1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Algorithm testing framework and tests. 4 * 5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> 6 * Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org> 7 * Copyright (c) 2007 Nokia Siemens Networks 8 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 9 * Copyright (c) 2019 Google LLC 10 * 11 * Updated RFC4106 AES-GCM testing. 12 * Authors: Aidan O'Mahony (aidan.o.mahony@intel.com) 13 * Adrian Hoban <adrian.hoban@intel.com> 14 * Gabriele Paoloni <gabriele.paoloni@intel.com> 15 * Tadeusz Struk (tadeusz.struk@intel.com) 16 * Copyright (c) 2010, Intel Corporation. 17 */ 18 19 #include <crypto/aead.h> 20 #include <crypto/hash.h> 21 #include <crypto/skcipher.h> 22 #include <linux/err.h> 23 #include <linux/fips.h> 24 #include <linux/module.h> 25 #include <linux/once.h> 26 #include <linux/random.h> 27 #include <linux/scatterlist.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/uio.h> 31 #include <crypto/rng.h> 32 #include <crypto/drbg.h> 33 #include <crypto/akcipher.h> 34 #include <crypto/kpp.h> 35 #include <crypto/acompress.h> 36 #include <crypto/internal/cipher.h> 37 #include <crypto/internal/simd.h> 38 39 #include "internal.h" 40 41 MODULE_IMPORT_NS(CRYPTO_INTERNAL); 42 43 static bool notests; 44 module_param(notests, bool, 0644); 45 MODULE_PARM_DESC(notests, "disable crypto self-tests"); 46 47 static bool panic_on_fail; 48 module_param(panic_on_fail, bool, 0444); 49 50 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 51 static bool noextratests; 52 module_param(noextratests, bool, 0644); 53 MODULE_PARM_DESC(noextratests, "disable expensive crypto self-tests"); 54 55 static unsigned int fuzz_iterations = 100; 56 module_param(fuzz_iterations, uint, 0644); 57 MODULE_PARM_DESC(fuzz_iterations, "number of fuzz test iterations"); 58 59 DEFINE_PER_CPU(bool, crypto_simd_disabled_for_test); 60 EXPORT_PER_CPU_SYMBOL_GPL(crypto_simd_disabled_for_test); 61 #endif 62 63 #ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS 64 65 /* a perfect nop */ 66 int alg_test(const char *driver, const char *alg, u32 type, u32 mask) 67 { 68 return 0; 69 } 70 71 #else 72 73 #include "testmgr.h" 74 75 /* 76 * Need slab memory for testing (size in number of pages). 77 */ 78 #define XBUFSIZE 8 79 80 /* 81 * Used by test_cipher() 82 */ 83 #define ENCRYPT 1 84 #define DECRYPT 0 85 86 struct aead_test_suite { 87 const struct aead_testvec *vecs; 88 unsigned int count; 89 90 /* 91 * Set if trying to decrypt an inauthentic ciphertext with this 92 * algorithm might result in EINVAL rather than EBADMSG, due to other 93 * validation the algorithm does on the inputs such as length checks. 94 */ 95 unsigned int einval_allowed : 1; 96 97 /* 98 * Set if this algorithm requires that the IV be located at the end of 99 * the AAD buffer, in addition to being given in the normal way. The 100 * behavior when the two IV copies differ is implementation-defined. 101 */ 102 unsigned int aad_iv : 1; 103 }; 104 105 struct cipher_test_suite { 106 const struct cipher_testvec *vecs; 107 unsigned int count; 108 }; 109 110 struct comp_test_suite { 111 struct { 112 const struct comp_testvec *vecs; 113 unsigned int count; 114 } comp, decomp; 115 }; 116 117 struct hash_test_suite { 118 const struct hash_testvec *vecs; 119 unsigned int count; 120 }; 121 122 struct cprng_test_suite { 123 const struct cprng_testvec *vecs; 124 unsigned int count; 125 }; 126 127 struct drbg_test_suite { 128 const struct drbg_testvec *vecs; 129 unsigned int count; 130 }; 131 132 struct akcipher_test_suite { 133 const struct akcipher_testvec *vecs; 134 unsigned int count; 135 }; 136 137 struct kpp_test_suite { 138 const struct kpp_testvec *vecs; 139 unsigned int count; 140 }; 141 142 struct alg_test_desc { 143 const char *alg; 144 const char *generic_driver; 145 int (*test)(const struct alg_test_desc *desc, const char *driver, 146 u32 type, u32 mask); 147 int fips_allowed; /* set if alg is allowed in fips mode */ 148 149 union { 150 struct aead_test_suite aead; 151 struct cipher_test_suite cipher; 152 struct comp_test_suite comp; 153 struct hash_test_suite hash; 154 struct cprng_test_suite cprng; 155 struct drbg_test_suite drbg; 156 struct akcipher_test_suite akcipher; 157 struct kpp_test_suite kpp; 158 } suite; 159 }; 160 161 static void hexdump(unsigned char *buf, unsigned int len) 162 { 163 print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, 164 16, 1, 165 buf, len, false); 166 } 167 168 static int __testmgr_alloc_buf(char *buf[XBUFSIZE], int order) 169 { 170 int i; 171 172 for (i = 0; i < XBUFSIZE; i++) { 173 buf[i] = (char *)__get_free_pages(GFP_KERNEL, order); 174 if (!buf[i]) 175 goto err_free_buf; 176 } 177 178 return 0; 179 180 err_free_buf: 181 while (i-- > 0) 182 free_pages((unsigned long)buf[i], order); 183 184 return -ENOMEM; 185 } 186 187 static int testmgr_alloc_buf(char *buf[XBUFSIZE]) 188 { 189 return __testmgr_alloc_buf(buf, 0); 190 } 191 192 static void __testmgr_free_buf(char *buf[XBUFSIZE], int order) 193 { 194 int i; 195 196 for (i = 0; i < XBUFSIZE; i++) 197 free_pages((unsigned long)buf[i], order); 198 } 199 200 static void testmgr_free_buf(char *buf[XBUFSIZE]) 201 { 202 __testmgr_free_buf(buf, 0); 203 } 204 205 #define TESTMGR_POISON_BYTE 0xfe 206 #define TESTMGR_POISON_LEN 16 207 208 static inline void testmgr_poison(void *addr, size_t len) 209 { 210 memset(addr, TESTMGR_POISON_BYTE, len); 211 } 212 213 /* Is the memory region still fully poisoned? */ 214 static inline bool testmgr_is_poison(const void *addr, size_t len) 215 { 216 return memchr_inv(addr, TESTMGR_POISON_BYTE, len) == NULL; 217 } 218 219 /* flush type for hash algorithms */ 220 enum flush_type { 221 /* merge with update of previous buffer(s) */ 222 FLUSH_TYPE_NONE = 0, 223 224 /* update with previous buffer(s) before doing this one */ 225 FLUSH_TYPE_FLUSH, 226 227 /* likewise, but also export and re-import the intermediate state */ 228 FLUSH_TYPE_REIMPORT, 229 }; 230 231 /* finalization function for hash algorithms */ 232 enum finalization_type { 233 FINALIZATION_TYPE_FINAL, /* use final() */ 234 FINALIZATION_TYPE_FINUP, /* use finup() */ 235 FINALIZATION_TYPE_DIGEST, /* use digest() */ 236 }; 237 238 #define TEST_SG_TOTAL 10000 239 240 /** 241 * struct test_sg_division - description of a scatterlist entry 242 * 243 * This struct describes one entry of a scatterlist being constructed to check a 244 * crypto test vector. 245 * 246 * @proportion_of_total: length of this chunk relative to the total length, 247 * given as a proportion out of TEST_SG_TOTAL so that it 248 * scales to fit any test vector 249 * @offset: byte offset into a 2-page buffer at which this chunk will start 250 * @offset_relative_to_alignmask: if true, add the algorithm's alignmask to the 251 * @offset 252 * @flush_type: for hashes, whether an update() should be done now vs. 253 * continuing to accumulate data 254 * @nosimd: if doing the pending update(), do it with SIMD disabled? 255 */ 256 struct test_sg_division { 257 unsigned int proportion_of_total; 258 unsigned int offset; 259 bool offset_relative_to_alignmask; 260 enum flush_type flush_type; 261 bool nosimd; 262 }; 263 264 /** 265 * struct testvec_config - configuration for testing a crypto test vector 266 * 267 * This struct describes the data layout and other parameters with which each 268 * crypto test vector can be tested. 269 * 270 * @name: name of this config, logged for debugging purposes if a test fails 271 * @inplace: operate on the data in-place, if applicable for the algorithm type? 272 * @req_flags: extra request_flags, e.g. CRYPTO_TFM_REQ_MAY_SLEEP 273 * @src_divs: description of how to arrange the source scatterlist 274 * @dst_divs: description of how to arrange the dst scatterlist, if applicable 275 * for the algorithm type. Defaults to @src_divs if unset. 276 * @iv_offset: misalignment of the IV in the range [0..MAX_ALGAPI_ALIGNMASK+1], 277 * where 0 is aligned to a 2*(MAX_ALGAPI_ALIGNMASK+1) byte boundary 278 * @iv_offset_relative_to_alignmask: if true, add the algorithm's alignmask to 279 * the @iv_offset 280 * @key_offset: misalignment of the key, where 0 is default alignment 281 * @key_offset_relative_to_alignmask: if true, add the algorithm's alignmask to 282 * the @key_offset 283 * @finalization_type: what finalization function to use for hashes 284 * @nosimd: execute with SIMD disabled? Requires !CRYPTO_TFM_REQ_MAY_SLEEP. 285 */ 286 struct testvec_config { 287 const char *name; 288 bool inplace; 289 u32 req_flags; 290 struct test_sg_division src_divs[XBUFSIZE]; 291 struct test_sg_division dst_divs[XBUFSIZE]; 292 unsigned int iv_offset; 293 unsigned int key_offset; 294 bool iv_offset_relative_to_alignmask; 295 bool key_offset_relative_to_alignmask; 296 enum finalization_type finalization_type; 297 bool nosimd; 298 }; 299 300 #define TESTVEC_CONFIG_NAMELEN 192 301 302 /* 303 * The following are the lists of testvec_configs to test for each algorithm 304 * type when the basic crypto self-tests are enabled, i.e. when 305 * CONFIG_CRYPTO_MANAGER_DISABLE_TESTS is unset. They aim to provide good test 306 * coverage, while keeping the test time much shorter than the full fuzz tests 307 * so that the basic tests can be enabled in a wider range of circumstances. 308 */ 309 310 /* Configs for skciphers and aeads */ 311 static const struct testvec_config default_cipher_testvec_configs[] = { 312 { 313 .name = "in-place", 314 .inplace = true, 315 .src_divs = { { .proportion_of_total = 10000 } }, 316 }, { 317 .name = "out-of-place", 318 .src_divs = { { .proportion_of_total = 10000 } }, 319 }, { 320 .name = "unaligned buffer, offset=1", 321 .src_divs = { { .proportion_of_total = 10000, .offset = 1 } }, 322 .iv_offset = 1, 323 .key_offset = 1, 324 }, { 325 .name = "buffer aligned only to alignmask", 326 .src_divs = { 327 { 328 .proportion_of_total = 10000, 329 .offset = 1, 330 .offset_relative_to_alignmask = true, 331 }, 332 }, 333 .iv_offset = 1, 334 .iv_offset_relative_to_alignmask = true, 335 .key_offset = 1, 336 .key_offset_relative_to_alignmask = true, 337 }, { 338 .name = "two even aligned splits", 339 .src_divs = { 340 { .proportion_of_total = 5000 }, 341 { .proportion_of_total = 5000 }, 342 }, 343 }, { 344 .name = "uneven misaligned splits, may sleep", 345 .req_flags = CRYPTO_TFM_REQ_MAY_SLEEP, 346 .src_divs = { 347 { .proportion_of_total = 1900, .offset = 33 }, 348 { .proportion_of_total = 3300, .offset = 7 }, 349 { .proportion_of_total = 4800, .offset = 18 }, 350 }, 351 .iv_offset = 3, 352 .key_offset = 3, 353 }, { 354 .name = "misaligned splits crossing pages, inplace", 355 .inplace = true, 356 .src_divs = { 357 { 358 .proportion_of_total = 7500, 359 .offset = PAGE_SIZE - 32 360 }, { 361 .proportion_of_total = 2500, 362 .offset = PAGE_SIZE - 7 363 }, 364 }, 365 } 366 }; 367 368 static const struct testvec_config default_hash_testvec_configs[] = { 369 { 370 .name = "init+update+final aligned buffer", 371 .src_divs = { { .proportion_of_total = 10000 } }, 372 .finalization_type = FINALIZATION_TYPE_FINAL, 373 }, { 374 .name = "init+finup aligned buffer", 375 .src_divs = { { .proportion_of_total = 10000 } }, 376 .finalization_type = FINALIZATION_TYPE_FINUP, 377 }, { 378 .name = "digest aligned buffer", 379 .src_divs = { { .proportion_of_total = 10000 } }, 380 .finalization_type = FINALIZATION_TYPE_DIGEST, 381 }, { 382 .name = "init+update+final misaligned buffer", 383 .src_divs = { { .proportion_of_total = 10000, .offset = 1 } }, 384 .finalization_type = FINALIZATION_TYPE_FINAL, 385 .key_offset = 1, 386 }, { 387 .name = "digest buffer aligned only to alignmask", 388 .src_divs = { 389 { 390 .proportion_of_total = 10000, 391 .offset = 1, 392 .offset_relative_to_alignmask = true, 393 }, 394 }, 395 .finalization_type = FINALIZATION_TYPE_DIGEST, 396 .key_offset = 1, 397 .key_offset_relative_to_alignmask = true, 398 }, { 399 .name = "init+update+update+final two even splits", 400 .src_divs = { 401 { .proportion_of_total = 5000 }, 402 { 403 .proportion_of_total = 5000, 404 .flush_type = FLUSH_TYPE_FLUSH, 405 }, 406 }, 407 .finalization_type = FINALIZATION_TYPE_FINAL, 408 }, { 409 .name = "digest uneven misaligned splits, may sleep", 410 .req_flags = CRYPTO_TFM_REQ_MAY_SLEEP, 411 .src_divs = { 412 { .proportion_of_total = 1900, .offset = 33 }, 413 { .proportion_of_total = 3300, .offset = 7 }, 414 { .proportion_of_total = 4800, .offset = 18 }, 415 }, 416 .finalization_type = FINALIZATION_TYPE_DIGEST, 417 }, { 418 .name = "digest misaligned splits crossing pages", 419 .src_divs = { 420 { 421 .proportion_of_total = 7500, 422 .offset = PAGE_SIZE - 32, 423 }, { 424 .proportion_of_total = 2500, 425 .offset = PAGE_SIZE - 7, 426 }, 427 }, 428 .finalization_type = FINALIZATION_TYPE_DIGEST, 429 }, { 430 .name = "import/export", 431 .src_divs = { 432 { 433 .proportion_of_total = 6500, 434 .flush_type = FLUSH_TYPE_REIMPORT, 435 }, { 436 .proportion_of_total = 3500, 437 .flush_type = FLUSH_TYPE_REIMPORT, 438 }, 439 }, 440 .finalization_type = FINALIZATION_TYPE_FINAL, 441 } 442 }; 443 444 static unsigned int count_test_sg_divisions(const struct test_sg_division *divs) 445 { 446 unsigned int remaining = TEST_SG_TOTAL; 447 unsigned int ndivs = 0; 448 449 do { 450 remaining -= divs[ndivs++].proportion_of_total; 451 } while (remaining); 452 453 return ndivs; 454 } 455 456 #define SGDIVS_HAVE_FLUSHES BIT(0) 457 #define SGDIVS_HAVE_NOSIMD BIT(1) 458 459 static bool valid_sg_divisions(const struct test_sg_division *divs, 460 unsigned int count, int *flags_ret) 461 { 462 unsigned int total = 0; 463 unsigned int i; 464 465 for (i = 0; i < count && total != TEST_SG_TOTAL; i++) { 466 if (divs[i].proportion_of_total <= 0 || 467 divs[i].proportion_of_total > TEST_SG_TOTAL - total) 468 return false; 469 total += divs[i].proportion_of_total; 470 if (divs[i].flush_type != FLUSH_TYPE_NONE) 471 *flags_ret |= SGDIVS_HAVE_FLUSHES; 472 if (divs[i].nosimd) 473 *flags_ret |= SGDIVS_HAVE_NOSIMD; 474 } 475 return total == TEST_SG_TOTAL && 476 memchr_inv(&divs[i], 0, (count - i) * sizeof(divs[0])) == NULL; 477 } 478 479 /* 480 * Check whether the given testvec_config is valid. This isn't strictly needed 481 * since every testvec_config should be valid, but check anyway so that people 482 * don't unknowingly add broken configs that don't do what they wanted. 