xref: /openbmc/linux/crypto/twofish_common.c (revision f220d3eb)
1 /*
2  * Common Twofish algorithm parts shared between the c and assembler
3  * implementations
4  *
5  * Originally Twofish for GPG
6  * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
7  * 256-bit key length added March 20, 1999
8  * Some modifications to reduce the text size by Werner Koch, April, 1998
9  * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com>
10  * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net>
11  *
12  * The original author has disclaimed all copyright interest in this
13  * code and thus put it in the public domain. The subsequent authors
14  * have put this under the GNU General Public License.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * (at your option) any later version.
20  *
21  * This program is distributed in the hope that it will be useful,
22  * but WITHOUT ANY WARRANTY; without even the implied warranty of
23  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24  * GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
28  *
29  *
30  * This code is a "clean room" implementation, written from the paper
31  * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
32  * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
33  * through http://www.counterpane.com/twofish.html
34  *
35  * For background information on multiplication in finite fields, used for
36  * the matrix operations in the key schedule, see the book _Contemporary
37  * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
38  * Third Edition.
39  */
40 
41 #include <crypto/twofish.h>
42 #include <linux/bitops.h>
43 #include <linux/crypto.h>
44 #include <linux/errno.h>
45 #include <linux/init.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 
50 
51 /* The large precomputed tables for the Twofish cipher (twofish.c)
52  * Taken from the same source as twofish.c
53  * Marc Mutz <Marc@Mutz.com>
54  */
55 
56 /* These two tables are the q0 and q1 permutations, exactly as described in
57  * the Twofish paper. */
58 
59 static const u8 q0[256] = {
60 	0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78,
61 	0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
62 	0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30,
63 	0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
64 	0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE,
65 	0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
66 	0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45,
67 	0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
68 	0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF,
69 	0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
70 	0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED,
71 	0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
72 	0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B,
73 	0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
74 	0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F,
75 	0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
76 	0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17,
77 	0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
78 	0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68,
79 	0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
80 	0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42,
81 	0x4A, 0x5E, 0xC1, 0xE0
82 };
83 
84 static const u8 q1[256] = {
85 	0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B,
86 	0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
87 	0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B,
88 	0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
89 	0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54,
90 	0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
91 	0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7,
92 	0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
93 	0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF,
94 	0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
95 	0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D,
96 	0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
97 	0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21,
98 	0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
99 	0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E,
100 	0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
101 	0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44,
102 	0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
103 	0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B,
104 	0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
105 	0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56,
106 	0x55, 0x09, 0xBE, 0x91
107 };
108 
109 /* These MDS tables are actually tables of MDS composed with q0 and q1,
110  * because it is only ever used that way and we can save some time by
111  * precomputing.  Of course the main saving comes from precomputing the
112  * GF(2^8) multiplication involved in the MDS matrix multiply; by looking
113  * things up in these tables we reduce the matrix multiply to four lookups
114  * and three XORs.  Semi-formally, the definition of these tables is:
115  * mds[0][i] = MDS (q1[i] 0 0 0)^T  mds[1][i] = MDS (0 q0[i] 0 0)^T
116  * mds[2][i] = MDS (0 0 q1[i] 0)^T  mds[3][i] = MDS (0 0 0 q0[i])^T
117  * where ^T means "transpose", the matrix multiply is performed in GF(2^8)
118  * represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described
119  * by Schneier et al, and I'm casually glossing over the byte/word
120  * conversion issues. */
121 
122 static const u32 mds[4][256] = {
123 	{
124 	0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B,
125 	0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B,
126 	0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32,
127 	0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1,
128 	0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA,
129 	0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B,
130 	0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1,
131 	0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5,
132 	0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490,
133 	0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154,
134 	0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0,
135 	0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796,
136 	0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228,
137 	0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7,
138 	0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3,
139 	0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8,
140 	0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477,
141 	0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF,
142 	0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C,
143 	0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9,
144 	0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA,
145 	0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D,
146 	0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72,
147 	0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E,
148 	0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76,
149 	0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321,
150 	0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39,
151 	0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01,
152 	0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D,
153 	0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E,
154 	0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5,
155 	0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64,
156 	0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7,
157 	0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544,
158 	0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E,
159 	0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E,
160 	0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A,
161 	0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B,
162 	0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2,
163 	0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9,
164 	0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504,
165 	0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756,
166 	0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91},
167 
168 	{
169 	0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252,
170 	0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A,
171 	0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020,
172 	0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141,
173 	0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444,
174 	0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424,
175 	0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A,
176 	0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757,
177 	0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383,
178 	0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A,
179 	0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9,
180 	0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656,
181 	0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1,
182 	0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898,
