		cl = ctx->polytmp[1];
426  	} else if (i) {
427  		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl);
428  		ch &= m62;
429  		ADD128(ch, cl, pkh, pkl);
430  		mptr += (VMAC_NHBYTES/sizeof(u64));
431  		i--;
432  	} else if (remaining) {
433  		nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl);
434  		ch &= m62;
435  		ADD128(ch, cl, pkh, pkl);
436  		mptr += (VMAC_NHBYTES/sizeof(u64));
437  		goto do_l3;
438  	} else {/* Empty String */
439  		ch = pkh; cl = pkl;
440  		goto do_l3;
441  	}
442  
443  	while (i--) {
444  		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
445  		rh &= m62;
446  		poly_step(ch, cl, pkh, pkl, rh, rl);
447  		mptr += (VMAC_NHBYTES/sizeof(u64));
448  	}
449  	if (remaining) {
450  		nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl);
451  		rh &= m62;
452  		poly_step(ch, cl, pkh, pkl, rh, rl);
453  	}
454  
455  do_l3:
456  	vhash_abort(ctx);
457  	remaining *= 8;
458  	return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining);
459  }
460  
461  static u64 vmac(unsigned char m[], unsigned int mbytes,
462  			const unsigned char n[16], u64 *tagl,
463  			struct vmac_ctx_t *ctx)
464  {
465  	u64 *in_n, *out_p;
466  	u64 p, h;
467  	int i;
468  
469  	in_n = ctx->__vmac_ctx.cached_nonce;
470  	out_p = ctx->__vmac_ctx.cached_aes;
471  
472  	i = n[15] & 1;
473  	if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) {
474  		in_n[0] = *(u64 *)(n);
475  		in_n[1] = *(u64 *)(n+8);
476  		((unsigned char *)in_n)[15] &= 0xFE;
477  		crypto_cipher_encrypt_one(ctx->child,
478  			(unsigned char *)out_p, (unsigned char *)in_n);
479  
480  		((unsigned char *)in_n)[15] |= (unsigned char)(1-i);
481  	}
482  	p = be64_to_cpup(out_p + i);
483  	h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx);
484  	return le64_to_cpu(p + h);
485  }
486  
487  static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx)
488  {
489  	u64 in[2] = {0}, out[2];
490  	unsigned i;
491  	int err = 0;
492  
493  	err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN);
494  	if (err)
495  		return err;
496  
497  	/* Fill nh key */
498  	((unsigned char *)in)[0] = 0x80;
499  	for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) {
500  		crypto_cipher_encrypt_one(ctx->child,
501  			(unsigned char *)out, (unsigned char *)in);
502  		ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out);
503  		ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1);
504  		((unsigned char *)in)[15] += 1;
505  	}
506  
507  	/* Fill poly key */
508  	((unsigned char *)in)[0] = 0xC0;
509  	in[1] = 0;
510  	for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) {
511  		crypto_cipher_encrypt_one(ctx->child,
512  			(unsigned char *)out, (unsigned char *)in);
513  		ctx->__vmac_ctx.polytmp[i] =
514  			ctx->__vmac_ctx.polykey[i] =
515  				be64_to_cpup(out) & mpoly;
516  		ctx->__vmac_ctx.polytmp[i+1] =
517  			ctx->__vmac_ctx.polykey[i+1] =
518  				be64_to_cpup(out+1) & mpoly;
519  		((unsigned char *)in)[15] += 1;
520  	}
521  
522  	/* Fill ip key */
523  	((unsigned char *)in)[0] = 0xE0;
524  	in[1] = 0;
525  	for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) {
526  		do {
527  			crypto_cipher_encrypt_one(ctx->child,
528  				(unsigned char *)out, (unsigned char *)in);
529  			ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out);
530  			ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1);
531  			((unsigned char *)in)[15] += 1;
532  		} while (ctx->__vmac_ctx.l3key[i] >= p64
533  			|| ctx->__vmac_ctx.l3key[i+1] >= p64);
534  	}
535  
536  	/* Invalidate nonce/aes cache and reset other elements */
537  	ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */
538  	ctx->__vmac_ctx.cached_nonce[1] = (u64)0;  /* Ensure illegal nonce */
539  	ctx->__vmac_ctx.first_block_processed = 0;
540  
541  	return err;
542  }
543  
544  static int vmac_setkey(struct crypto_shash *parent,
545  		const u8 *key, unsigned int keylen)
546  {
547  	struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
548  
549  	if (keylen != VMAC_KEY_LEN) {
550  		crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN);
551  		return -EINVAL;
552  	}
553  
554  	return vmac_set_key((u8 *)key, ctx);
555  }
556  
557  static int vmac_init(struct shash_desc *pdesc)
558  {
559  	return 0;
560  }
561  
562  static int vmac_update(struct shash_desc *pdesc, const u8 *p,
563  		unsigned int len)
564  {
565  	struct crypto_shash *parent = pdesc->tfm;
566  	struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
567  	int expand;
568  	int min;
569  
570  	expand = VMAC_NHBYTES - ctx->partial_size > 0 ?