483 */ 484 static bool valid_testvec_config(const struct testvec_config *cfg) 485 { 486 int flags = 0; 487 488 if (cfg->name == NULL) 489 return false; 490 491 if (!valid_sg_divisions(cfg->src_divs, ARRAY_SIZE(cfg->src_divs), 492 &flags)) 493 return false; 494 495 if (cfg->dst_divs[0].proportion_of_total) { 496 if (!valid_sg_divisions(cfg->dst_divs, 497 ARRAY_SIZE(cfg->dst_divs), &flags)) 498 return false; 499 } else { 500 if (memchr_inv(cfg->dst_divs, 0, sizeof(cfg->dst_divs))) 501 return false; 502 /* defaults to dst_divs=src_divs */ 503 } 504 505 if (cfg->iv_offset + 506 (cfg->iv_offset_relative_to_alignmask ? MAX_ALGAPI_ALIGNMASK : 0) > 507 MAX_ALGAPI_ALIGNMASK + 1) 508 return false; 509 510 if ((flags & (SGDIVS_HAVE_FLUSHES | SGDIVS_HAVE_NOSIMD)) && 511 cfg->finalization_type == FINALIZATION_TYPE_DIGEST) 512 return false; 513 514 if ((cfg->nosimd || (flags & SGDIVS_HAVE_NOSIMD)) && 515 (cfg->req_flags & CRYPTO_TFM_REQ_MAY_SLEEP)) 516 return false; 517 518 return true; 519 } 520 521 struct test_sglist { 522 char *bufs[XBUFSIZE]; 523 struct scatterlist sgl[XBUFSIZE]; 524 struct scatterlist sgl_saved[XBUFSIZE]; 525 struct scatterlist *sgl_ptr; 526 unsigned int nents; 527 }; 528 529 static int init_test_sglist(struct test_sglist *tsgl) 530 { 531 return __testmgr_alloc_buf(tsgl->bufs, 1 /* two pages per buffer */); 532 } 533 534 static void destroy_test_sglist(struct test_sglist *tsgl) 535 { 536 return __testmgr_free_buf(tsgl->bufs, 1 /* two pages per buffer */); 537 } 538 539 /** 540 * build_test_sglist() - build a scatterlist for a crypto test 541 * 542 * @tsgl: the scatterlist to build. @tsgl->bufs[] contains an array of 2-page 543 * buffers which the scatterlist @tsgl->sgl[] will be made to point into. 544 * @divs: the layout specification on which the scatterlist will be based 545 * @alignmask: the algorithm's alignmask 546 * @total_len: the total length of the scatterlist to build in bytes 547 * @data: if non-NULL, the buffers will be filled with this data until it ends. 548 * Otherwise the buffers will be poisoned. In both cases, some bytes 549 * past the end of each buffer will be poisoned to help detect overruns. 550 * @out_divs: if non-NULL, the test_sg_division to which each scatterlist entry 551 * corresponds will be returned here. This will match @divs except 552 * that divisions resolving to a length of 0 are omitted as they are 553 * not included in the scatterlist. 554 * 555 * Return: 0 or a -errno value 556 */ 557 static int build_test_sglist(struct test_sglist *tsgl, 558 const struct test_sg_division *divs, 559 const unsigned int alignmask, 560 const unsigned int total_len, 561 struct iov_iter *data, 562 const struct test_sg_division *out_divs[XBUFSIZE]) 563 { 564 struct { 565 const struct test_sg_division *div; 566 size_t length; 567 } partitions[XBUFSIZE]; 568 const unsigned int ndivs = count_test_sg_divisions(divs); 569 unsigned int len_remaining = total_len; 570 unsigned int i; 571 572 BUILD_BUG_ON(ARRAY_SIZE(partitions) != ARRAY_SIZE(tsgl->sgl)); 573 if (WARN_ON(ndivs > ARRAY_SIZE(partitions))) 574 return -EINVAL; 575 576 /* Calculate the (div, length) pairs */ 577 tsgl->nents = 0; 578 for (i = 0; i < ndivs; i++) { 579 unsigned int len_this_sg = 580 min(len_remaining, 581 (total_len * divs[i].proportion_of_total + 582 TEST_SG_TOTAL / 2) / TEST_SG_TOTAL); 583 584 if (len_this_sg != 0) { 585 partitions[tsgl->nents].div = &divs[i]; 586 partitions[tsgl->nents].length = len_this_sg; 587 tsgl->nents++; 588 len_remaining -= len_this_sg; 589 } 590 } 591 if (tsgl->nents == 0) { 592 partitions[tsgl->nents].div = &divs[0]; 593 partitions[tsgl->nents].length = 0; 594 tsgl->nents++; 595 } 596 partitions[tsgl->nents - 1].length += len_remaining; 597 598 /* Set up the sgl entries and fill the data or poison */ 599 sg_init_table(tsgl->sgl, tsgl->nents); 600 for (i = 0; i < tsgl->nents; i++) { 601 unsigned int offset = partitions[i].div->offset; 602 void *addr; 603 604 if (partitions[i].div->offset_relative_to_alignmask) 605 offset += alignmask; 606 607 while (offset + partitions[i].length + TESTMGR_POISON_LEN > 608 2 * PAGE_SIZE) { 609 if (WARN_ON(offset <= 0)) 610 return -EINVAL; 611 offset /= 2; 612 } 613 614 addr = &tsgl->bufs[i][offset]; 615 sg_set_buf(&tsgl->sgl[i], addr, partitions[i].length); 616 617 if (out_divs) 618 out_divs[i] = partitions[i].div; 619 620 if (data) { 621 size_t copy_len, copied; 622 623 copy_len = min(partitions[i].length, data->count); 624 copied = copy_from_iter(addr, copy_len, data); 625 if (WARN_ON(copied != copy_len)) 626 return -EINVAL; 627 testmgr_poison(addr + copy_len, partitions[i].length + 628 TESTMGR_POISON_LEN - copy_len); 629 } else { 630 testmgr_poison(addr, partitions[i].length + 631 TESTMGR_POISON_LEN); 632 } 633 } 634 635 sg_mark_end(&tsgl->sgl[tsgl->nents - 1]); 636 tsgl->sgl_ptr = tsgl->sgl; 637 memcpy(tsgl->sgl_saved, tsgl->sgl, tsgl->nents * sizeof(tsgl->sgl[0])); 638 return 0; 639 } 640 641 /* 642 * Verify that a scatterlist crypto operation produced the correct output. 643 * 644 * @tsgl: scatterlist containing the actual output 645 * @expected_output: buffer containing the expected output 646 * @len_to_check: length of @expected_output in bytes 647 * @unchecked_prefix_len: number of ignored bytes in @tsgl prior to real result 648 * @check_poison: verify that the poison bytes after each chunk are intact? 649 * 650 * Return: 0 if correct, -EINVAL if incorrect, -EOVERFLOW if buffer overrun. 651 */ 652 static int verify_correct_output(const struct test_sglist *tsgl, 653 const char *expected_output, 654 unsigned int len_to_check, 655 unsigned int unchecked_prefix_len, 656 bool check_poison) 657 { 658 unsigned int i; 659 660 for (i = 0; i < tsgl->nents; i++) { 661 struct scatterlist *sg = &tsgl->sgl_ptr[i]; 662 unsigned int len = sg->length; 663 unsigned int offset = sg->offset; 664 const char *actual_output; 665 666 if (unchecked_prefix_len) { 667 if (unchecked_prefix_len >= len) { 668 unchecked_prefix_len -= len; 669 continue; 670 } 671 offset += unchecked_prefix_len; 672 len -= unchecked_prefix_len; 673 unchecked_prefix_len = 0; 674 } 675 len = min(len, len_to_check); 676 actual_output = page_address(sg_page(sg)) + offset; 677 if (memcmp(expected_output, actual_output, len) != 0) 678 return -EINVAL; 679 if (check_poison && 680 !testmgr_is_poison(actual_output + len, TESTMGR_POISON_LEN)) 681 return -EOVERFLOW; 682 len_to_check -= len; 683 expected_output += len; 684 } 685 if (WARN_ON(len_to_check != 0)) 686 return -EINVAL; 687 return 0; 688 } 689 690 static bool is_test_sglist_corrupted(const struct test_sglist *tsgl) 691 { 692 unsigned int i; 693 694 for (i = 0; i < tsgl->nents; i++) { 695 if (tsgl->sgl[i].page_link != tsgl->sgl_saved[i].page_link) 696 return true; 697 if (tsgl->sgl[i].offset != tsgl->sgl_saved[i].offset) 698 return true; 699 if (tsgl->sgl[i].length != tsgl->sgl_saved[i].length) 700 return true; 701 } 702 return false; 703 } 704 705 struct cipher_test_sglists { 706 struct test_sglist src; 707 struct test_sglist dst; 708 }; 709 710 static struct cipher_test_sglists *alloc_cipher_test_sglists(void) 711 { 712 struct cipher_test_sglists *tsgls; 713 714 tsgls = kmalloc(sizeof(*tsgls), GFP_KERNEL); 715 if (!tsgls) 716 return NULL; 717 718 if (init_test_sglist(&tsgls->src) != 0) 719 goto fail_kfree; 720 if (init_test_sglist(&tsgls->dst) != 0) 721 goto fail_destroy_src; 722 723 return tsgls; 724 725 fail_destroy_src: 726 destroy_test_sglist(&tsgls->src); 727 fail_kfree: 728 kfree(tsgls); 729 return NULL; 730 } 731 732 static void free_cipher_test_sglists(struct cipher_test_sglists *tsgls) 733 { 734 if (tsgls) { 735 destroy_test_sglist(&tsgls->src); 736 destroy_test_sglist(&tsgls->dst); 737 kfree(tsgls); 738 } 739 } 740 741 /* Build the src and dst scatterlists for an skcipher or AEAD test */ 742 static int build_cipher_test_sglists(struct cipher_test_sglists *tsgls, 743 const struct testvec_config *cfg, 744 unsigned int alignmask, 745 unsigned int src_total_len, 746 unsigned int dst_total_len, 747 const struct kvec *inputs, 748 unsigned int nr_inputs) 749 { 750 struct iov_iter input; 751 int err; 752 753 iov_iter_kvec(&input, WRITE, inputs, nr_inputs, src_total_len); 754 err = build_test_sglist(&tsgls->src, cfg->src_divs, alignmask, 755 cfg->inplace ? 756 max(dst_total_len, src_total_len) : 757 src_total_len, 758 &input, NULL); 759 if (err) 760 return err; 761 762 if (cfg->inplace) { 763 tsgls->dst.sgl_ptr = tsgls->src.sgl; 764 tsgls->dst.nents = tsgls->src.nents; 765 return 0; 766 } 767 return build_test_sglist(&tsgls->dst, 768 cfg->dst_divs[0].proportion_of_total ? 769 cfg->dst_divs : cfg->src_divs, 770 alignmask, dst_total_len, NULL, NULL); 771 } 772 773 /* 774 * Support for testing passing a misaligned key to setkey(): 775 * 776 * If cfg->key_offset is set, copy the key into a new buffer at that offset, 777 * optionally adding alignmask. Else, just use the key directly. 778 */ 779 static int prepare_keybuf(const u8 *key, unsigned int ksize, 780 const struct testvec_config *cfg, 781 unsigned int alignmask, 782 const u8 **keybuf_ret, const u8 **keyptr_ret) 783 { 784 unsigned int key_offset = cfg->key_offset; 785 u8 *keybuf = NULL, *keyptr = (u8 *)key; 786 787 if (key_offset != 0) { 788 if (cfg->key_offset_relative_to_alignmask) 789 key_offset += alignmask; 790 keybuf = kmalloc(key_offset + ksize, GFP_KERNEL); 791 if (!keybuf) 792 return -ENOMEM; 793 keyptr = keybuf + key_offset; 794 memcpy(keyptr, key, ksize); 795 } 796 *keybuf_ret = keybuf; 797 *keyptr_ret = keyptr; 798 return 0; 799 } 800 801 /* Like setkey_f(tfm, key, ksize), but sometimes misalign the key */ 802 #define do_setkey(setkey_f, tfm, key, ksize, cfg, alignmask) \ 803 ({ \ 804 const u8 *keybuf, *keyptr; \ 805 int err; \ 806 \ 807 err = prepare_keybuf((key), (ksize), (cfg), (alignmask), \ 808 &keybuf, &keyptr); \ 809 if (err == 0) { \ 810 err = setkey_f((tfm), keyptr, (ksize)); \ 811 kfree(keybuf); \ 812 } \ 813 err; \ 814 }) 815 816 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 817 818 /* Generate a random length in range [0, max_len], but prefer smaller values */ 819 static unsigned int generate_random_length(unsigned int max_len) 820 { 821 unsigned int len = prandom_u32() % (max_len + 1); 822 823 switch (prandom_u32() % 4) { 824 case 0: 825 return len % 64; 826 case 1: 827 return len % 256; 828 case 2: 829 return len % 1024; 830 default: 831 return len; 832 } 833 } 834 835 /* Flip a random bit in the given nonempty data buffer */ 836 static void flip_random_bit(u8 *buf, size_t size) 837 { 838 size_t bitpos; 839 840 bitpos = prandom_u32() % (size * 8); 841 buf[bitpos / 8] ^= 1 << (bitpos % 8); 842 } 843 844 /* Flip a random byte in the given nonempty data buffer */ 845 static void flip_random_byte(u8 *buf, size_t size) 846 { 847 buf[prandom_u32() % size] ^= 0xff; 848 } 849 850 /* Sometimes make some random changes to the given nonempty data buffer */ 851 static void mutate_buffer(u8 *buf, size_t size) 852 { 853 size_t num_flips; 854 size_t i; 855 856 /* Sometimes flip some bits */ 857 if (prandom_u32() % 4 == 0) { 858 num_flips = min_t(size_t, 1 << (prandom_u32() % 8), size * 8); 859 for (i = 0; i < num_flips; i++) 860 flip_random_bit(buf, size); 861 } 862 863 /* Sometimes flip some bytes */ 864 if (prandom_u32() % 4 == 0) { 865 num_flips = min_t(size_t, 1 << (prandom_u32() % 8), size); 866 for (i = 0; i < num_flips; i++) 867 flip_random_byte(buf, size); 868 } 869 } 870 871 /* Randomly generate 'count' bytes, but sometimes make them "interesting" */ 872 static void generate_random_bytes(u8 *buf, size_t count) 873 { 874 u8 b; 875 u8 increment; 876 size_t i; 877 878 if (count == 0) 879 return; 880 881 switch (prandom_u32() % 8) { /* Choose a generation strategy */ 882 case 0: 883 case 1: 884 /* All the same byte, plus optional mutations */ 885 switch (prandom_u32() % 4) { 886 case 0: 887 b = 0x00; 888 break; 889 case 1: 890 b = 0xff; 891 break; 892 default: 893 b = (u8)prandom_u32(); 894 break; 895 } 896 memset(buf, b, count); 897 mutate_buffer(buf, count); 898 break; 899 case 2: 900 /* Ascending or descending bytes, plus optional mutations */ 901 increment = (u8)prandom_u32(); 902 b = (u8)prandom_u32(); 903 for (i = 0; i < count; i++, b += increment) 904 buf[i] = b; 905 mutate_buffer(buf, count); 906 break; 907 default: 908 /* Fully random bytes */ 909 for (i = 0; i < count; i++) 910 buf[i] = (u8)prandom_u32(); 911 } 912 } 913 914 static char *generate_random_sgl_divisions(struct test_sg_division *divs, 915 size_t max_divs, char *p, char *end, 916 bool gen_flushes, u32 req_flags) 917 { 918 struct test_sg_division *div = divs; 919 unsigned int remaining = TEST_SG_TOTAL; 920 921 do { 922 unsigned int this_len; 923 const char *flushtype_str; 924 925 if (div == &divs[max_divs - 1] || prandom_u32() % 2 == 0) 926 this_len = remaining; 927 else 928 this_len = 1 + (prandom_u32() % remaining); 929 div->proportion_of_total = this_len; 930 931 if (prandom_u32() % 4 == 0) 932 div->offset = (PAGE_SIZE - 128) + (prandom_u32() % 128); 933 else if (prandom_u32() % 2 == 0) 934 div->offset = prandom_u32() % 32; 935 else 936 div->offset = prandom_u32() % PAGE_SIZE; 937 if (prandom_u32() % 8 == 0) 938 div->offset_relative_to_alignmask = true; 939 940 div->flush_type = FLUSH_TYPE_NONE; 941 if (gen_flushes) { 942 switch (prandom_u32() % 4) { 943 case 0: 944 div->flush_type = FLUSH_TYPE_REIMPORT; 945 break; 946 case 1: 947 div->flush_type = FLUSH_TYPE_FLUSH; 948 break; 949 } 950 } 951 952 if (div->flush_type != FLUSH_TYPE_NONE && 953 !(req_flags & CRYPTO_TFM_REQ_MAY_SLEEP) && 954 prandom_u32() % 2 == 0) 955 div->nosimd = true; 956 957 switch (div->flush_type) { 958 case FLUSH_TYPE_FLUSH: 959 if (div->nosimd) 960 flushtype_str = "<flush,nosimd>"; 961 else 962 flushtype_str = "<flush>"; 963 break; 964 case FLUSH_TYPE_REIMPORT: 965 if (div->nosimd) 966 flushtype_str = "<reimport,nosimd>"; 967 else 968 flushtype_str = "<reimport>"; 969 break; 970 default: 971 flushtype_str = ""; 972 break; 973 } 974 975 BUILD_BUG_ON(TEST_SG_TOTAL != 10000); /* for "%u.%u%%" */ 976 p += scnprintf(p, end - p, "%s%u.%u%%@%s+%u%s", flushtype_str, 977 this_len / 100, this_len % 100, 978 div->offset_relative_to_alignmask ? 