183 	0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414,
184 	0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3,
185 	0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1,
186 	0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989,
187 	0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5,
188 	0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282,
189 	0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E,
190 	0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E,
191 	0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202,
192 	0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC,
193 	0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565,
194 	0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A,
195 	0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808,
196 	0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272,
197 	0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A,
198 	0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969,
199 	0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505,
200 	0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5,
201 	0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D,
202 	0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343,
203 	0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF,
204 	0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3,
205 	0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F,
206 	0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646,
207 	0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6,
208 	0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF,
209 	0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A,
210 	0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7,
211 	0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8},
212 
213 	{
214 	0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B,
215 	0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F,
216 	0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A,
217 	0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783,
218 	0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70,
219 	0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3,
220 	0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB,
221 	0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA,
222 	0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4,
223 	0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41,
224 	0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C,
225 	0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07,
226 	0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622,
227 	0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18,
228 	0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035,
229 	0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96,
230 	0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84,
231 	0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E,
232 	0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F,
233 	0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD,
234 	0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558,
235 	0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40,
236 	0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA,
237 	0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85,
238 	0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF,
239 	0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773,
240 	0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D,
241 	0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B,
242 	0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C,
243 	0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19,
244 	0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086,
245 	0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D,
246 	0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74,
247 	0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755,
248 	0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691,
249 	0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D,
250 	0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4,
251 	0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53,
252 	0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E,
253 	0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9,
254 	0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705,
255 	0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7,
256 	0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF},
257 
258 	{
259 	0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98,
260 	0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866,
261 	0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643,
262 	0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77,
263 	0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9,
264 	0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C,
265 	0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3,
266 	0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216,
267 	0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F,
268 	0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25,
269 	0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF,
270 	0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7,
271 	0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4,
272 	0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E,
273 	0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA,
274 	0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C,
275 	0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12,
276 	0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A,
277 	0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D,
278 	0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE,
279 	0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A,
280 	0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C,
281 	0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B,
282 	0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4,
283 	0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B,
284 	0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3,
285 	0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE,
286 	0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB,
287 	0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85,
288 	0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA,
289 	0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E,
290 	0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8,
291 	0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33,
292 	0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC,
293 	0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718,
294 	0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA,
295 	0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8,
296 	0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872,
297 	0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882,
298 	0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D,
299 	0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10,
300 	0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6,
301 	0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8}
302 };
303 
304 /* The exp_to_poly and poly_to_exp tables are used to perform efficient
305  * operations in GF(2^8) represented as GF(2)[x]/w(x) where
306  * w(x)=x^8+x^6+x^3+x^2+1.  We care about doing that because it's part of the
307  * definition of the RS matrix in the key schedule.  Elements of that field
308  * are polynomials of degree not greater than 7 and all coefficients 0 or 1,
309  * which can be represented naturally by bytes (just substitute x=2).  In that
310  * form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8)
311  * multiplication is inefficient without hardware support.  To multiply
312  * faster, I make use of the fact x is a generator for the nonzero elements,
313  * so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for
314  * some n in 0..254.  Note that that caret is exponentiation in GF(2^8),
315  * *not* polynomial notation.  So if I want to compute pq where p and q are
316  * in GF(2^8), I can just say:
317  *    1. if p=0 or q=0 then pq=0
318  *    2. otherwise, find m and n such that p=x^m and q=x^n
319  *    3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq
320  * The translations in steps 2 and 3 are looked up in the tables
321  * poly_to_exp (for step 2) and exp_to_poly (for step 3).  To see this
322  * in action, look at the CALC_S macro.  As additional wrinkles, note that
323  * one of my operands is always a constant, so the poly_to_exp lookup on it
324  * is done in advance; I included the original values in the comments so
325  * readers can have some chance of recognizing that this *is* the RS matrix
326  * from the Twofish paper.  I've only included the table entries I actually
327  * need; I never do a lookup on a variable input of zero and the biggest
328  * exponents I'll ever see are 254 (variable) and 237 (constant), so they'll
329  * never sum to more than 491.	I'm repeating part of the exp_to_poly table
330  * so that I don't have to do mod-255 reduction in the exponent arithmetic.