571  			VMAC_NHBYTES - ctx->partial_size : 0;
572  
573  	min = len < expand ? len : expand;
574  
575  	memcpy(ctx->partial + ctx->partial_size, p, min);
576  	ctx->partial_size += min;
577  
578  	if (len < expand)
579  		return 0;
580  
581  	vhash_update(ctx->partial, VMAC_NHBYTES, &ctx->__vmac_ctx);
582  	ctx->partial_size = 0;
583  
584  	len -= expand;
585  	p += expand;
586  
587  	if (len % VMAC_NHBYTES) {
588  		memcpy(ctx->partial, p + len - (len % VMAC_NHBYTES),
589  			len % VMAC_NHBYTES);
590  		ctx->partial_size = len % VMAC_NHBYTES;
591  	}
592  
593  	vhash_update(p, len - len % VMAC_NHBYTES, &ctx->__vmac_ctx);
594  
595  	return 0;
596  }
597  
598  static int vmac_final(struct shash_desc *pdesc, u8 *out)
599  {
600  	struct crypto_shash *parent = pdesc->tfm;
601  	struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
602  	vmac_t mac;
603  	u8 nonce[16] = {};
604  
605  	/* vmac() ends up accessing outside the array bounds that
606  	 * we specify.  In appears to access up to the next 2-word
607  	 * boundary.  We'll just be uber cautious and zero the
608  	 * unwritten bytes in the buffer.
609  	 */
610  	if (ctx->partial_size) {
611  		memset(ctx->partial + ctx->partial_size, 0,
612  			VMAC_NHBYTES - ctx->partial_size);
613  	}
614  	mac = vmac(ctx->partial, ctx->partial_size, nonce, NULL, ctx);
615  	memcpy(out, &mac, sizeof(vmac_t));
616  	memzero_explicit(&mac, sizeof(vmac_t));
617  	memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx));
618  	ctx->partial_size = 0;
619  	return 0;
620  }
621  
622  static int vmac_init_tfm(struct crypto_tfm *tfm)
623  {
624  	struct crypto_cipher *cipher;
625  	struct crypto_instance *inst = (void *)tfm->__crt_alg;
626  	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
627  	struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
628  
629  	cipher = crypto_spawn_cipher(spawn);
630  	if (IS_ERR(cipher))
631  		return PTR_ERR(cipher);
632  
633  	ctx->child = cipher;
634  	return 0;
635  }
636  
637  static void vmac_exit_tfm(struct crypto_tfm *tfm)
638  {
639  	struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
640  	crypto_free_cipher(ctx->child);
641  }
642  
643  static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
644  {
645  	struct shash_instance *inst;
646  	struct crypto_alg *alg;
647  	int err;
648  
649  	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
650  	if (err)
651  		return err;
652  
653  	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
654  			CRYPTO_ALG_TYPE_MASK);
655  	if (IS_ERR(alg))
656  		return PTR_ERR(alg);
657  
658  	inst = shash_alloc_instance("vmac", alg);
659  	err = PTR_ERR(inst);
660  	if (IS_ERR(inst))
661  		goto out_put_alg;
662  
663  	err = crypto_init_spawn(shash_instance_ctx(inst), alg,
664  			shash_crypto_instance(inst),
665  			CRYPTO_ALG_TYPE_MASK);
666  	if (err)
667  		goto out_free_inst;
668  
669  	inst->alg.base.cra_priority = alg->cra_priority;
670  	inst->alg.base.cra_blocksize = alg->cra_blocksize;
671  	inst->alg.base.cra_alignmask = alg->cra_alignmask;
672  
673  	inst->alg.digestsize = sizeof(vmac_t);
674  	inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t);
675  	inst->alg.base.cra_init = vmac_init_tfm;
676  	inst->alg.base.cra_exit = vmac_exit_tfm;
677  
678  	inst->alg.init = vmac_init;
679  	inst->alg.update = vmac_update;
680  	inst->alg.final = vmac_final;
681  	inst->alg.setkey = vmac_setkey;
682  
683  	err = shash_register_instance(tmpl, inst);
684  	if (err) {
685  out_free_inst:
686  		shash_free_instance(shash_crypto_instance(inst));
687  	}
688  
689  out_put_alg:
690  	crypto_mod_put(alg);
691  	return err;
692  }
693  
694  static struct crypto_template vmac_tmpl = {
695  	.name = "vmac",
696  	.create = vmac_create,
697  	.free = shash_free_instance,
698  	.module = THIS_MODULE,
699  };
700  
701  static int __init vmac_module_init(void)
702  {
703  	return crypto_register_template(&vmac_tmpl);
704  }
705  
706  static void __exit vmac_module_exit(void)
707  {
708  	crypto_unregister_template(&vmac_tmpl);
709  }
710  
711  module_init(vmac_module_init);
712  module_exit(vmac_module_exit);
713  
714  MODULE_LICENSE("GPL");
715  MODULE_DESCRIPTION("VMAC hash algorithm");
716  MODULE_ALIAS_CRYPTO("vmac");
717