979 "alignmask" : "", 980 div->offset, this_len == remaining ? "" : ", "); 981 remaining -= this_len; 982 div++; 983 } while (remaining); 984 985 return p; 986 } 987 988 /* Generate a random testvec_config for fuzz testing */ 989 static void generate_random_testvec_config(struct testvec_config *cfg, 990 char *name, size_t max_namelen) 991 { 992 char *p = name; 993 char * const end = name + max_namelen; 994 995 memset(cfg, 0, sizeof(*cfg)); 996 997 cfg->name = name; 998 999 p += scnprintf(p, end - p, "random:"); 1000 1001 if (prandom_u32() % 2 == 0) { 1002 cfg->inplace = true; 1003 p += scnprintf(p, end - p, " inplace"); 1004 } 1005 1006 if (prandom_u32() % 2 == 0) { 1007 cfg->req_flags |= CRYPTO_TFM_REQ_MAY_SLEEP; 1008 p += scnprintf(p, end - p, " may_sleep"); 1009 } 1010 1011 switch (prandom_u32() % 4) { 1012 case 0: 1013 cfg->finalization_type = FINALIZATION_TYPE_FINAL; 1014 p += scnprintf(p, end - p, " use_final"); 1015 break; 1016 case 1: 1017 cfg->finalization_type = FINALIZATION_TYPE_FINUP; 1018 p += scnprintf(p, end - p, " use_finup"); 1019 break; 1020 default: 1021 cfg->finalization_type = FINALIZATION_TYPE_DIGEST; 1022 p += scnprintf(p, end - p, " use_digest"); 1023 break; 1024 } 1025 1026 if (!(cfg->req_flags & CRYPTO_TFM_REQ_MAY_SLEEP) && 1027 prandom_u32() % 2 == 0) { 1028 cfg->nosimd = true; 1029 p += scnprintf(p, end - p, " nosimd"); 1030 } 1031 1032 p += scnprintf(p, end - p, " src_divs=["); 1033 p = generate_random_sgl_divisions(cfg->src_divs, 1034 ARRAY_SIZE(cfg->src_divs), p, end, 1035 (cfg->finalization_type != 1036 FINALIZATION_TYPE_DIGEST), 1037 cfg->req_flags); 1038 p += scnprintf(p, end - p, "]"); 1039 1040 if (!cfg->inplace && prandom_u32() % 2 == 0) { 1041 p += scnprintf(p, end - p, " dst_divs=["); 1042 p = generate_random_sgl_divisions(cfg->dst_divs, 1043 ARRAY_SIZE(cfg->dst_divs), 1044 p, end, false, 1045 cfg->req_flags); 1046 p += scnprintf(p, end - p, "]"); 1047 } 1048 1049 if (prandom_u32() % 2 == 0) { 1050 cfg->iv_offset = 1 + (prandom_u32() % MAX_ALGAPI_ALIGNMASK); 1051 p += scnprintf(p, end - p, " iv_offset=%u", cfg->iv_offset); 1052 } 1053 1054 if (prandom_u32() % 2 == 0) { 1055 cfg->key_offset = 1 + (prandom_u32() % MAX_ALGAPI_ALIGNMASK); 1056 p += scnprintf(p, end - p, " key_offset=%u", cfg->key_offset); 1057 } 1058 1059 WARN_ON_ONCE(!valid_testvec_config(cfg)); 1060 } 1061 1062 static void crypto_disable_simd_for_test(void) 1063 { 1064 preempt_disable(); 1065 __this_cpu_write(crypto_simd_disabled_for_test, true); 1066 } 1067 1068 static void crypto_reenable_simd_for_test(void) 1069 { 1070 __this_cpu_write(crypto_simd_disabled_for_test, false); 1071 preempt_enable(); 1072 } 1073 1074 /* 1075 * Given an algorithm name, build the name of the generic implementation of that 1076 * algorithm, assuming the usual naming convention. Specifically, this appends 1077 * "-generic" to every part of the name that is not a template name. Examples: 1078 * 1079 * aes => aes-generic 1080 * cbc(aes) => cbc(aes-generic) 1081 * cts(cbc(aes)) => cts(cbc(aes-generic)) 1082 * rfc7539(chacha20,poly1305) => rfc7539(chacha20-generic,poly1305-generic) 1083 * 1084 * Return: 0 on success, or -ENAMETOOLONG if the generic name would be too long 1085 */ 1086 static int build_generic_driver_name(const char *algname, 1087 char driver_name[CRYPTO_MAX_ALG_NAME]) 1088 { 1089 const char *in = algname; 1090 char *out = driver_name; 1091 size_t len = strlen(algname); 1092 1093 if (len >= CRYPTO_MAX_ALG_NAME) 1094 goto too_long; 1095 do { 1096 const char *in_saved = in; 1097 1098 while (*in && *in != '(' && *in != ')' && *in != ',') 1099 *out++ = *in++; 1100 if (*in != '(' && in > in_saved) { 1101 len += 8; 1102 if (len >= CRYPTO_MAX_ALG_NAME) 1103 goto too_long; 1104 memcpy(out, "-generic", 8); 1105 out += 8; 1106 } 1107 } while ((*out++ = *in++) != '\0'); 1108 return 0; 1109 1110 too_long: 1111 pr_err("alg: generic driver name for \"%s\" would be too long\n", 1112 algname); 1113 return -ENAMETOOLONG; 1114 } 1115 #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 1116 static void crypto_disable_simd_for_test(void) 1117 { 1118 } 1119 1120 static void crypto_reenable_simd_for_test(void) 1121 { 1122 } 1123 #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 1124 1125 static int build_hash_sglist(struct test_sglist *tsgl, 1126 const struct hash_testvec *vec, 1127 const struct testvec_config *cfg, 1128 unsigned int alignmask, 1129 const struct test_sg_division *divs[XBUFSIZE]) 1130 { 1131 struct kvec kv; 1132 struct iov_iter input; 1133 1134 kv.iov_base = (void *)vec->plaintext; 1135 kv.iov_len = vec->psize; 1136 iov_iter_kvec(&input, WRITE, &kv, 1, vec->psize); 1137 return build_test_sglist(tsgl, cfg->src_divs, alignmask, vec->psize, 1138 &input, divs); 1139 } 1140 1141 static int check_hash_result(const char *type, 1142 const u8 *result, unsigned int digestsize, 1143 const struct hash_testvec *vec, 1144 const char *vec_name, 1145 const char *driver, 1146 const struct testvec_config *cfg) 1147 { 1148 if (memcmp(result, vec->digest, digestsize) != 0) { 1149 pr_err("alg: %s: %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", 1150 type, driver, vec_name, cfg->name); 1151 return -EINVAL; 1152 } 1153 if (!testmgr_is_poison(&result[digestsize], TESTMGR_POISON_LEN)) { 1154 pr_err("alg: %s: %s overran result buffer on test vector %s, cfg=\"%s\"\n", 1155 type, driver, vec_name, cfg->name); 1156 return -EOVERFLOW; 1157 } 1158 return 0; 1159 } 1160 1161 static inline int check_shash_op(const char *op, int err, 1162 const char *driver, const char *vec_name, 1163 const struct testvec_config *cfg) 1164 { 1165 if (err) 1166 pr_err("alg: shash: %s %s() failed with err %d on test vector %s, cfg=\"%s\"\n", 1167 driver, op, err, vec_name, cfg->name); 1168 return err; 1169 } 1170 1171 static inline const void *sg_data(struct scatterlist *sg) 1172 { 1173 return page_address(sg_page(sg)) + sg->offset; 1174 } 1175 1176 /* Test one hash test vector in one configuration, using the shash API */ 1177 static int test_shash_vec_cfg(const struct hash_testvec *vec, 1178 const char *vec_name, 1179 const struct testvec_config *cfg, 1180 struct shash_desc *desc, 1181 struct test_sglist *tsgl, 1182 u8 *hashstate) 1183 { 1184 struct crypto_shash *tfm = desc->tfm; 1185 const unsigned int alignmask = crypto_shash_alignmask(tfm); 1186 const unsigned int digestsize = crypto_shash_digestsize(tfm); 1187 const unsigned int statesize = crypto_shash_statesize(tfm); 1188 const char *driver = crypto_shash_driver_name(tfm); 1189 const struct test_sg_division *divs[XBUFSIZE]; 1190 unsigned int i; 1191 u8 result[HASH_MAX_DIGESTSIZE + TESTMGR_POISON_LEN]; 1192 int err; 1193 1194 /* Set the key, if specified */ 1195 if (vec->ksize) { 1196 err = do_setkey(crypto_shash_setkey, tfm, vec->key, vec->ksize, 1197 cfg, alignmask); 1198 if (err) { 1199 if (err == vec->setkey_error) 1200 return 0; 1201 pr_err("alg: shash: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 1202 driver, vec_name, vec->setkey_error, err, 1203 crypto_shash_get_flags(tfm)); 1204 return err; 1205 } 1206 if (vec->setkey_error) { 1207 pr_err("alg: shash: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 1208 driver, vec_name, vec->setkey_error); 1209 return -EINVAL; 1210 } 1211 } 1212 1213 /* Build the scatterlist for the source data */ 1214 err = build_hash_sglist(tsgl, vec, cfg, alignmask, divs); 1215 if (err) { 1216 pr_err("alg: shash: %s: error preparing scatterlist for test vector %s, cfg=\"%s\"\n", 1217 driver, vec_name, cfg->name); 1218 return err; 1219 } 1220 1221 /* Do the actual hashing */ 1222 1223 testmgr_poison(desc->__ctx, crypto_shash_descsize(tfm)); 1224 testmgr_poison(result, digestsize + TESTMGR_POISON_LEN); 1225 1226 if (cfg->finalization_type == FINALIZATION_TYPE_DIGEST || 1227 vec->digest_error) { 1228 /* Just using digest() */ 1229 if (tsgl->nents != 1) 1230 return 0; 1231 if (cfg->nosimd) 1232 crypto_disable_simd_for_test(); 1233 err = crypto_shash_digest(desc, sg_data(&tsgl->sgl[0]), 1234 tsgl->sgl[0].length, result); 1235 if (cfg->nosimd) 1236 crypto_reenable_simd_for_test(); 1237 if (err) { 1238 if (err == vec->digest_error) 1239 return 0; 1240 pr_err("alg: shash: %s digest() failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", 1241 driver, vec_name, vec->digest_error, err, 1242 cfg->name); 1243 return err; 1244 } 1245 if (vec->digest_error) { 1246 pr_err("alg: shash: %s digest() unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", 1247 driver, vec_name, vec->digest_error, cfg->name); 1248 return -EINVAL; 1249 } 1250 goto result_ready; 1251 } 1252 1253 /* Using init(), zero or more update(), then final() or finup() */ 1254 1255 if (cfg->nosimd) 1256 crypto_disable_simd_for_test(); 1257 err = crypto_shash_init(desc); 1258 if (cfg->nosimd) 1259 crypto_reenable_simd_for_test(); 1260 err = check_shash_op("init", err, driver, vec_name, cfg); 1261 if (err) 1262 return err; 1263 1264 for (i = 0; i < tsgl->nents; i++) { 1265 if (i + 1 == tsgl->nents && 1266 cfg->finalization_type == FINALIZATION_TYPE_FINUP) { 1267 if (divs[i]->nosimd) 1268 crypto_disable_simd_for_test(); 1269 err = crypto_shash_finup(desc, sg_data(&tsgl->sgl[i]), 1270 tsgl->sgl[i].length, result); 1271 if (divs[i]->nosimd) 1272 crypto_reenable_simd_for_test(); 1273 err = check_shash_op("finup", err, driver, vec_name, 1274 cfg); 1275 if (err) 1276 return err; 1277 goto result_ready; 1278 } 1279 if (divs[i]->nosimd) 1280 crypto_disable_simd_for_test(); 1281 err = crypto_shash_update(desc, sg_data(&tsgl->sgl[i]), 1282 tsgl->sgl[i].length); 1283 if (divs[i]->nosimd) 1284 crypto_reenable_simd_for_test(); 1285 err = check_shash_op("update", err, driver, vec_name, cfg); 1286 if (err) 1287 return err; 1288 if (divs[i]->flush_type == FLUSH_TYPE_REIMPORT) { 1289 /* Test ->export() and ->import() */ 1290 testmgr_poison(hashstate + statesize, 1291 TESTMGR_POISON_LEN); 1292 err = crypto_shash_export(desc, hashstate); 1293 err = check_shash_op("export", err, driver, vec_name, 1294 cfg); 1295 if (err) 1296 return err; 1297 if (!testmgr_is_poison(hashstate + statesize, 1298 TESTMGR_POISON_LEN)) { 1299 pr_err("alg: shash: %s export() overran state buffer on test vector %s, cfg=\"%s\"\n", 1300 driver, vec_name, cfg->name); 1301 return -EOVERFLOW; 1302 } 1303 testmgr_poison(desc->__ctx, crypto_shash_descsize(tfm)); 1304 err = crypto_shash_import(desc, hashstate); 1305 err = check_shash_op("import", err, driver, vec_name, 1306 cfg); 1307 if (err) 1308 return err; 1309 } 1310 } 1311 1312 if (cfg->nosimd) 1313 crypto_disable_simd_for_test(); 1314 err = crypto_shash_final(desc, result); 1315 if (cfg->nosimd) 1316 crypto_reenable_simd_for_test(); 1317 err = check_shash_op("final", err, driver, vec_name, cfg); 1318 if (err) 1319 return err; 1320 result_ready: 1321 return check_hash_result("shash", result, digestsize, vec, vec_name, 1322 driver, cfg); 1323 } 1324 1325 static int do_ahash_op(int (*op)(struct ahash_request *req), 1326 struct ahash_request *req, 1327 struct crypto_wait *wait, bool nosimd) 1328 { 1329 int err; 1330 1331 if (nosimd) 1332 crypto_disable_simd_for_test(); 1333 1334 err = op(req); 1335 1336 if (nosimd) 1337 crypto_reenable_simd_for_test(); 1338 1339 return crypto_wait_req(err, wait); 1340 } 1341 1342 static int check_nonfinal_ahash_op(const char *op, int err, 1343 u8 *result, unsigned int digestsize, 1344 const char *driver, const char *vec_name, 1345 const struct testvec_config *cfg) 1346 { 1347 if (err) { 1348 pr_err("alg: ahash: %s %s() failed with err %d on test vector %s, cfg=\"%s\"\n", 1349 driver, op, err, vec_name, cfg->name); 1350 return err; 1351 } 1352 if (!testmgr_is_poison(result, digestsize)) { 1353 pr_err("alg: ahash: %s %s() used result buffer on test vector %s, cfg=\"%s\"\n", 1354 driver, op, vec_name, cfg->name); 1355 return -EINVAL; 1356 } 1357 return 0; 1358 } 1359 1360 /* Test one hash test vector in one configuration, using the ahash API */ 1361 static int test_ahash_vec_cfg(const struct hash_testvec *vec, 1362 const char *vec_name, 1363 const struct testvec_config *cfg, 1364 struct ahash_request *req, 1365 struct test_sglist *tsgl, 1366 u8 *hashstate) 1367 { 1368 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1369 const unsigned int alignmask = crypto_ahash_alignmask(tfm); 1370 const unsigned int digestsize = crypto_ahash_digestsize(tfm); 1371 const unsigned int statesize = crypto_ahash_statesize(tfm); 1372 const char *driver = crypto_ahash_driver_name(tfm); 1373 const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; 1374 const struct test_sg_division *divs[XBUFSIZE]; 1375 DECLARE_CRYPTO_WAIT(wait); 1376 unsigned int i; 1377 struct scatterlist *pending_sgl; 1378 unsigned int pending_len; 1379 u8 result[HASH_MAX_DIGESTSIZE + TESTMGR_POISON_LEN]; 1380 int err; 1381 1382 /* Set the key, if specified */ 1383 if (vec->ksize) { 1384 err = do_setkey(crypto_ahash_setkey, tfm, vec->key, vec->ksize, 1385 cfg, alignmask); 1386 if (err) { 1387 if (err == vec->setkey_error) 1388 return 0; 1389 pr_err("alg: ahash: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 1390 driver, vec_name, vec->setkey_error, err, 1391 crypto_ahash_get_flags(tfm)); 1392 return err; 1393 } 1394 if (vec->setkey_error) { 1395 pr_err("alg: ahash: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 1396 driver, vec_name, vec->setkey_error); 1397 return -EINVAL; 1398 } 1399 } 1400 1401 /* Build the scatterlist for the source data */ 1402 err = build_hash_sglist(tsgl, vec, cfg, alignmask, divs); 1403 if (err) { 1404 pr_err("alg: ahash: %s: error preparing scatterlist for test vector %s, cfg=\"%s\"\n", 1405 driver, vec_name, cfg->name); 1406 return err; 1407 } 1408 1409 /* Do the actual hashing */ 1410 1411 testmgr_poison(req->__ctx, crypto_ahash_reqsize(tfm)); 1412 testmgr_poison(result, digestsize + TESTMGR_POISON_LEN); 1413 1414 if (cfg->finalization_type == FINALIZATION_TYPE_DIGEST || 1415 vec->digest_error) { 1416 /* Just using digest() */ 1417 ahash_request_set_callback(req, req_flags, crypto_req_done, 1418 &wait); 1419 ahash_request_set_crypt(req, tsgl->sgl, result, vec->psize); 1420 err = do_ahash_op(crypto_ahash_digest, req, &wait, cfg->nosimd); 1421 if (err) { 1422 if (err == vec->digest_error) 1423 return 0; 1424 pr_err("alg: ahash: %s digest() failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", 1425 driver, vec_name, vec->digest_error, err, 1426 cfg->name); 1427 return err; 1428 } 1429 if (vec->digest_error) { 1430 pr_err("alg: ahash: %s digest() unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", 1431 driver, vec_name, vec->digest_error, cfg->name); 