331  * Since I know my constant operands are never zero, I only have to worry
332  * about zero values in the variable operand, and I do it with a simple
333  * conditional branch.	I know conditionals are expensive, but I couldn't
334  * see a non-horrible way of avoiding them, and I did manage to group the
335  * statements so that each if covers four group multiplications. */
336 
337 static const u8 poly_to_exp[255] = {
338 	0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19,
339 	0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A,
340 	0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C,
341 	0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B,
342 	0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47,
343 	0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D,
344 	0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8,
345 	0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C,
346 	0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83,
347 	0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48,
348 	0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26,
349 	0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E,
350 	0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3,
351 	0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9,
352 	0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A,
353 	0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D,
354 	0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75,
355 	0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84,
356 	0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64,
357 	0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49,
358 	0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF,
359 	0x85, 0xC8, 0xA1
360 };
361 
362 static const u8 exp_to_poly[492] = {
363 	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2,
364 	0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03,
365 	0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6,
366 	0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A,
367 	0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63,
368 	0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C,
369 	0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07,
370 	0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88,
371 	0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12,
372 	0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7,
373 	0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C,
374 	0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8,
375 	0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25,
376 	0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A,
377 	0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE,
378 	0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC,
379 	0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E,
380 	0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92,
381 	0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89,
382 	0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB,
383 	0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1,
384 	0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D,
385 	0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC,
386 	0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3,
387 	0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52,
388 	0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0,
389 	0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1,
390 	0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A,
391 	0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11,
392 	0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51,
393 	0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66,
394 	0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB,
395 	0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19,
396 	0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D,
397 	0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56,
398 	0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE,
399 	0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9,
400 	0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE,
401 	0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41,
402 	0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E,
403 	0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB
404 };
405 
406 
407 /* The table constants are indices of
408  * S-box entries, preprocessed through q0 and q1. */
409 static const u8 calc_sb_tbl[512] = {
410 	0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4,
411 	0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8,
412 	0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B,
413 	0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B,
414 	0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD,
415 	0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1,
416 	0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B,
417 	0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F,
418 	0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B,
419 	0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D,
420 	0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E,
421 	0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5,
422 	0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14,
423 	0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3,
424 	0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54,
425 	0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51,
426 	0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A,
427 	0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96,
428 	0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10,
429 	0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C,
430 	0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7,
431 	0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70,
432 	0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB,
433 	0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8,
434 	0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF,
435 	0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC,
436 	0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF,
437 	0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2,
438 	0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82,
439 	0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9,
440 	0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97,
441 	0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17,
442 	0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D,
443 	0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3,
444 	0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C,
445 	0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E,
446 	0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F,
447 	0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49,