1432 return -EINVAL; 1433 } 1434 goto result_ready; 1435 } 1436 1437 /* Using init(), zero or more update(), then final() or finup() */ 1438 1439 ahash_request_set_callback(req, req_flags, crypto_req_done, &wait); 1440 ahash_request_set_crypt(req, NULL, result, 0); 1441 err = do_ahash_op(crypto_ahash_init, req, &wait, cfg->nosimd); 1442 err = check_nonfinal_ahash_op("init", err, result, digestsize, 1443 driver, vec_name, cfg); 1444 if (err) 1445 return err; 1446 1447 pending_sgl = NULL; 1448 pending_len = 0; 1449 for (i = 0; i < tsgl->nents; i++) { 1450 if (divs[i]->flush_type != FLUSH_TYPE_NONE && 1451 pending_sgl != NULL) { 1452 /* update() with the pending data */ 1453 ahash_request_set_callback(req, req_flags, 1454 crypto_req_done, &wait); 1455 ahash_request_set_crypt(req, pending_sgl, result, 1456 pending_len); 1457 err = do_ahash_op(crypto_ahash_update, req, &wait, 1458 divs[i]->nosimd); 1459 err = check_nonfinal_ahash_op("update", err, 1460 result, digestsize, 1461 driver, vec_name, cfg); 1462 if (err) 1463 return err; 1464 pending_sgl = NULL; 1465 pending_len = 0; 1466 } 1467 if (divs[i]->flush_type == FLUSH_TYPE_REIMPORT) { 1468 /* Test ->export() and ->import() */ 1469 testmgr_poison(hashstate + statesize, 1470 TESTMGR_POISON_LEN); 1471 err = crypto_ahash_export(req, hashstate); 1472 err = check_nonfinal_ahash_op("export", err, 1473 result, digestsize, 1474 driver, vec_name, cfg); 1475 if (err) 1476 return err; 1477 if (!testmgr_is_poison(hashstate + statesize, 1478 TESTMGR_POISON_LEN)) { 1479 pr_err("alg: ahash: %s export() overran state buffer on test vector %s, cfg=\"%s\"\n", 1480 driver, vec_name, cfg->name); 1481 return -EOVERFLOW; 1482 } 1483 1484 testmgr_poison(req->__ctx, crypto_ahash_reqsize(tfm)); 1485 err = crypto_ahash_import(req, hashstate); 1486 err = check_nonfinal_ahash_op("import", err, 1487 result, digestsize, 1488 driver, vec_name, cfg); 1489 if (err) 1490 return err; 1491 } 1492 if (pending_sgl == NULL) 1493 pending_sgl = &tsgl->sgl[i]; 1494 pending_len += tsgl->sgl[i].length; 1495 } 1496 1497 ahash_request_set_callback(req, req_flags, crypto_req_done, &wait); 1498 ahash_request_set_crypt(req, pending_sgl, result, pending_len); 1499 if (cfg->finalization_type == FINALIZATION_TYPE_FINAL) { 1500 /* finish with update() and final() */ 1501 err = do_ahash_op(crypto_ahash_update, req, &wait, cfg->nosimd); 1502 err = check_nonfinal_ahash_op("update", err, result, digestsize, 1503 driver, vec_name, cfg); 1504 if (err) 1505 return err; 1506 err = do_ahash_op(crypto_ahash_final, req, &wait, cfg->nosimd); 1507 if (err) { 1508 pr_err("alg: ahash: %s final() failed with err %d on test vector %s, cfg=\"%s\"\n", 1509 driver, err, vec_name, cfg->name); 1510 return err; 1511 } 1512 } else { 1513 /* finish with finup() */ 1514 err = do_ahash_op(crypto_ahash_finup, req, &wait, cfg->nosimd); 1515 if (err) { 1516 pr_err("alg: ahash: %s finup() failed with err %d on test vector %s, cfg=\"%s\"\n", 1517 driver, err, vec_name, cfg->name); 1518 return err; 1519 } 1520 } 1521 1522 result_ready: 1523 return check_hash_result("ahash", result, digestsize, vec, vec_name, 1524 driver, cfg); 1525 } 1526 1527 static int test_hash_vec_cfg(const struct hash_testvec *vec, 1528 const char *vec_name, 1529 const struct testvec_config *cfg, 1530 struct ahash_request *req, 1531 struct shash_desc *desc, 1532 struct test_sglist *tsgl, 1533 u8 *hashstate) 1534 { 1535 int err; 1536 1537 /* 1538 * For algorithms implemented as "shash", most bugs will be detected by 1539 * both the shash and ahash tests. Test the shash API first so that the 1540 * failures involve less indirection, so are easier to debug. 1541 */ 1542 1543 if (desc) { 1544 err = test_shash_vec_cfg(vec, vec_name, cfg, desc, tsgl, 1545 hashstate); 1546 if (err) 1547 return err; 1548 } 1549 1550 return test_ahash_vec_cfg(vec, vec_name, cfg, req, tsgl, hashstate); 1551 } 1552 1553 static int test_hash_vec(const struct hash_testvec *vec, unsigned int vec_num, 1554 struct ahash_request *req, struct shash_desc *desc, 1555 struct test_sglist *tsgl, u8 *hashstate) 1556 { 1557 char vec_name[16]; 1558 unsigned int i; 1559 int err; 1560 1561 sprintf(vec_name, "%u", vec_num); 1562 1563 for (i = 0; i < ARRAY_SIZE(default_hash_testvec_configs); i++) { 1564 err = test_hash_vec_cfg(vec, vec_name, 1565 &default_hash_testvec_configs[i], 1566 req, desc, tsgl, hashstate); 1567 if (err) 1568 return err; 1569 } 1570 1571 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 1572 if (!noextratests) { 1573 struct testvec_config cfg; 1574 char cfgname[TESTVEC_CONFIG_NAMELEN]; 1575 1576 for (i = 0; i < fuzz_iterations; i++) { 1577 generate_random_testvec_config(&cfg, cfgname, 1578 sizeof(cfgname)); 1579 err = test_hash_vec_cfg(vec, vec_name, &cfg, 1580 req, desc, tsgl, hashstate); 1581 if (err) 1582 return err; 1583 cond_resched(); 1584 } 1585 } 1586 #endif 1587 return 0; 1588 } 1589 1590 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 1591 /* 1592 * Generate a hash test vector from the given implementation. 1593 * Assumes the buffers in 'vec' were already allocated. 1594 */ 1595 static void generate_random_hash_testvec(struct shash_desc *desc, 1596 struct hash_testvec *vec, 1597 unsigned int maxkeysize, 1598 unsigned int maxdatasize, 1599 char *name, size_t max_namelen) 1600 { 1601 /* Data */ 1602 vec->psize = generate_random_length(maxdatasize); 1603 generate_random_bytes((u8 *)vec->plaintext, vec->psize); 1604 1605 /* 1606 * Key: length in range [1, maxkeysize], but usually choose maxkeysize. 1607 * If algorithm is unkeyed, then maxkeysize == 0 and set ksize = 0. 1608 */ 1609 vec->setkey_error = 0; 1610 vec->ksize = 0; 1611 if (maxkeysize) { 1612 vec->ksize = maxkeysize; 1613 if (prandom_u32() % 4 == 0) 1614 vec->ksize = 1 + (prandom_u32() % maxkeysize); 1615 generate_random_bytes((u8 *)vec->key, vec->ksize); 1616 1617 vec->setkey_error = crypto_shash_setkey(desc->tfm, vec->key, 1618 vec->ksize); 1619 /* If the key couldn't be set, no need to continue to digest. */ 1620 if (vec->setkey_error) 1621 goto done; 1622 } 1623 1624 /* Digest */ 1625 vec->digest_error = crypto_shash_digest(desc, vec->plaintext, 1626 vec->psize, (u8 *)vec->digest); 1627 done: 1628 snprintf(name, max_namelen, "\"random: psize=%u ksize=%u\"", 1629 vec->psize, vec->ksize); 1630 } 1631 1632 /* 1633 * Test the hash algorithm represented by @req against the corresponding generic 1634 * implementation, if one is available. 1635 */ 1636 static int test_hash_vs_generic_impl(const char *generic_driver, 1637 unsigned int maxkeysize, 1638 struct ahash_request *req, 1639 struct shash_desc *desc, 1640 struct test_sglist *tsgl, 1641 u8 *hashstate) 1642 { 1643 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1644 const unsigned int digestsize = crypto_ahash_digestsize(tfm); 1645 const unsigned int blocksize = crypto_ahash_blocksize(tfm); 1646 const unsigned int maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; 1647 const char *algname = crypto_hash_alg_common(tfm)->base.cra_name; 1648 const char *driver = crypto_ahash_driver_name(tfm); 1649 char _generic_driver[CRYPTO_MAX_ALG_NAME]; 1650 struct crypto_shash *generic_tfm = NULL; 1651 struct shash_desc *generic_desc = NULL; 1652 unsigned int i; 1653 struct hash_testvec vec = { 0 }; 1654 char vec_name[64]; 1655 struct testvec_config *cfg; 1656 char cfgname[TESTVEC_CONFIG_NAMELEN]; 1657 int err; 1658 1659 if (noextratests) 1660 return 0; 1661 1662 if (!generic_driver) { /* Use default naming convention? */ 1663 err = build_generic_driver_name(algname, _generic_driver); 1664 if (err) 1665 return err; 1666 generic_driver = _generic_driver; 1667 } 1668 1669 if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ 1670 return 0; 1671 1672 generic_tfm = crypto_alloc_shash(generic_driver, 0, 0); 1673 if (IS_ERR(generic_tfm)) { 1674 err = PTR_ERR(generic_tfm); 1675 if (err == -ENOENT) { 1676 pr_warn("alg: hash: skipping comparison tests for %s because %s is unavailable\n", 1677 driver, generic_driver); 1678 return 0; 1679 } 1680 pr_err("alg: hash: error allocating %s (generic impl of %s): %d\n", 1681 generic_driver, algname, err); 1682 return err; 1683 } 1684 1685 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1686 if (!cfg) { 1687 err = -ENOMEM; 1688 goto out; 1689 } 1690 1691 generic_desc = kzalloc(sizeof(*desc) + 1692 crypto_shash_descsize(generic_tfm), GFP_KERNEL); 1693 if (!generic_desc) { 1694 err = -ENOMEM; 1695 goto out; 1696 } 1697 generic_desc->tfm = generic_tfm; 1698 1699 /* Check the algorithm properties for consistency. */ 1700 1701 if (digestsize != crypto_shash_digestsize(generic_tfm)) { 1702 pr_err("alg: hash: digestsize for %s (%u) doesn't match generic impl (%u)\n", 1703 driver, digestsize, 1704 crypto_shash_digestsize(generic_tfm)); 1705 err = -EINVAL; 1706 goto out; 1707 } 1708 1709 if (blocksize != crypto_shash_blocksize(generic_tfm)) { 1710 pr_err("alg: hash: blocksize for %s (%u) doesn't match generic impl (%u)\n", 1711 driver, blocksize, crypto_shash_blocksize(generic_tfm)); 1712 err = -EINVAL; 1713 goto out; 1714 } 1715 1716 /* 1717 * Now generate test vectors using the generic implementation, and test 1718 * the other implementation against them. 1719 */ 1720 1721 vec.key = kmalloc(maxkeysize, GFP_KERNEL); 1722 vec.plaintext = kmalloc(maxdatasize, GFP_KERNEL); 1723 vec.digest = kmalloc(digestsize, GFP_KERNEL); 1724 if (!vec.key || !vec.plaintext || !vec.digest) { 1725 err = -ENOMEM; 1726 goto out; 1727 } 1728 1729 for (i = 0; i < fuzz_iterations * 8; i++) { 1730 generate_random_hash_testvec(generic_desc, &vec, 1731 maxkeysize, maxdatasize, 1732 vec_name, sizeof(vec_name)); 1733 generate_random_testvec_config(cfg, cfgname, sizeof(cfgname)); 1734 1735 err = test_hash_vec_cfg(&vec, vec_name, cfg, 1736 req, desc, tsgl, hashstate); 1737 if (err) 1738 goto out; 1739 cond_resched(); 1740 } 1741 err = 0; 1742 out: 1743 kfree(cfg); 1744 kfree(vec.key); 1745 kfree(vec.plaintext); 1746 kfree(vec.digest); 1747 crypto_free_shash(generic_tfm); 1748 kfree_sensitive(generic_desc); 1749 return err; 1750 } 1751 #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 1752 static int test_hash_vs_generic_impl(const char *generic_driver, 1753 unsigned int maxkeysize, 1754 struct ahash_request *req, 1755 struct shash_desc *desc, 1756 struct test_sglist *tsgl, 1757 u8 *hashstate) 1758 { 1759 return 0; 1760 } 1761 #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 1762 1763 static int alloc_shash(const char *driver, u32 type, u32 mask, 1764 struct crypto_shash **tfm_ret, 1765 struct shash_desc **desc_ret) 1766 { 1767 struct crypto_shash *tfm; 1768 struct shash_desc *desc; 1769 1770 tfm = crypto_alloc_shash(driver, type, mask); 1771 if (IS_ERR(tfm)) { 1772 if (PTR_ERR(tfm) == -ENOENT) { 1773 /* 1774 * This algorithm is only available through the ahash 1775 * API, not the shash API, so skip the shash tests. 1776 */ 1777 return 0; 1778 } 1779 pr_err("alg: hash: failed to allocate shash transform for %s: %ld\n", 1780 driver, PTR_ERR(tfm)); 1781 return PTR_ERR(tfm); 1782 } 1783 1784 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(tfm), GFP_KERNEL); 1785 if (!desc) { 1786 crypto_free_shash(tfm); 1787 return -ENOMEM; 1788 } 1789 desc->tfm = tfm; 1790 1791 *tfm_ret = tfm; 1792 *desc_ret = desc; 1793 return 0; 1794 } 1795 1796 static int __alg_test_hash(const struct hash_testvec *vecs, 1797 unsigned int num_vecs, const char *driver, 1798 u32 type, u32 mask, 1799 const char *generic_driver, unsigned int maxkeysize) 1800 { 1801 struct crypto_ahash *atfm = NULL; 1802 struct ahash_request *req = NULL; 1803 struct crypto_shash *stfm = NULL; 1804 struct shash_desc *desc = NULL; 1805 struct test_sglist *tsgl = NULL; 1806 u8 *hashstate = NULL; 1807 unsigned int statesize; 1808 unsigned int i; 1809 int err; 1810 1811 /* 1812 * Always test the ahash API. This works regardless of whether the 1813 * algorithm is implemented as ahash or shash. 1814 */ 1815 1816 atfm = crypto_alloc_ahash(driver, type, mask); 1817 if (IS_ERR(atfm)) { 1818 pr_err("alg: hash: failed to allocate transform for %s: %ld\n", 1819 driver, PTR_ERR(atfm)); 1820 return PTR_ERR(atfm); 1821 } 1822 driver = crypto_ahash_driver_name(atfm); 1823 1824 req = ahash_request_alloc(atfm, GFP_KERNEL); 1825 if (!req) { 1826 pr_err("alg: hash: failed to allocate request for %s\n", 1827 driver); 1828 err = -ENOMEM; 1829 goto out; 1830 } 1831 1832 /* 1833 * If available also test the shash API, to cover corner cases that may 1834 * be missed by testing the ahash API only. 1835 */ 1836 err = alloc_shash(driver, type, mask, &stfm, &desc); 1837 if (err) 1838 goto out; 1839 1840 tsgl = kmalloc(sizeof(*tsgl), GFP_KERNEL); 1841 if (!tsgl || init_test_sglist(tsgl) != 0) { 1842 pr_err("alg: hash: failed to allocate test buffers for %s\n", 1843 driver); 1844 kfree(tsgl); 1845 tsgl = NULL; 1846 err = -ENOMEM; 1847 goto out; 1848 } 1849 1850 statesize = crypto_ahash_statesize(atfm); 1851 if (stfm) 1852 statesize = max(statesize, crypto_shash_statesize(stfm)); 1853 hashstate = kmalloc(statesize + TESTMGR_POISON_LEN, GFP_KERNEL); 1854 if (!hashstate) { 1855 pr_err("alg: hash: failed to allocate hash state buffer for %s\n", 1856 driver); 1857 err = -ENOMEM; 1858 goto out; 1859 } 1860 1861 for (i = 0; i < num_vecs; i++) { 1862 err = test_hash_vec(&vecs[i], i, req, desc, tsgl, hashstate); 1863 if (err) 1864 goto out; 1865 cond_resched(); 1866 } 1867 err = test_hash_vs_generic_impl(generic_driver, maxkeysize, req, 1868 desc, tsgl, hashstate); 1869 out: 1870 kfree(hashstate); 1871 if (tsgl) { 1872 destroy_test_sglist(tsgl); 1873 kfree(tsgl); 1874 } 1875 kfree(desc); 1876 crypto_free_shash(stfm); 1877 ahash_request_free(req); 1878 crypto_free_ahash(atfm); 1879 return err; 1880 } 1881 1882 static int alg_test_hash(const struct alg_test_desc *desc, const char *driver, 1883 u32 type, u32 mask) 1884 { 1885 const struct hash_testvec *template = desc->suite.hash.vecs; 1886 unsigned int tcount = desc->suite.hash.count; 1887 unsigned int nr_unkeyed, nr_keyed; 1888 unsigned int maxkeysize = 0; 1889 int err; 1890 1891 /* 1892 * For OPTIONAL_KEY algorithms, we have to do all the unkeyed tests 1893 * first, before setting a key on the tfm. To make this easier, we 1894 * require that the unkeyed test vectors (if any) are listed first. 