448 	0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21,
449 	0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9,
450 	0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD,
451 	0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01,
452 	0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F,
453 	0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48,
454 	0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E,
455 	0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19,
456 	0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57,
457 	0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64,
458 	0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE,
459 	0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5,
460 	0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44,
461 	0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69,
462 	0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15,
463 	0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E,
464 	0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34,
465 	0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC,
466 	0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B,
467 	0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB,
468 	0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52,
469 	0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9,
470 	0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4,
471 	0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2,
472 	0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56,
473 	0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91
474 };
475 
476 /* Macro to perform one column of the RS matrix multiplication.  The
477  * parameters a, b, c, and d are the four bytes of output; i is the index
478  * of the key bytes, and w, x, y, and z, are the column of constants from
479  * the RS matrix, preprocessed through the poly_to_exp table. */
480 
481 #define CALC_S(a, b, c, d, i, w, x, y, z) \
482    if (key[i]) { \
483       tmp = poly_to_exp[key[i] - 1]; \
484       (a) ^= exp_to_poly[tmp + (w)]; \
485       (b) ^= exp_to_poly[tmp + (x)]; \
486       (c) ^= exp_to_poly[tmp + (y)]; \
487       (d) ^= exp_to_poly[tmp + (z)]; \
488    }
489 
490 /* Macros to calculate the key-dependent S-boxes for a 128-bit key using
491  * the S vector from CALC_S.  CALC_SB_2 computes a single entry in all
492  * four S-boxes, where i is the index of the entry to compute, and a and b
493  * are the index numbers preprocessed through the q0 and q1 tables
494  * respectively. */
495 
496 #define CALC_SB_2(i, a, b) \
497    ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \
498    ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \
499    ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \
500    ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh]
501 
502 /* Macro exactly like CALC_SB_2, but for 192-bit keys. */
503 
504 #define CALC_SB192_2(i, a, b) \
505    ctx->s[0][i] = mds[0][q0[q0[(b) ^ sa] ^ se] ^ si]; \
506    ctx->s[1][i] = mds[1][q0[q1[(b) ^ sb] ^ sf] ^ sj]; \
507    ctx->s[2][i] = mds[2][q1[q0[(a) ^ sc] ^ sg] ^ sk]; \
508    ctx->s[3][i] = mds[3][q1[q1[(a) ^ sd] ^ sh] ^ sl];
509 
510 /* Macro exactly like CALC_SB_2, but for 256-bit keys. */
511 
512 #define CALC_SB256_2(i, a, b) \
513    ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \
514    ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \
515    ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \
516    ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp];
517 
518 /* Macros to calculate the whitening and round subkeys.  CALC_K_2 computes the
519  * last two stages of the h() function for a given index (either 2i or 2i+1).
520  * a, b, c, and d are the four bytes going into the last two stages.  For
521  * 128-bit keys, this is the entire h() function and a and c are the index
522  * preprocessed through q0 and q1 respectively; for longer keys they are the
523  * output of previous stages.  j is the index of the first key byte to use.
524  * CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2
525  * twice, doing the Pseudo-Hadamard Transform, and doing the necessary
526  * rotations.  Its parameters are: a, the array to write the results into,
527  * j, the index of the first output entry, k and l, the preprocessed indices
528  * for index 2i, and m and n, the preprocessed indices for index 2i+1.
529  * CALC_K192_2 expands CALC_K_2 to handle 192-bit keys, by doing an
530  * additional lookup-and-XOR stage.  The parameters a, b, c and d are the
531  * four bytes going into the last three stages.  For 192-bit keys, c = d
532  * are the index preprocessed through q0, and a = b are the index
533  * preprocessed through q1; j is the index of the first key byte to use.
534  * CALC_K192 is identical to CALC_K but for using the CALC_K192_2 macro
535  * instead of CALC_K_2.
536  * CALC_K256_2 expands CALC_K192_2 to handle 256-bit keys, by doing an
537  * additional lookup-and-XOR stage.  The parameters a and b are the index
538  * preprocessed through q0 and q1 respectively; j is the index of the first
539  * key byte to use.  CALC_K256 is identical to CALC_K but for using the
540  * CALC_K256_2 macro instead of CALC_K_2. */
541 
542 #define CALC_K_2(a, b, c, d, j) \
543      mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \
544    ^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \
545    ^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \
546    ^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]]
547 
548 #define CALC_K(a, j, k, l, m, n) \
549    x = CALC_K_2 (k, l, k, l, 0); \
550    y = CALC_K_2 (m, n, m, n, 4); \
551    y = rol32(y, 8); \
552    x += y; y += x; ctx->a[j] = x; \
553    ctx->a[(j) + 1] = rol32(y, 9)
554 
555 #define CALC_K192_2(a, b, c, d, j) \
556    CALC_K_2 (q0[a ^ key[(j) + 16]], \
557 	     q1[b ^ key[(j) + 17]], \
558 	     q0[c ^ key[(j) + 18]], \
559 	     q1[d ^ key[(j) + 19]], j)
560 
561 #define CALC_K192(a, j, k, l, m, n) \
562    x = CALC_K192_2 (l, l, k, k, 0); \
563    y = CALC_K192_2 (n, n, m, m, 4); \
564    y = rol32(y, 8); \
565    x += y; y += x; ctx->a[j] = x; \
566    ctx->a[(j) + 1] = rol32(y, 9)
567 
568 #define CALC_K256_2(a, b, j) \
569    CALC_K192_2 (q1[b ^ key[(j) + 24]], \
570 	        q1[a ^ key[(j) + 25]], \
571 	        q0[a ^ key[(j) + 26]], \
572 	        q0[b ^ key[(j) + 27]], j)
573 
574 #define CALC_K256(a, j, k, l, m, n) \
575    x = CALC_K256_2 (k, l, 0); \
576    y = CALC_K256_2 (m, n, 4); \
577    y = rol32(y, 8); \
578    x += y; y += x; ctx->a[j] = x; \
579    ctx->a[(j) + 1] = rol32(y, 9)
580 
581 /* Perform the key setup. */
582 int __twofish_setkey(struct twofish_ctx *ctx, const u8 *key,
583 		     unsigned int key_len, u32 *flags)
584 {
585 	int i, j, k;
586 
587 	/* Temporaries for CALC_K. */
588 	u32 x, y;
589 
590 	/* The S vector used to key the S-boxes, split up into individual bytes.