1895 */ 1896 1897 for (nr_unkeyed = 0; nr_unkeyed < tcount; nr_unkeyed++) { 1898 if (template[nr_unkeyed].ksize) 1899 break; 1900 } 1901 for (nr_keyed = 0; nr_unkeyed + nr_keyed < tcount; nr_keyed++) { 1902 if (!template[nr_unkeyed + nr_keyed].ksize) { 1903 pr_err("alg: hash: test vectors for %s out of order, " 1904 "unkeyed ones must come first\n", desc->alg); 1905 return -EINVAL; 1906 } 1907 maxkeysize = max_t(unsigned int, maxkeysize, 1908 template[nr_unkeyed + nr_keyed].ksize); 1909 } 1910 1911 err = 0; 1912 if (nr_unkeyed) { 1913 err = __alg_test_hash(template, nr_unkeyed, driver, type, mask, 1914 desc->generic_driver, maxkeysize); 1915 template += nr_unkeyed; 1916 } 1917 1918 if (!err && nr_keyed) 1919 err = __alg_test_hash(template, nr_keyed, driver, type, mask, 1920 desc->generic_driver, maxkeysize); 1921 1922 return err; 1923 } 1924 1925 static int test_aead_vec_cfg(int enc, const struct aead_testvec *vec, 1926 const char *vec_name, 1927 const struct testvec_config *cfg, 1928 struct aead_request *req, 1929 struct cipher_test_sglists *tsgls) 1930 { 1931 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 1932 const unsigned int alignmask = crypto_aead_alignmask(tfm); 1933 const unsigned int ivsize = crypto_aead_ivsize(tfm); 1934 const unsigned int authsize = vec->clen - vec->plen; 1935 const char *driver = crypto_aead_driver_name(tfm); 1936 const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; 1937 const char *op = enc ? "encryption" : "decryption"; 1938 DECLARE_CRYPTO_WAIT(wait); 1939 u8 _iv[3 * (MAX_ALGAPI_ALIGNMASK + 1) + MAX_IVLEN]; 1940 u8 *iv = PTR_ALIGN(&_iv[0], 2 * (MAX_ALGAPI_ALIGNMASK + 1)) + 1941 cfg->iv_offset + 1942 (cfg->iv_offset_relative_to_alignmask ? alignmask : 0); 1943 struct kvec input[2]; 1944 int err; 1945 1946 /* Set the key */ 1947 if (vec->wk) 1948 crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 1949 else 1950 crypto_aead_clear_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 1951 1952 err = do_setkey(crypto_aead_setkey, tfm, vec->key, vec->klen, 1953 cfg, alignmask); 1954 if (err && err != vec->setkey_error) { 1955 pr_err("alg: aead: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 1956 driver, vec_name, vec->setkey_error, err, 1957 crypto_aead_get_flags(tfm)); 1958 return err; 1959 } 1960 if (!err && vec->setkey_error) { 1961 pr_err("alg: aead: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 1962 driver, vec_name, vec->setkey_error); 1963 return -EINVAL; 1964 } 1965 1966 /* Set the authentication tag size */ 1967 err = crypto_aead_setauthsize(tfm, authsize); 1968 if (err && err != vec->setauthsize_error) { 1969 pr_err("alg: aead: %s setauthsize failed on test vector %s; expected_error=%d, actual_error=%d\n", 1970 driver, vec_name, vec->setauthsize_error, err); 1971 return err; 1972 } 1973 if (!err && vec->setauthsize_error) { 1974 pr_err("alg: aead: %s setauthsize unexpectedly succeeded on test vector %s; expected_error=%d\n", 1975 driver, vec_name, vec->setauthsize_error); 1976 return -EINVAL; 1977 } 1978 1979 if (vec->setkey_error || vec->setauthsize_error) 1980 return 0; 1981 1982 /* The IV must be copied to a buffer, as the algorithm may modify it */ 1983 if (WARN_ON(ivsize > MAX_IVLEN)) 1984 return -EINVAL; 1985 if (vec->iv) 1986 memcpy(iv, vec->iv, ivsize); 1987 else 1988 memset(iv, 0, ivsize); 1989 1990 /* Build the src/dst scatterlists */ 1991 input[0].iov_base = (void *)vec->assoc; 1992 input[0].iov_len = vec->alen; 1993 input[1].iov_base = enc ? (void *)vec->ptext : (void *)vec->ctext; 1994 input[1].iov_len = enc ? vec->plen : vec->clen; 1995 err = build_cipher_test_sglists(tsgls, cfg, alignmask, 1996 vec->alen + (enc ? vec->plen : 1997 vec->clen), 1998 vec->alen + (enc ? vec->clen : 1999 vec->plen), 2000 input, 2); 2001 if (err) { 2002 pr_err("alg: aead: %s %s: error preparing scatterlists for test vector %s, cfg=\"%s\"\n", 2003 driver, op, vec_name, cfg->name); 2004 return err; 2005 } 2006 2007 /* Do the actual encryption or decryption */ 2008 testmgr_poison(req->__ctx, crypto_aead_reqsize(tfm)); 2009 aead_request_set_callback(req, req_flags, crypto_req_done, &wait); 2010 aead_request_set_crypt(req, tsgls->src.sgl_ptr, tsgls->dst.sgl_ptr, 2011 enc ? vec->plen : vec->clen, iv); 2012 aead_request_set_ad(req, vec->alen); 2013 if (cfg->nosimd) 2014 crypto_disable_simd_for_test(); 2015 err = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req); 2016 if (cfg->nosimd) 2017 crypto_reenable_simd_for_test(); 2018 err = crypto_wait_req(err, &wait); 2019 2020 /* Check that the algorithm didn't overwrite things it shouldn't have */ 2021 if (req->cryptlen != (enc ? vec->plen : vec->clen) || 2022 req->assoclen != vec->alen || 2023 req->iv != iv || 2024 req->src != tsgls->src.sgl_ptr || 2025 req->dst != tsgls->dst.sgl_ptr || 2026 crypto_aead_reqtfm(req) != tfm || 2027 req->base.complete != crypto_req_done || 2028 req->base.flags != req_flags || 2029 req->base.data != &wait) { 2030 pr_err("alg: aead: %s %s corrupted request struct on test vector %s, cfg=\"%s\"\n", 2031 driver, op, vec_name, cfg->name); 2032 if (req->cryptlen != (enc ? vec->plen : vec->clen)) 2033 pr_err("alg: aead: changed 'req->cryptlen'\n"); 2034 if (req->assoclen != vec->alen) 2035 pr_err("alg: aead: changed 'req->assoclen'\n"); 2036 if (req->iv != iv) 2037 pr_err("alg: aead: changed 'req->iv'\n"); 2038 if (req->src != tsgls->src.sgl_ptr) 2039 pr_err("alg: aead: changed 'req->src'\n"); 2040 if (req->dst != tsgls->dst.sgl_ptr) 2041 pr_err("alg: aead: changed 'req->dst'\n"); 2042 if (crypto_aead_reqtfm(req) != tfm) 2043 pr_err("alg: aead: changed 'req->base.tfm'\n"); 2044 if (req->base.complete != crypto_req_done) 2045 pr_err("alg: aead: changed 'req->base.complete'\n"); 2046 if (req->base.flags != req_flags) 2047 pr_err("alg: aead: changed 'req->base.flags'\n"); 2048 if (req->base.data != &wait) 2049 pr_err("alg: aead: changed 'req->base.data'\n"); 2050 return -EINVAL; 2051 } 2052 if (is_test_sglist_corrupted(&tsgls->src)) { 2053 pr_err("alg: aead: %s %s corrupted src sgl on test vector %s, cfg=\"%s\"\n", 2054 driver, op, vec_name, cfg->name); 2055 return -EINVAL; 2056 } 2057 if (tsgls->dst.sgl_ptr != tsgls->src.sgl && 2058 is_test_sglist_corrupted(&tsgls->dst)) { 2059 pr_err("alg: aead: %s %s corrupted dst sgl on test vector %s, cfg=\"%s\"\n", 2060 driver, op, vec_name, cfg->name); 2061 return -EINVAL; 2062 } 2063 2064 /* Check for unexpected success or failure, or wrong error code */ 2065 if ((err == 0 && vec->novrfy) || 2066 (err != vec->crypt_error && !(err == -EBADMSG && vec->novrfy))) { 2067 char expected_error[32]; 2068 2069 if (vec->novrfy && 2070 vec->crypt_error != 0 && vec->crypt_error != -EBADMSG) 2071 sprintf(expected_error, "-EBADMSG or %d", 2072 vec->crypt_error); 2073 else if (vec->novrfy) 2074 sprintf(expected_error, "-EBADMSG"); 2075 else 2076 sprintf(expected_error, "%d", vec->crypt_error); 2077 if (err) { 2078 pr_err("alg: aead: %s %s failed on test vector %s; expected_error=%s, actual_error=%d, cfg=\"%s\"\n", 2079 driver, op, vec_name, expected_error, err, 2080 cfg->name); 2081 return err; 2082 } 2083 pr_err("alg: aead: %s %s unexpectedly succeeded on test vector %s; expected_error=%s, cfg=\"%s\"\n", 2084 driver, op, vec_name, expected_error, cfg->name); 2085 return -EINVAL; 2086 } 2087 if (err) /* Expectedly failed. */ 2088 return 0; 2089 2090 /* Check for the correct output (ciphertext or plaintext) */ 2091 err = verify_correct_output(&tsgls->dst, enc ? vec->ctext : vec->ptext, 2092 enc ? vec->clen : vec->plen, 2093 vec->alen, enc || !cfg->inplace); 2094 if (err == -EOVERFLOW) { 2095 pr_err("alg: aead: %s %s overran dst buffer on test vector %s, cfg=\"%s\"\n", 2096 driver, op, vec_name, cfg->name); 2097 return err; 2098 } 2099 if (err) { 2100 pr_err("alg: aead: %s %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", 2101 driver, op, vec_name, cfg->name); 2102 return err; 2103 } 2104 2105 return 0; 2106 } 2107 2108 static int test_aead_vec(int enc, const struct aead_testvec *vec, 2109 unsigned int vec_num, struct aead_request *req, 2110 struct cipher_test_sglists *tsgls) 2111 { 2112 char vec_name[16]; 2113 unsigned int i; 2114 int err; 2115 2116 if (enc && vec->novrfy) 2117 return 0; 2118 2119 sprintf(vec_name, "%u", vec_num); 2120 2121 for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) { 2122 err = test_aead_vec_cfg(enc, vec, vec_name, 2123 &default_cipher_testvec_configs[i], 2124 req, tsgls); 2125 if (err) 2126 return err; 2127 } 2128 2129 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 2130 if (!noextratests) { 2131 struct testvec_config cfg; 2132 char cfgname[TESTVEC_CONFIG_NAMELEN]; 2133 2134 for (i = 0; i < fuzz_iterations; i++) { 2135 generate_random_testvec_config(&cfg, cfgname, 2136 sizeof(cfgname)); 2137 err = test_aead_vec_cfg(enc, vec, vec_name, 2138 &cfg, req, tsgls); 2139 if (err) 2140 return err; 2141 cond_resched(); 2142 } 2143 } 2144 #endif 2145 return 0; 2146 } 2147 2148 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 2149 2150 struct aead_extra_tests_ctx { 2151 struct aead_request *req; 2152 struct crypto_aead *tfm; 2153 const struct alg_test_desc *test_desc; 2154 struct cipher_test_sglists *tsgls; 2155 unsigned int maxdatasize; 2156 unsigned int maxkeysize; 2157 2158 struct aead_testvec vec; 2159 char vec_name[64]; 2160 char cfgname[TESTVEC_CONFIG_NAMELEN]; 2161 struct testvec_config cfg; 2162 }; 2163 2164 /* 2165 * Make at least one random change to a (ciphertext, AAD) pair. "Ciphertext" 2166 * here means the full ciphertext including the authentication tag. The 2167 * authentication tag (and hence also the ciphertext) is assumed to be nonempty. 2168 */ 2169 static void mutate_aead_message(struct aead_testvec *vec, bool aad_iv, 2170 unsigned int ivsize) 2171 { 2172 const unsigned int aad_tail_size = aad_iv ? ivsize : 0; 2173 const unsigned int authsize = vec->clen - vec->plen; 2174 2175 if (prandom_u32() % 2 == 0 && vec->alen > aad_tail_size) { 2176 /* Mutate the AAD */ 2177 flip_random_bit((u8 *)vec->assoc, vec->alen - aad_tail_size); 2178 if (prandom_u32() % 2 == 0) 2179 return; 2180 } 2181 if (prandom_u32() % 2 == 0) { 2182 /* Mutate auth tag (assuming it's at the end of ciphertext) */ 2183 flip_random_bit((u8 *)vec->ctext + vec->plen, authsize); 2184 } else { 2185 /* Mutate any part of the ciphertext */ 2186 flip_random_bit((u8 *)vec->ctext, vec->clen); 2187 } 2188 } 2189 2190 /* 2191 * Minimum authentication tag size in bytes at which we assume that we can 2192 * reliably generate inauthentic messages, i.e. not generate an authentic 2193 * message by chance. 2194 */ 2195 #define MIN_COLLISION_FREE_AUTHSIZE 8 2196 2197 static void generate_aead_message(struct aead_request *req, 2198 const struct aead_test_suite *suite, 2199 struct aead_testvec *vec, 2200 bool prefer_inauthentic) 2201 { 2202 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2203 const unsigned int ivsize = crypto_aead_ivsize(tfm); 2204 const unsigned int authsize = vec->clen - vec->plen; 2205 const bool inauthentic = (authsize >= MIN_COLLISION_FREE_AUTHSIZE) && 2206 (prefer_inauthentic || prandom_u32() % 4 == 0); 2207 2208 /* Generate the AAD. */ 2209 generate_random_bytes((u8 *)vec->assoc, vec->alen); 2210 if (suite->aad_iv && vec->alen >= ivsize) 2211 /* Avoid implementation-defined behavior. */ 2212 memcpy((u8 *)vec->assoc + vec->alen - ivsize, vec->iv, ivsize); 2213 2214 if (inauthentic && prandom_u32() % 2 == 0) { 2215 /* Generate a random ciphertext. */ 2216 generate_random_bytes((u8 *)vec->ctext, vec->clen); 2217 } else { 2218 int i = 0; 2219 struct scatterlist src[2], dst; 2220 u8 iv[MAX_IVLEN]; 2221 DECLARE_CRYPTO_WAIT(wait); 2222 2223 /* Generate a random plaintext and encrypt it. */ 2224 sg_init_table(src, 2); 2225 if (vec->alen) 2226 sg_set_buf(&src[i++], vec->assoc, vec->alen); 2227 if (vec->plen) { 2228 generate_random_bytes((u8 *)vec->ptext, vec->plen); 2229 sg_set_buf(&src[i++], vec->ptext, vec->plen); 2230 } 2231 sg_init_one(&dst, vec->ctext, vec->alen + vec->clen); 2232 memcpy(iv, vec->iv, ivsize); 2233 aead_request_set_callback(req, 0, crypto_req_done, &wait); 2234 aead_request_set_crypt(req, src, &dst, vec->plen, iv); 2235 aead_request_set_ad(req, vec->alen); 2236 vec->crypt_error = crypto_wait_req(crypto_aead_encrypt(req), 2237 &wait); 2238 /* If encryption failed, we're done. */ 2239 if (vec->crypt_error != 0) 2240 return; 2241 memmove((u8 *)vec->ctext, vec->ctext + vec->alen, vec->clen); 2242 if (!inauthentic) 2243 return; 2244 /* 2245 * Mutate the authentic (ciphertext, AAD) pair to get an 2246 * inauthentic one. 2247 */ 2248 mutate_aead_message(vec, suite->aad_iv, ivsize); 2249 } 2250 vec->novrfy = 1; 2251 if (suite->einval_allowed) 2252 vec->crypt_error = -EINVAL; 2253 } 2254 2255 /* 2256 * Generate an AEAD test vector 'vec' using the implementation specified by 2257 * 'req'. The buffers in 'vec' must already be allocated. 2258 * 2259 * If 'prefer_inauthentic' is true, then this function will generate inauthentic 2260 * test vectors (i.e. vectors with 'vec->novrfy=1') more often. 2261 */ 2262 static void generate_random_aead_testvec(struct aead_request *req, 2263 struct aead_testvec *vec, 2264 const struct aead_test_suite *suite, 2265 unsigned int maxkeysize, 2266 unsigned int maxdatasize, 2267 char *name, size_t max_namelen, 2268 bool prefer_inauthentic) 2269 { 2270 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2271 const unsigned int ivsize = crypto_aead_ivsize(tfm); 2272 const unsigned int maxauthsize = crypto_aead_maxauthsize(tfm); 2273 unsigned int authsize; 2274 unsigned int total_len; 2275 2276 /* Key: length in [0, maxkeysize], but usually choose maxkeysize */ 2277 vec->klen = maxkeysize; 2278 if (prandom_u32() % 4 == 0) 2279 vec->klen = prandom_u32() % (maxkeysize + 1); 2280 generate_random_bytes((u8 *)vec->key, vec->klen); 2281 vec->setkey_error = crypto_aead_setkey(tfm, vec->key, vec->klen); 2282 2283 /* IV */ 2284 generate_random_bytes((u8 *)vec->iv, ivsize); 2285 2286 /* Tag length: in [0, maxauthsize], but usually choose maxauthsize */ 2287 authsize = maxauthsize; 2288 if (prandom_u32() % 4 == 0) 2289 authsize = prandom_u32() % (maxauthsize + 1); 2290 if (prefer_inauthentic && authsize < MIN_COLLISION_FREE_AUTHSIZE) 2291 authsize = MIN_COLLISION_FREE_AUTHSIZE; 2292 if (WARN_ON(authsize > maxdatasize)) 2293 authsize = maxdatasize; 2294 maxdatasize -= authsize; 2295 vec->setauthsize_error = crypto_aead_setauthsize(tfm, authsize); 2296 2297 /* AAD, plaintext, and ciphertext lengths */ 2298 total_len = generate_random_length(maxdatasize); 2299 if (prandom_u32() % 4 == 0) 2300 vec->alen = 0; 2301 else 2302 vec->alen = generate_random_length(total_len); 2303 vec->plen = total_len - vec->alen; 2304 vec->clen = vec->plen + authsize; 2305 2306 /* 2307 * Generate the AAD, plaintext, and ciphertext. Not applicable if the 2308 * key or the authentication tag size couldn't be set. 2309 */ 2310 vec->novrfy = 0; 2311 vec->crypt_error = 0; 2312 if (vec->setkey_error == 0 && vec->setauthsize_error == 0) 2313 generate_aead_message(req, suite, vec, prefer_inauthentic); 2314 snprintf(name, max_namelen, 2315 "\"random: alen=%u plen=%u authsize=%u klen=%u novrfy=%d\"", 2316 vec->alen, vec->plen, authsize, vec->klen, vec->novrfy); 2317 } 2318 2319 static void try_to_generate_inauthentic_testvec( 2320 struct aead_extra_tests_ctx *ctx) 2321 { 2322 int i; 2323 2324 for (i = 0; i < 10; i++) { 2325 generate_random_aead_testvec(ctx->req, &ctx->vec, 2326 &ctx->test_desc->suite.aead, 2327 ctx->maxkeysize, ctx->maxdatasize, 2328 ctx->vec_name, 2329 sizeof(ctx->vec_name), true); 2330 if (ctx->vec.novrfy) 2331 return; 2332 } 2333 } 2334 2335 /* 2336 * Generate inauthentic test vectors (i.e. ciphertext, AAD pairs that aren't the 2337 * result of an encryption with the key) and verify that decryption fails. 2338 */ 2339 static int test_aead_inauthentic_inputs(struct aead_extra_tests_ctx *ctx) 2340 { 2341 unsigned int i; 2342 int err; 2343 2344 for (i = 0; i < fuzz_iterations * 8; i++) { 2345 /* 2346 * Since this part of the tests isn't comparing the 2347 * implementation to another, there's no point in testing any 2348 * test vectors other than inauthentic ones (vec.novrfy=1) here. 2349 * 2350 * If we're having trouble generating such a test vector, e.g. 2351 * if the algorithm keeps rejecting the generated keys, don't 2352 * retry forever; just continue on. 2353 */ 2354 try_to_generate_inauthentic_testvec(ctx); 2355 if (ctx->vec.novrfy) { 2356 generate_random_testvec_config(&ctx->cfg, ctx->cfgname, 2357 sizeof(ctx->cfgname)); 2358 err = test_aead_vec_cfg(DECRYPT, &ctx->vec, 2359 ctx->vec_name, &ctx->cfg, 2360 ctx->req, ctx->tsgls); 2361 if (err) 2362 return err; 2363 } 2364 cond_resched(); 2365 } 2366 return 0; 2367 } 2368 2369 /* 2370 * Test the AEAD algorithm against the corresponding generic implementation, if 2371 * one is available. 2372 */ 2373 static int test_aead_vs_generic_impl(struct aead_extra_tests_ctx *ctx) 2374 { 2375 struct crypto_aead *tfm = ctx->tfm; 2376 const char *algname = crypto_aead_alg(tfm)->base.cra_name; 2377 const char *driver = crypto_aead_driver_name(tfm); 2378 const char *generic_driver = ctx->test_desc->generic_driver; 2379 char _generic_driver[CRYPTO_MAX_ALG_NAME]; 2380 struct crypto_aead *generic_tfm = NULL; 2381 struct aead_request *generic_req = NULL; 2382 unsigned int i; 2383 int err; 2384 2385 if (!generic_driver) { /* Use default naming convention? */ 2386 err = build_generic_driver_name(algname, _generic_driver); 2387 if (err) 2388 return err; 2389 generic_driver = _generic_driver; 2390 } 2391 2392 if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ 2393 return 0; 2394 2395 generic_tfm = crypto_alloc_aead(generic_driver, 0, 0); 2396 if (IS_ERR(generic_tfm)) { 2397 err = PTR_ERR(generic_tfm); 2398 if (err == -ENOENT) { 2399 pr_warn("alg: aead: skipping comparison tests for %s because %s is unavailable\n", 2400 driver, generic_driver); 2401 return 0; 2402 } 2403 pr_err("alg: aead: error allocating %s (generic impl of %s): %d\n", 2404 generic_driver, algname, err); 2405 return err; 2406 } 2407 2408 generic_req = aead_request_alloc(generic_tfm, GFP_KERNEL); 2409 if (!generic_req) { 2410 err = -ENOMEM; 2411 goto out; 2412 } 2413 2414 /* Check the algorithm properties for consistency. */ 2415 2416 if (crypto_aead_maxauthsize(tfm) != 2417 crypto_aead_maxauthsize(generic_tfm)) { 2418 pr_err("alg: aead: maxauthsize for %s (%u) doesn't match generic impl (%u)\n", 2419 driver, crypto_aead_maxauthsize(tfm), 2420 crypto_aead_maxauthsize(generic_tfm)); 2421 err = -EINVAL; 2422 goto out; 2423 } 2424 2425 if (crypto_aead_ivsize(tfm) != crypto_aead_ivsize(generic_tfm)) { 2426 pr_err("alg: aead: ivsize for %s (%u) doesn't match generic impl (%u)\n", 2427 driver, crypto_aead_ivsize(tfm), 2428 crypto_aead_ivsize(generic_tfm)); 2429 err = -EINVAL; 2430 goto out; 2431 } 2432 2433 if (crypto_aead_blocksize(tfm) != crypto_aead_blocksize(generic_tfm)) { 2434 pr_err("alg: aead: blocksize for %s (%u) doesn't match generic impl (%u)\n", 2435 driver, crypto_aead_blocksize(tfm), 2436 crypto_aead_blocksize(generic_tfm)); 2437 err = -EINVAL; 2438 goto out; 2439 } 2440 2441 /* 2442 * Now generate test vectors using the generic implementation, and test 2443 * the other implementation against them. 2444 */ 2445 for (i = 0; i < fuzz_iterations * 8; i++) { 2446 generate_random_aead_testvec(generic_req, &ctx->vec, 2447 &ctx->test_desc->suite.aead, 2448 ctx->maxkeysize, ctx->maxdatasize, 2449 ctx->vec_name, 2450 sizeof(ctx->vec_name), false); 2451 generate_random_testvec_config(&ctx->cfg, ctx->cfgname, 2452 sizeof(ctx->cfgname)); 2453 if (!ctx->vec.novrfy) { 2454 err = test_aead_vec_cfg(ENCRYPT, &ctx->vec, 2455 ctx->vec_name, &ctx->cfg, 2456 ctx->req, ctx->tsgls); 2457 if (err) 2458 goto out; 2459 } 2460 if (ctx->vec.crypt_error == 0 || ctx->vec.novrfy) { 2461 err = test_aead_vec_cfg(DECRYPT, &ctx->vec, 2462 ctx->vec_name, &ctx->cfg, 2463 ctx->req, ctx->tsgls); 2464 if (err) 2465 goto out; 2466 } 2467 cond_resched(); 2468 } 2469 err = 0; 2470 out: 2471 crypto_free_aead(generic_tfm); 2472 aead_request_free(generic_req); 2473 return err; 2474 } 2475 2476 static int test_aead_extra(const struct alg_test_desc *test_desc, 2477 struct aead_request *req, 2478 struct cipher_test_sglists *tsgls) 2479 { 2480 struct aead_extra_tests_ctx *ctx; 2481 unsigned int i; 2482 int err; 2483 2484 if (noextratests) 2485 return 0; 2486 2487 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2488 if (!ctx) 2489 return -ENOMEM; 2490 ctx->req = req; 2491 ctx->tfm = crypto_aead_reqtfm(req); 2492 ctx->test_desc = test_desc; 2493 ctx->tsgls = tsgls; 2494 ctx->maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; 2495 ctx->maxkeysize = 0; 2496 for (i = 0; i < test_desc->suite.aead.count; i++) 2497 ctx->maxkeysize = max_t(unsigned int, ctx->maxkeysize, 2498 test_desc->suite.aead.vecs[i].klen); 2499 2500 ctx->vec.key = kmalloc(ctx->maxkeysize, GFP_KERNEL); 2501 ctx->vec.iv = kmalloc(crypto_aead_ivsize(ctx->tfm), GFP_KERNEL); 2502 ctx->vec.assoc = kmalloc(ctx->maxdatasize, GFP_KERNEL); 2503 ctx->vec.ptext = kmalloc(ctx->maxdatasize, GFP_KERNEL); 2504 ctx->vec.ctext = kmalloc(ctx->maxdatasize, GFP_KERNEL); 2505 if (!ctx->vec.key || !ctx->vec.iv || !ctx->vec.assoc || 2506 !ctx->vec.ptext || !ctx->vec.ctext) { 2507 err = -ENOMEM; 2508 goto out; 2509 } 2510 2511 err = test_aead_vs_generic_impl(ctx); 2512 if (err) 2513 goto out; 2514 2515 err = test_aead_inauthentic_inputs(ctx); 2516 out: 2517 kfree(ctx->vec.key); 2518 kfree(ctx->vec.iv); 2519 kfree(ctx->vec.assoc); 2520 kfree(ctx->vec.ptext); 2521 kfree(ctx->vec.ctext); 2522 kfree(ctx); 2523 return err; 2524 } 2525 #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 2526 static int test_aead_extra(const struct alg_test_desc *test_desc, 2527 struct aead_request *req, 2528 struct cipher_test_sglists *tsgls) 2529 { 2530 return 0; 2531 } 2532 #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 2533 2534 static int test_aead(int enc, const struct aead_test_suite *suite, 2535 struct aead_request *req, 2536 struct cipher_test_sglists *tsgls) 2537 { 2538 unsigned int i; 2539 int err; 2540 2541 for (i = 0; i < suite->count; i++) { 2542 err = test_aead_vec(enc, &suite->vecs[i], i, req, tsgls); 2543 if (err) 2544 return err; 2545 cond_resched(); 2546 } 2547 return 0; 2548 } 2549 2550 static int alg_test_aead(const struct alg_test_desc *desc, const char *driver, 2551 u32 type, u32 mask) 2552 { 2553 const struct aead_test_suite *suite = &desc->suite.aead; 2554 struct crypto_aead *tfm; 2555 struct aead_request *req = NULL; 2556 struct cipher_test_sglists *tsgls = NULL; 2557 int err; 2558 2559 if (suite->count <= 0) { 2560 pr_err("alg: aead: empty test suite for %s\n", driver); 2561 return -EINVAL; 2562 } 2563 2564 tfm = crypto_alloc_aead(driver, type, mask); 2565 if (IS_ERR(tfm)) { 2566 pr_err("alg: aead: failed to allocate transform for %s: %ld\n", 2567 driver, PTR_ERR(tfm)); 2568 return PTR_ERR(tfm); 2569 } 2570 driver = crypto_aead_driver_name(tfm); 2571 2572 req = aead_request_alloc(tfm, GFP_KERNEL); 2573 if (!req) { 2574 pr_err("alg: aead: failed to allocate request for %s\n", 2575 driver); 2576 err = -ENOMEM; 2577 goto out; 2578 } 2579 2580 tsgls = alloc_cipher_test_sglists(); 2581 if (!tsgls) { 2582 pr_err("alg: aead: failed to allocate test buffers for %s\n", 2583 driver); 2584 err = -ENOMEM; 2585 goto out; 2586 } 2587 2588 err = test_aead(ENCRYPT, suite, req, tsgls); 2589 if (err) 2590 goto out; 2591 2592 err = test_aead(DECRYPT, suite, req, tsgls); 2593 if (err) 2594 goto out; 2595 2596 err = test_aead_extra(desc, req, tsgls); 2597 out: 2598 free_cipher_test_sglists(tsgls); 2599 aead_request_free(req); 2600 crypto_free_aead(tfm); 2601 return err; 2602 } 2603 2604 static int test_cipher(struct crypto_cipher *tfm, int enc, 2605 const struct cipher_testvec *template, 2606 unsigned int tcount) 2607 { 2608 const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm)); 2609 unsigned int i, j, k; 2610 char *q; 2611 const char *e; 2612 const char *input, *result; 2613 void *data; 2614 char *xbuf[XBUFSIZE]; 2615 int ret = -ENOMEM; 2616 2617 if (testmgr_alloc_buf(xbuf)) 2618 goto out_nobuf; 2619 2620 if (enc == ENCRYPT) 2621 e = "encryption"; 2622 else 2623 e = "decryption"; 2624 2625 j = 0; 2626 for (i = 0; i < tcount; i++) { 2627 2628 if (fips_enabled && template[i].fips_skip) 2629 continue; 2630 2631 input = enc ? template[i].ptext : template[i].ctext; 2632 result = enc ? template[i].ctext : template[i].ptext; 2633 j++; 2634 2635 ret = -EINVAL; 2636 if (WARN_ON(template[i].len > PAGE_SIZE)) 2637 goto out; 2638 2639 data = xbuf[0]; 2640 memcpy(data, input, template[i].len); 2641 2642 crypto_cipher_clear_flags(tfm, ~0); 2643 if (template[i].wk) 2644 crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2645 2646 ret = crypto_cipher_setkey(tfm, template[i].key, 2647 template[i].klen); 2648 if (ret) { 2649 if (ret == template[i].setkey_error) 2650 continue; 2651 pr_err("alg: cipher: %s setkey failed on test vector %u; expected_error=%d, actual_error=%d, flags=%#x\n", 2652 algo, j, template[i].setkey_error, ret, 2653 crypto_cipher_get_flags(tfm)); 2654 goto out; 2655 } 2656 if (template[i].setkey_error) { 2657 pr_err("alg: cipher: %s setkey unexpectedly succeeded on test vector %u; expected_error=%d\n", 2658 algo, j, template[i].setkey_error); 2659 ret = -EINVAL; 2660 goto out; 2661 } 2662 2663 for (k = 0; k < template[i].len; 2664 k += crypto_cipher_blocksize(tfm)) { 2665 if (enc) 2666 crypto_cipher_encrypt_one(tfm, data + k, 2667 data + k); 2668 else 2669 crypto_cipher_decrypt_one(tfm, data + k, 2670 data + k); 2671 } 2672 2673 q = data; 2674 if (memcmp(q, result, template[i].len)) { 2675 printk(KERN_ERR "alg: cipher: Test %d failed " 2676 "on %s for %s\n", j, e, algo); 2677 hexdump(q, template[i].len); 2678 ret = -EINVAL; 2679 goto out; 2680 } 2681 } 2682 2683 ret = 0; 2684 2685 out: 2686 testmgr_free_buf(xbuf); 2687 out_nobuf: 2688 return ret; 2689 } 2690 2691 static int test_skcipher_vec_cfg(int enc, const struct cipher_testvec *vec, 2692 const char *vec_name, 2693 const struct testvec_config *cfg, 2694 struct skcipher_request *req, 2695 struct cipher_test_sglists *tsgls) 2696 { 2697 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 2698 const unsigned int alignmask = crypto_skcipher_alignmask(tfm); 2699 const unsigned int ivsize = crypto_skcipher_ivsize(tfm); 2700 const char *driver = crypto_skcipher_driver_name(tfm); 2701 const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; 2702 const char *op = enc ? "encryption" : "decryption"; 2703 DECLARE_CRYPTO_WAIT(wait); 2704 u8 _iv[3 * (MAX_ALGAPI_ALIGNMASK + 1) + MAX_IVLEN]; 2705 u8 *iv = PTR_ALIGN(&_iv[0], 2 * (MAX_ALGAPI_ALIGNMASK + 1)) + 2706 cfg->iv_offset + 2707 (cfg->iv_offset_relative_to_alignmask ? alignmask : 0); 2708 struct kvec input; 2709 int err; 2710 2711 /* Set the key */ 2712 if (vec->wk) 2713 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2714 else 2715 crypto_skcipher_clear_flags(tfm, 2716 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2717 err = do_setkey(crypto_skcipher_setkey, tfm, vec->key, vec->klen, 2718 cfg, alignmask); 2719 if (err) { 2720 if (err == vec->setkey_error) 2721 return 0; 2722 pr_err("alg: skcipher: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 2723 driver, vec_name, vec->setkey_error, err, 2724 crypto_skcipher_get_flags(tfm)); 2725 return err; 2726 } 2727 if (vec->setkey_error) { 2728 pr_err("alg: skcipher: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 2729 driver, vec_name, vec->setkey_error); 2730 return -EINVAL; 2731 } 2732 2733 /* The IV must be copied to a buffer, as the algorithm may modify it */ 2734 if (ivsize) { 2735 if (WARN_ON(ivsize > MAX_IVLEN)) 2736 return -EINVAL; 2737 if (vec->generates_iv && !enc) 2738 memcpy(iv, vec->iv_out, ivsize); 2739 else if (vec->iv) 2740 memcpy(iv, vec->iv, ivsize); 2741 else 2742 memset(iv, 0, ivsize); 2743 } else { 2744 if (vec->generates_iv) { 2745 pr_err("alg: skcipher: %s has ivsize=0 but test vector %s generates IV!