591 	 * 128-bit keys use only sa through sh; 256-bit use all of them. */
592 	u8 sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0;
593 	u8 si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0;
594 
595 	/* Temporary for CALC_S. */
596 	u8 tmp;
597 
598 	/* Check key length. */
599 	if (key_len % 8)
600 	{
601 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
602 		return -EINVAL; /* unsupported key length */
603 	}
604 
605 	/* Compute the first two words of the S vector.  The magic numbers are
606 	 * the entries of the RS matrix, preprocessed through poly_to_exp. The
607 	 * numbers in the comments are the original (polynomial form) matrix
608 	 * entries. */
609 	CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
610 	CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
611 	CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
612 	CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
613 	CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
614 	CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
615 	CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
616 	CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
617 	CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
618 	CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
619 	CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
620 	CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
621 	CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
622 	CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
623 	CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
624 	CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
625 
626 	if (key_len == 24 || key_len == 32) { /* 192- or 256-bit key */
627 		/* Calculate the third word of the S vector */
628 		CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
629 		CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
630 		CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
631 		CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
632 		CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
633 		CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
634 		CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
635 		CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
636 	}
637 
638 	if (key_len == 32) { /* 256-bit key */
639 		/* Calculate the fourth word of the S vector */
640 		CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
641 		CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
642 		CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
643 		CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
644 		CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
645 		CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
646 		CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
647 		CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
648 
649 		/* Compute the S-boxes. */
650 		for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
651 			CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
652 		}
653 
654 		/* CALC_K256/CALC_K192/CALC_K loops were unrolled.
655 		 * Unrolling produced x2.5 more code (+18k on i386),
656 		 * and speeded up key setup by 7%:
657 		 * unrolled: twofish_setkey/sec: 41128
658 		 *     loop: twofish_setkey/sec: 38148
659 		 * CALC_K256: ~100 insns each
660 		 * CALC_K192: ~90 insns
661 		 *    CALC_K: ~70 insns
662 		 */
663 		/* Calculate whitening and round subkeys */
664 		for ( i = 0; i < 8; i += 2 ) {
665 			CALC_K256 (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
666 		}
667 		for ( i = 0; i < 32; i += 2 ) {
668 			CALC_K256 (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
669 		}
670 	} else if (key_len == 24) { /* 192-bit key */
671 		/* Compute the S-boxes. */
672 		for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
673 		        CALC_SB192_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
674 		}
675 
676 		/* Calculate whitening and round subkeys */
677 		for ( i = 0; i < 8; i += 2 ) {
678 			CALC_K192 (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
679 		}
680 		for ( i = 0; i < 32; i += 2 ) {
681 			CALC_K192 (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
682 		}
683 	} else { /* 128-bit key */
684 		/* Compute the S-boxes. */
685 		for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
686 			CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
687 		}
688 
689 		/* Calculate whitening and round subkeys */
690 		for ( i = 0; i < 8; i += 2 ) {
691 			CALC_K (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
692 		}
693 		for ( i = 0; i < 32; i += 2 ) {
694 			CALC_K (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
695 		}
696 	}
697 
698 	return 0;
699 }
700 EXPORT_SYMBOL_GPL(__twofish_setkey);
701 
702 int twofish_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int key_len)
703 {
704 	return __twofish_setkey(crypto_tfm_ctx(tfm), key, key_len,
705 				&tfm->crt_flags);
706 }
707 EXPORT_SYMBOL_GPL(twofish_setkey);
708 
709 MODULE_LICENSE("GPL");
710 MODULE_DESCRIPTION("Twofish cipher common functions");
711