\n", 2746 driver, vec_name); 2747 return -EINVAL; 2748 } 2749 iv = NULL; 2750 } 2751 2752 /* Build the src/dst scatterlists */ 2753 input.iov_base = enc ? (void *)vec->ptext : (void *)vec->ctext; 2754 input.iov_len = vec->len; 2755 err = build_cipher_test_sglists(tsgls, cfg, alignmask, 2756 vec->len, vec->len, &input, 1); 2757 if (err) { 2758 pr_err("alg: skcipher: %s %s: error preparing scatterlists for test vector %s, cfg=\"%s\"\n", 2759 driver, op, vec_name, cfg->name); 2760 return err; 2761 } 2762 2763 /* Do the actual encryption or decryption */ 2764 testmgr_poison(req->__ctx, crypto_skcipher_reqsize(tfm)); 2765 skcipher_request_set_callback(req, req_flags, crypto_req_done, &wait); 2766 skcipher_request_set_crypt(req, tsgls->src.sgl_ptr, tsgls->dst.sgl_ptr, 2767 vec->len, iv); 2768 if (cfg->nosimd) 2769 crypto_disable_simd_for_test(); 2770 err = enc ? crypto_skcipher_encrypt(req) : crypto_skcipher_decrypt(req); 2771 if (cfg->nosimd) 2772 crypto_reenable_simd_for_test(); 2773 err = crypto_wait_req(err, &wait); 2774 2775 /* Check that the algorithm didn't overwrite things it shouldn't have */ 2776 if (req->cryptlen != vec->len || 2777 req->iv != iv || 2778 req->src != tsgls->src.sgl_ptr || 2779 req->dst != tsgls->dst.sgl_ptr || 2780 crypto_skcipher_reqtfm(req) != tfm || 2781 req->base.complete != crypto_req_done || 2782 req->base.flags != req_flags || 2783 req->base.data != &wait) { 2784 pr_err("alg: skcipher: %s %s corrupted request struct on test vector %s, cfg=\"%s\"\n", 2785 driver, op, vec_name, cfg->name); 2786 if (req->cryptlen != vec->len) 2787 pr_err("alg: skcipher: changed 'req->cryptlen'\n"); 2788 if (req->iv != iv) 2789 pr_err("alg: skcipher: changed 'req->iv'\n"); 2790 if (req->src != tsgls->src.sgl_ptr) 2791 pr_err("alg: skcipher: changed 'req->src'\n"); 2792 if (req->dst != tsgls->dst.sgl_ptr) 2793 pr_err("alg: skcipher: changed 'req->dst'\n"); 2794 if (crypto_skcipher_reqtfm(req) != tfm) 2795 pr_err("alg: skcipher: changed 'req->base.tfm'\n"); 2796 if (req->base.complete != crypto_req_done) 2797 pr_err("alg: skcipher: changed 'req->base.complete'\n"); 2798 if (req->base.flags != req_flags) 2799 pr_err("alg: skcipher: changed 'req->base.flags'\n"); 2800 if (req->base.data != &wait) 2801 pr_err("alg: skcipher: changed 'req->base.data'\n"); 2802 return -EINVAL; 2803 } 2804 if (is_test_sglist_corrupted(&tsgls->src)) { 2805 pr_err("alg: skcipher: %s %s corrupted src sgl on test vector %s, cfg=\"%s\"\n", 2806 driver, op, vec_name, cfg->name); 2807 return -EINVAL; 2808 } 2809 if (tsgls->dst.sgl_ptr != tsgls->src.sgl && 2810 is_test_sglist_corrupted(&tsgls->dst)) { 2811 pr_err("alg: skcipher: %s %s corrupted dst sgl on test vector %s, cfg=\"%s\"\n", 2812 driver, op, vec_name, cfg->name); 2813 return -EINVAL; 2814 } 2815 2816 /* Check for success or failure */ 2817 if (err) { 2818 if (err == vec->crypt_error) 2819 return 0; 2820 pr_err("alg: skcipher: %s %s failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", 2821 driver, op, vec_name, vec->crypt_error, err, cfg->name); 2822 return err; 2823 } 2824 if (vec->crypt_error) { 2825 pr_err("alg: skcipher: %s %s unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", 2826 driver, op, vec_name, vec->crypt_error, cfg->name); 2827 return -EINVAL; 2828 } 2829 2830 /* Check for the correct output (ciphertext or plaintext) */ 2831 err = verify_correct_output(&tsgls->dst, enc ? vec->ctext : vec->ptext, 2832 vec->len, 0, true); 2833 if (err == -EOVERFLOW) { 2834 pr_err("alg: skcipher: %s %s overran dst buffer on test vector %s, cfg=\"%s\"\n", 2835 driver, op, vec_name, cfg->name); 2836 return err; 2837 } 2838 if (err) { 2839 pr_err("alg: skcipher: %s %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", 2840 driver, op, vec_name, cfg->name); 2841 return err; 2842 } 2843 2844 /* If applicable, check that the algorithm generated the correct IV */ 2845 if (vec->iv_out && memcmp(iv, vec->iv_out, ivsize) != 0) { 2846 pr_err("alg: skcipher: %s %s test failed (wrong output IV) on test vector %s, cfg=\"%s\"\n", 2847 driver, op, vec_name, cfg->name); 2848 hexdump(iv, ivsize); 2849 return -EINVAL; 2850 } 2851 2852 return 0; 2853 } 2854 2855 static int test_skcipher_vec(int enc, const struct cipher_testvec *vec, 2856 unsigned int vec_num, 2857 struct skcipher_request *req, 2858 struct cipher_test_sglists *tsgls) 2859 { 2860 char vec_name[16]; 2861 unsigned int i; 2862 int err; 2863 2864 if (fips_enabled && vec->fips_skip) 2865 return 0; 2866 2867 sprintf(vec_name, "%u", vec_num); 2868 2869 for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) { 2870 err = test_skcipher_vec_cfg(enc, vec, vec_name, 2871 &default_cipher_testvec_configs[i], 2872 req, tsgls); 2873 if (err) 2874 return err; 2875 } 2876 2877 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 2878 if (!noextratests) { 2879 struct testvec_config cfg; 2880 char cfgname[TESTVEC_CONFIG_NAMELEN]; 2881 2882 for (i = 0; i < fuzz_iterations; i++) { 2883 generate_random_testvec_config(&cfg, cfgname, 2884 sizeof(cfgname)); 2885 err = test_skcipher_vec_cfg(enc, vec, vec_name, 2886 &cfg, req, tsgls); 2887 if (err) 2888 return err; 2889 cond_resched(); 2890 } 2891 } 2892 #endif 2893 return 0; 2894 } 2895 2896 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 2897 /* 2898 * Generate a symmetric cipher test vector from the given implementation. 2899 * Assumes the buffers in 'vec' were already allocated. 2900 */ 2901 static void generate_random_cipher_testvec(struct skcipher_request *req, 2902 struct cipher_testvec *vec, 2903 unsigned int maxdatasize, 2904 char *name, size_t max_namelen) 2905 { 2906 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 2907 const unsigned int maxkeysize = crypto_skcipher_max_keysize(tfm); 2908 const unsigned int ivsize = crypto_skcipher_ivsize(tfm); 2909 struct scatterlist src, dst; 2910 u8 iv[MAX_IVLEN]; 2911 DECLARE_CRYPTO_WAIT(wait); 2912 2913 /* Key: length in [0, maxkeysize], but usually choose maxkeysize */ 2914 vec->klen = maxkeysize; 2915 if (prandom_u32() % 4 == 0) 2916 vec->klen = prandom_u32() % (maxkeysize + 1); 2917 generate_random_bytes((u8 *)vec->key, vec->klen); 2918 vec->setkey_error = crypto_skcipher_setkey(tfm, vec->key, vec->klen); 2919 2920 /* IV */ 2921 generate_random_bytes((u8 *)vec->iv, ivsize); 2922 2923 /* Plaintext */ 2924 vec->len = generate_random_length(maxdatasize); 2925 generate_random_bytes((u8 *)vec->ptext, vec->len); 2926 2927 /* If the key couldn't be set, no need to continue to encrypt. */ 2928 if (vec->setkey_error) 2929 goto done; 2930 2931 /* Ciphertext */ 2932 sg_init_one(&src, vec->ptext, vec->len); 2933 sg_init_one(&dst, vec->ctext, vec->len); 2934 memcpy(iv, vec->iv, ivsize); 2935 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 2936 skcipher_request_set_crypt(req, &src, &dst, vec->len, iv); 2937 vec->crypt_error = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 2938 if (vec->crypt_error != 0) { 2939 /* 2940 * The only acceptable error here is for an invalid length, so 2941 * skcipher decryption should fail with the same error too. 2942 * We'll test for this. But to keep the API usage well-defined, 2943 * explicitly initialize the ciphertext buffer too. 2944 */ 2945 memset((u8 *)vec->ctext, 0, vec->len); 2946 } 2947 done: 2948 snprintf(name, max_namelen, "\"random: len=%u klen=%u\"", 2949 vec->len, vec->klen); 2950 } 2951 2952 /* 2953 * Test the skcipher algorithm represented by @req against the corresponding 2954 * generic implementation, if one is available. 2955 */ 2956 static int test_skcipher_vs_generic_impl(const char *generic_driver, 2957 struct skcipher_request *req, 2958 struct cipher_test_sglists *tsgls) 2959 { 2960 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 2961 const unsigned int maxkeysize = crypto_skcipher_max_keysize(tfm); 2962 const unsigned int ivsize = crypto_skcipher_ivsize(tfm); 2963 const unsigned int blocksize = crypto_skcipher_blocksize(tfm); 2964 const unsigned int maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; 2965 const char *algname = crypto_skcipher_alg(tfm)->base.cra_name; 2966 const char *driver = crypto_skcipher_driver_name(tfm); 2967 char _generic_driver[CRYPTO_MAX_ALG_NAME]; 2968 struct crypto_skcipher *generic_tfm = NULL; 2969 struct skcipher_request *generic_req = NULL; 2970 unsigned int i; 2971 struct cipher_testvec vec = { 0 }; 2972 char vec_name[64]; 2973 struct testvec_config *cfg; 2974 char cfgname[TESTVEC_CONFIG_NAMELEN]; 2975 int err; 2976 2977 if (noextratests) 2978 return 0; 2979 2980 /* Keywrap isn't supported here yet as it handles its IV differently. */ 2981 if (strncmp(algname, "kw(", 3) == 0) 2982 return 0; 2983 2984 if (!generic_driver) { /* Use default naming convention? */ 2985 err = build_generic_driver_name(algname, _generic_driver); 2986 if (err) 2987 return err; 2988 generic_driver = _generic_driver; 2989 } 2990 2991 if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ 2992 return 0; 2993 2994 generic_tfm = crypto_alloc_skcipher(generic_driver, 0, 0); 2995 if (IS_ERR(generic_tfm)) { 2996 err = PTR_ERR(generic_tfm); 2997 if (err == -ENOENT) { 2998 pr_warn("alg: skcipher: skipping comparison tests for %s because %s is unavailable\n", 2999 driver, generic_driver); 3000 return 0; 3001 } 3002 pr_err("alg: skcipher: error allocating %s (generic impl of %s): %d\n", 3003 generic_driver, algname, err); 3004 return err; 3005 } 3006 3007 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 3008 if (!cfg) { 3009 err = -ENOMEM; 3010 goto out; 3011 } 3012 3013 generic_req = skcipher_request_alloc(generic_tfm, GFP_KERNEL); 3014 if (!generic_req) { 3015 err = -ENOMEM; 3016 goto out; 3017 } 3018 3019 /* Check the algorithm properties for consistency. */ 3020 3021 if (crypto_skcipher_min_keysize(tfm) != 3022 crypto_skcipher_min_keysize(generic_tfm)) { 3023 pr_err("alg: skcipher: min keysize for %s (%u) doesn't match generic impl (%u)\n", 3024 driver, crypto_skcipher_min_keysize(tfm), 3025 crypto_skcipher_min_keysize(generic_tfm)); 3026 err = -EINVAL; 3027 goto out; 3028 } 3029 3030 if (maxkeysize != crypto_skcipher_max_keysize(generic_tfm)) { 3031 pr_err("alg: skcipher: max keysize for %s (%u) doesn't match generic impl (%u)\n", 3032 driver, maxkeysize, 3033 crypto_skcipher_max_keysize(generic_tfm)); 3034 err = -EINVAL; 3035 goto out; 3036 } 3037 3038 if (ivsize != crypto_skcipher_ivsize(generic_tfm)) { 3039 pr_err("alg: skcipher: ivsize for %s (%u) doesn't match generic impl (%u)\n", 3040 driver, ivsize, crypto_skcipher_ivsize(generic_tfm)); 3041 err = -EINVAL; 3042 goto out; 3043 } 3044 3045 if (blocksize != crypto_skcipher_blocksize(generic_tfm)) { 3046 pr_err("alg: skcipher: blocksize for %s (%u) doesn't match generic impl (%u)\n", 3047 driver, blocksize, 3048 crypto_skcipher_blocksize(generic_tfm)); 3049 err = -EINVAL; 3050 goto out; 3051 } 3052 3053 /* 3054 * Now generate test vectors using the generic implementation, and test 3055 * the other implementation against them. 3056 */ 3057 3058 vec.key = kmalloc(maxkeysize, GFP_KERNEL); 3059 vec.iv = kmalloc(ivsize, GFP_KERNEL); 3060 vec.ptext = kmalloc(maxdatasize, GFP_KERNEL); 3061 vec.ctext = kmalloc(maxdatasize, GFP_KERNEL); 3062 if (!vec.key || !vec.iv || !vec.ptext || !vec.ctext) { 3063 err = -ENOMEM; 3064 goto out; 3065 } 3066 3067 for (i = 0; i < fuzz_iterations * 8; i++) { 3068 generate_random_cipher_testvec(generic_req, &vec, maxdatasize, 3069 vec_name, sizeof(vec_name)); 3070 generate_random_testvec_config(cfg, cfgname, sizeof(cfgname)); 3071 3072 err = test_skcipher_vec_cfg(ENCRYPT, &vec, vec_name, 3073 cfg, req, tsgls); 3074 if (err) 3075 goto out; 3076 err = test_skcipher_vec_cfg(DECRYPT, &vec, vec_name, 3077 cfg, req, tsgls); 3078 if (err) 3079 goto out; 3080 cond_resched(); 3081 } 3082 err = 0; 3083 out: 3084 kfree(cfg); 3085 kfree(vec.key); 3086 kfree(vec.iv); 3087 kfree(vec.ptext); 3088 kfree(vec.ctext); 3089 crypto_free_skcipher(generic_tfm); 3090 skcipher_request_free(generic_req); 3091 return err; 3092 } 3093 #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 3094 static int test_skcipher_vs_generic_impl(const char *generic_driver, 3095 struct skcipher_request *req, 3096 struct cipher_test_sglists *tsgls) 3097 { 3098 return 0; 3099 } 3100 #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 3101 3102 static int test_skcipher(int enc, const struct cipher_test_suite *suite, 3103 struct skcipher_request *req, 3104 struct cipher_test_sglists *tsgls) 3105 { 3106 unsigned int i; 3107 int err; 3108 3109 for (i = 0; i < suite->count; i++) { 3110 err = test_skcipher_vec(enc, &suite->vecs[i], i, req, tsgls); 3111 if (err) 3112 return err; 3113 cond_resched(); 3114 } 3115 return 0; 3116 } 3117 3118 static int alg_test_skcipher(const struct alg_test_desc *desc, 3119 const char *driver, u32 type, u32 mask) 3120 { 3121 const struct cipher_test_suite *suite = &desc->suite.cipher; 3122 struct crypto_skcipher *tfm; 3123 struct skcipher_request *req = NULL; 3124 struct cipher_test_sglists *tsgls = NULL; 3125 int err; 3126 3127 if (suite->count <= 0) { 3128 pr_err("alg: skcipher: empty test suite for %s\n", driver); 3129 return -EINVAL; 3130 } 3131 3132 tfm = crypto_alloc_skcipher(driver, type, mask); 3133 if (IS_ERR(tfm)) { 3134 pr_err("alg: skcipher: failed to allocate transform for %s: %ld\n", 3135 driver, PTR_ERR(tfm)); 3136 return PTR_ERR(tfm); 3137 } 3138 driver = crypto_skcipher_driver_name(tfm); 3139 3140 req = skcipher_request_alloc(tfm, GFP_KERNEL); 3141 if (!req) { 3142 pr_err("alg: skcipher: failed to allocate request for %s\n", 3143 driver); 3144 err = -ENOMEM; 3145 goto out; 3146 } 3147 3148 tsgls = alloc_cipher_test_sglists(); 3149 if (!tsgls) { 3150 pr_err("alg: skcipher: failed to allocate test buffers for %s\n", 3151 driver); 3152 err = -ENOMEM; 3153 goto out; 3154 } 3155 3156 err = test_skcipher(ENCRYPT, suite, req, tsgls); 3157 if (err) 3158 goto out; 3159 3160 err = test_skcipher(DECRYPT, suite, req, tsgls); 3161 if (err) 3162 goto out; 3163 3164 err = test_skcipher_vs_generic_impl(desc->generic_driver, req, tsgls); 3165 out: 3166 free_cipher_test_sglists(tsgls); 3167 skcipher_request_free(req); 3168 crypto_free_skcipher(tfm); 3169 return err; 3170 } 3171 3172 static int test_comp(struct crypto_comp *tfm, 3173 const struct comp_testvec *ctemplate, 3174 const struct comp_testvec *dtemplate, 3175 int ctcount, int dtcount) 3176 { 3177 const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm)); 3178 char *output, *decomp_output; 3179 unsigned int i; 3180 int ret; 3181 3182 output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3183 if (!output) 3184 return -ENOMEM; 3185 3186 decomp_output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3187 if (!decomp_output) { 3188 kfree(output); 3189 return -ENOMEM; 3190 } 3191 3192 for (i = 0; i < ctcount; i++) { 3193 int ilen; 3194 unsigned int dlen = COMP_BUF_SIZE; 3195 3196 memset(output, 0, COMP_BUF_SIZE); 3197 memset(decomp_output, 0, COMP_BUF_SIZE); 3198 3199 ilen = ctemplate[i].inlen; 3200 ret = crypto_comp_compress(tfm, ctemplate[i].input, 3201 ilen, output, &dlen); 3202 if (ret) { 3203 printk(KERN_ERR "alg: comp: compression failed " 3204 "on test %d for %s: ret=%d\n", i + 1, algo, 3205 -ret); 3206 goto out; 3207 } 3208 3209 ilen = dlen; 3210 dlen = COMP_BUF_SIZE; 3211 ret = crypto_comp_decompress(tfm, output, 3212 ilen, decomp_output, &dlen); 3213 if (ret) { 3214 pr_err("alg: comp: compression failed: decompress: on test %d for %s failed: ret=%d\n", 3215 i + 1, algo, -ret); 3216 goto out; 3217 } 3218 3219 if (dlen != ctemplate[i].inlen) { 3220 printk(KERN_ERR "alg: comp: Compression test %d " 3221 "failed for %s: output len = %d\n", i + 1, algo, 3222 dlen); 3223 ret = -EINVAL; 3224 goto out; 3225 } 3226 3227 if (memcmp(decomp_output, ctemplate[i].input, 3228 ctemplate[i].inlen)) { 3229 pr_err("alg: comp: compression failed: output differs: on test %d for %s\n", 3230 i + 1, algo); 3231 hexdump(decomp_output, dlen); 3232 ret = -EINVAL; 3233 goto out; 3234 } 3235 } 3236 3237 for (i = 0; i < dtcount; i++) { 3238 int ilen; 3239 unsigned int dlen = COMP_BUF_SIZE; 3240 3241 memset(decomp_output, 0, COMP_BUF_SIZE); 3242 3243 ilen = dtemplate[i].inlen; 3244 ret = crypto_comp_decompress(tfm, dtemplate[i].input, 3245 ilen, decomp_output, &dlen); 3246 if (ret) { 3247 printk(KERN_ERR "alg: comp: decompression failed " 3248 "on test %d for %s: ret=%d\n", i + 1, algo, 3249 -ret); 3250 goto out; 3251 } 3252 3253 if (dlen != dtemplate[i].outlen) { 3254 printk(KERN_ERR "alg: comp: Decompression test %d " 3255 "failed for %s: output len = %d\n", i + 1, algo, 3256 dlen); 3257 ret = -EINVAL; 3258 goto out; 3259 } 3260 3261 if (memcmp(decomp_output, dtemplate[i].output, dlen)) { 3262 printk(KERN_ERR "alg: comp: Decompression test %d " 3263 "failed for %s\n", i + 1, algo); 3264 hexdump(decomp_output, dlen); 3265 ret = -EINVAL; 3266 goto out; 3267 } 3268 } 3269 3270 ret = 0; 3271 3272 out: 3273 kfree(decomp_output); 3274 kfree(output); 3275 return ret; 3276 } 3277 3278 static int test_acomp(struct crypto_acomp *tfm, 3279 const struct comp_testvec *ctemplate, 3280 const struct comp_testvec *dtemplate, 3281 int ctcount, int dtcount) 3282 { 3283 const char *algo = crypto_tfm_alg_driver_name(crypto_acomp_tfm(tfm)); 3284 unsigned int i; 3285 char *output, *decomp_out; 3286 int ret; 3287 struct scatterlist src, dst; 3288 struct acomp_req *req; 3289 struct crypto_wait wait; 3290 3291 output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3292 if (!output) 3293 return -ENOMEM; 3294 3295 decomp_out = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3296 if (!decomp_out) { 3297 kfree(output); 3298 return -ENOMEM; 3299 } 3300 3301 for (i = 0; i < ctcount; i++) { 3302 unsigned int dlen = COMP_BUF_SIZE; 3303 int ilen = ctemplate[i].inlen; 3304 void *input_vec; 3305 3306 input_vec = kmemdup(ctemplate[i].input, ilen, GFP_KERNEL); 3307 if (!input_vec) { 3308 ret = -ENOMEM; 3309 goto out; 3310 } 3311 3312 memset(output, 0, dlen); 3313 crypto_init_wait(&wait); 3314 sg_init_one(&src, input_vec, ilen); 3315 sg_init_one(&dst, output, dlen); 3316 3317 req = acomp_request_alloc(tfm); 3318 if (!req) { 3319 pr_err("alg: acomp: request alloc failed for %s\n", 3320 algo); 3321 kfree(input_vec); 3322 ret = -ENOMEM; 3323 goto out; 3324 } 3325 3326 acomp_request_set_params(req, &src, &dst, ilen, dlen); 3327 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3328 crypto_req_done, &wait); 3329 3330 ret = crypto_wait_req(crypto_acomp_compress(req), &wait); 3331 if (ret) { 3332 pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n", 3333 i + 1, algo, -ret); 3334 kfree(input_vec); 3335 acomp_request_free(req); 3336 goto out; 3337 } 3338 3339 ilen = req->dlen; 3340 dlen = COMP_BUF_SIZE; 3341 sg_init_one(&src, output, ilen); 3342 sg_init_one(&dst, decomp_out, dlen); 3343 crypto_init_wait(&wait); 3344 acomp_request_set_params(req, &src, &dst, ilen, dlen); 3345 3346 ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); 3347 if (ret) { 3348 pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n", 3349 i + 1, algo, -ret); 3350 kfree(input_vec); 3351 acomp_request_free(req); 3352 goto out; 3353 } 3354 3355 if (req->dlen != ctemplate[i].inlen) { 3356 pr_err("alg: acomp: Compression test %d failed for %s: output len = %d\n", 3357 i + 1, algo, req->dlen); 3358 ret = -EINVAL; 3359 kfree(input_vec); 3360 acomp_request_free(req); 3361 goto out; 3362 } 3363 3364 if (memcmp(input_vec, decomp_out, req->dlen)) { 3365 pr_err("alg: acomp: Compression test %d failed for %s\n", 3366 i + 1, algo); 3367 hexdump(output, req->dlen); 3368 ret = -EINVAL; 3369 kfree(input_vec); 3370 acomp_request_free(req); 3371 goto out; 3372 } 3373 3374 kfree(input_vec); 3375 acomp_request_free(req); 3376 } 3377 3378 for (i = 0; i < dtcount; i++) { 3379 unsigned int dlen = COMP_BUF_SIZE; 3380 int ilen = dtemplate[i].inlen; 3381 void *input_vec; 3382 3383 input_vec = kmemdup(dtemplate[i].input, ilen, GFP_KERNEL); 3384 if (!input_vec) { 3385 ret = -ENOMEM; 3386 goto out; 3387 } 3388 3389 memset(output, 0, dlen); 3390 crypto_init_wait(&wait); 3391 sg_init_one(&src, input_vec, ilen); 3392 sg_init_one(&dst, output, dlen); 3393 3394 req = acomp_request_alloc(tfm); 3395 if (!req) { 3396 pr_err("alg: acomp: request alloc failed for %s\n", 3397 algo); 3398 kfree(input_vec); 3399 ret = -ENOMEM; 3400 goto out; 3401 } 3402 3403 acomp_request_set_params(req, &src, &dst, ilen, dlen); 3404 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3405 crypto_req_done, &wait); 3406 3407 ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); 3408 if (ret) { 3409 pr_err("alg: acomp: decompression failed on test %d for %s: ret=%d\n", 3410 i + 1, algo, -ret); 3411 kfree(input_vec); 3412 acomp_request_free(req); 3413 goto out; 3414 } 3415 3416 if (req->dlen != dtemplate[i].outlen) { 3417 pr_err("alg: acomp: Decompression test %d failed for %s: output len = %d\n", 3418 i + 1, algo, req->dlen); 3419 ret = -EINVAL; 3420 kfree(input_vec); 3421 acomp_request_free(req); 3422 goto out; 3423 } 3424 3425 if (memcmp(output, dtemplate[i].output, req->dlen)) { 3426 pr_err("alg: acomp: Decompression test %d failed for %s\n", 3427 i + 1, algo); 3428 hexdump(output, req->dlen); 3429 ret = -EINVAL; 3430 kfree(input_vec); 3431 acomp_request_free(req); 3432 goto out; 3433 } 3434 3435 kfree(input_vec); 3436 acomp_request_free(req); 3437 } 3438 3439 ret = 0; 3440 3441 out: 3442 kfree(decomp_out); 3443 kfree(output); 3444 return ret; 3445 } 3446 3447 static int test_cprng(struct crypto_rng *tfm, 3448 const struct cprng_testvec *template, 3449 unsigned int tcount) 3450 { 3451 const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm)); 3452 int err = 0, i, j, seedsize; 3453 u8 *seed; 3454 char result[32]; 3455 3456 seedsize = crypto_rng_seedsize(tfm); 3457 3458 seed = kmalloc(seedsize, GFP_KERNEL); 3459 if (!seed) { 3460 printk(KERN_ERR "alg: cprng: Failed to allocate seed space " 3461 "for %s\n", algo); 3462 return -ENOMEM; 3463 } 3464 3465 for (i = 0; i < tcount; i++) { 3466 memset(result, 0, 32); 3467 3468 memcpy(seed, template[i].v, template[i].vlen); 3469 memcpy(seed + template[i].vlen, template[i].key, 3470 template[i].klen); 3471 memcpy(seed + template[i].vlen + template[i].klen, 3472 template[i].dt, template[i].dtlen); 3473 3474 err = crypto_rng_reset(tfm, seed, seedsize); 3475 if (err) { 3476 printk(KERN_ERR "alg: cprng: Failed to reset rng " 3477 "for %s\n", algo); 3478 goto out; 3479 } 3480 3481 for (j = 0; j < template[i].loops; j++) { 3482 err = crypto_rng_get_bytes(tfm, result, 3483 template[i].rlen); 3484 if (err < 0) { 3485 printk(KERN_ERR "alg: cprng: Failed to obtain " 3486 "the correct amount of random data for " 3487 "%s (requested %d)\n", algo, 3488 template[i].rlen); 3489 goto out; 3490 } 3491 } 3492 3493 err = memcmp(result, template[i].result, 3494 template[i].rlen); 3495 if (err) { 3496 printk(KERN_ERR "alg: cprng: Test %d failed for %s\n", 3497 i, algo); 3498 hexdump(result, template[i].rlen); 3499 err = -EINVAL; 3500 goto out; 3501 } 3502 } 3503 3504 out: 3505 kfree(seed); 3506 return err; 3507 } 3508 3509 static int alg_test_cipher(const struct alg_test_desc *desc, 3510 const char *driver, u32 type, u32 mask) 3511 { 3512 const struct cipher_test_suite *suite = &desc->suite.cipher; 3513 struct crypto_cipher *tfm; 3514 int err; 3515 3516 tfm = crypto_alloc_cipher(driver, type, mask); 3517 if (IS_ERR(tfm)) { 3518 printk(KERN_ERR "alg: cipher: Failed to load transform for " 3519 "%s: %ld\n", driver, PTR_ERR(tfm)); 3520 return PTR_ERR(tfm); 3521 } 3522 3523 err = test_cipher(tfm, ENCRYPT, suite->vecs, suite->count); 3524 if (!err) 3525 err = test_cipher(tfm, DECRYPT, suite->vecs, suite->count); 3526 3527 crypto_free_cipher(tfm); 3528 return err; 3529 } 3530 3531 static int alg_test_comp(const struct alg_test_desc *desc, const char *driver, 3532 u32 type, u32 mask) 3533 { 3534 struct crypto_comp *comp; 3535 struct crypto_acomp *acomp; 3536 int err; 3537 u32 algo_type = type & CRYPTO_ALG_TYPE_ACOMPRESS_MASK; 3538 3539 if (algo_type == CRYPTO_ALG_TYPE_ACOMPRESS) { 3540 acomp = crypto_alloc_acomp(driver, type, mask); 3541 if (IS_ERR(acomp)) { 3542 pr_err("alg: acomp: Failed to load transform for %s: %ld\n", 3543 driver, PTR_ERR(acomp)); 3544 return PTR_ERR(acomp); 3545 } 3546 err = test_acomp(acomp, desc->suite.comp.comp.vecs, 3547 desc->suite.comp.decomp.vecs, 3548 desc->suite.comp.comp.count, 3549 desc->suite.comp.decomp.count); 3550 crypto_free_acomp(acomp); 3551 } else { 3552 comp = crypto_alloc_comp(driver, type, mask); 3553 if (IS_ERR(comp)) { 3554 pr_err("alg: comp: Failed to load transform for %s: %ld\n", 3555 driver, PTR_ERR(comp)); 3556 return PTR_ERR(comp); 3557 } 3558 3559 err = test_comp(comp, desc->suite.comp.comp.vecs, 3560 desc->suite.comp.decomp.vecs, 3561 desc->suite.comp.comp.count, 3562 desc->suite.comp.decomp.count); 3563 3564 crypto_free_comp(comp); 3565 } 3566 return err; 3567 } 3568 3569 static int alg_test_crc32c(const struct alg_test_desc *desc, 3570 const char *driver, u32 type, u32 mask) 3571 { 3572 struct crypto_shash *tfm; 3573 __le32 val; 3574 int err; 3575 3576 err = alg_test_hash(desc, driver, type, mask); 3577 if (err) 3578 return err; 3579 3580 tfm = crypto_alloc_shash(driver, type, mask); 3581 if (IS_ERR(tfm)) { 3582 if (PTR_ERR(tfm) == -ENOENT) { 3583 /* 3584 * This crc32c implementation is only available through 3585 * ahash API, not the shash API, so the remaining part 3586 * of the test is not applicable to it. 3587 */ 3588 return 0; 3589 } 3590 printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: " 3591 "%ld\n", driver, PTR_ERR(tfm)); 3592 return PTR_ERR(tfm); 3593 } 3594 driver = crypto_shash_driver_name(tfm); 3595 3596 do { 3597 SHASH_DESC_ON_STACK(shash, tfm); 3598 u32 *ctx = (u32 *)shash_desc_ctx(shash); 3599 3600 shash->tfm = tfm; 3601 3602 *ctx = 420553207; 3603 err = crypto_shash_final(shash, (u8 *)&val); 3604 if (err) { 3605 printk(KERN_ERR "alg: crc32c: Operation failed for " 3606 "%s: %d\n", driver, err); 3607 break; 3608 } 3609 3610 if (val != cpu_to_le32(~420553207)) { 3611 pr_err("alg: crc32c: Test failed for %s: %u\n", 3612 driver, le32_to_cpu(val)); 3613 err = -EINVAL; 3614 } 3615 } while (0); 3616 3617 crypto_free_shash(tfm); 3618 3619 return err; 3620 } 3621 3622 static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver, 3623 u32 type, u32 mask) 3624 { 3625 struct crypto_rng *rng; 3626 int err; 3627 3628 rng = crypto_alloc_rng(driver, type, mask); 3629 if (IS_ERR(rng)) { 3630 printk(KERN_ERR "alg: cprng: Failed to load transform for %s: " 3631 "%ld\n", driver, PTR_ERR(rng)); 3632 return PTR_ERR(rng); 3633 } 3634 3635 err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count); 3636 3637 crypto_free_rng(rng); 3638 3639 return err; 3640 } 3641 3642 3643 static int drbg_cavs_test(const struct drbg_testvec *test, int pr, 3644 const char *driver, u32 type, u32 mask) 3645 { 3646 int ret = -EAGAIN; 3647 struct crypto_rng *drng; 3648 struct drbg_test_data test_data; 3649 struct drbg_string addtl, pers, testentropy; 3650 unsigned char *buf = kzalloc(test->expectedlen, GFP_KERNEL); 3651 3652 if (!buf) 3653 return -ENOMEM; 3654 3655 drng = crypto_alloc_rng(driver, type, mask); 3656 if (IS_ERR(drng)) { 3657 printk(KERN_ERR "alg: drbg: could not allocate DRNG handle for " 3658 "%s\n", driver); 3659 kfree_sensitive(buf); 3660 return -ENOMEM; 3661 } 3662 3663 test_data.testentropy = &testentropy; 3664 drbg_string_fill(&testentropy, test->entropy, test->entropylen); 3665 drbg_string_fill(&pers, test->pers, test->perslen); 3666 ret = crypto_drbg_reset_test(drng, &pers, &test_data); 3667 if (ret) { 3668 printk(KERN_ERR "alg: drbg: Failed to reset rng\n"); 3669 goto outbuf; 3670 } 3671 3672 drbg_string_fill(&addtl, test->addtla, test->addtllen); 3673 if (pr) { 3674 drbg_string_fill(&testentropy, test->entpra, test->entprlen); 3675 ret = crypto_drbg_get_bytes_addtl_test(drng, 3676 buf, test->expectedlen, &addtl, &test_data); 3677 } else { 3678 ret = crypto_drbg_get_bytes_addtl(drng, 3679 buf, test->expectedlen, &addtl); 3680 } 3681 if (ret < 0) { 3682 printk(KERN_ERR "alg: drbg: could not obtain random data for " 3683 "driver %s\n", driver); 3684 goto outbuf; 3685 } 3686 3687 drbg_string_fill(&addtl, test->addtlb, test->addtllen); 3688 if (pr) { 3689 drbg_string_fill(&testentropy, test->entprb, test->entprlen); 3690 ret = crypto_drbg_get_bytes_addtl_test(drng, 3691 buf, test->expectedlen, &addtl, &test_data); 3692 } else { 3693 ret = crypto_drbg_get_bytes_addtl(drng, 3694 buf, test->expectedlen, &addtl); 3695 } 3696 if (ret < 0) { 3697 printk(KERN_ERR "alg: drbg: could not obtain random data for " 3698 "driver %s\n", driver); 3699 goto outbuf; 3700 } 3701 3702 ret = memcmp(test->expected, buf, test->expectedlen); 3703 3704 outbuf: 3705 crypto_free_rng(drng); 3706 kfree_sensitive(buf); 3707 return ret; 3708 } 3709 3710 3711 static int alg_test_drbg(const struct alg_test_desc *desc, const char *driver, 3712 u32 type, u32 mask) 3713 { 3714 int err = 0; 3715 int pr = 0; 3716 int i = 0; 3717 const struct drbg_testvec *template = desc->suite.drbg.vecs; 3718 unsigned int tcount = desc->suite.drbg.count; 3719 3720 if (0 == memcmp(driver, "drbg_pr_", 8)) 3721 pr = 1; 3722 3723 for (i = 0; i < tcount; i++) { 3724 err = drbg_cavs_test(&template[i], pr, driver, type, mask); 3725 if (err) { 3726 printk(KERN_ERR "alg: drbg: Test %d failed for %s\n", 3727 i, driver); 3728 err = -EINVAL; 3729 break; 3730 } 3731 } 3732 return err; 3733 3734 } 3735 3736 static int do_test_kpp(struct crypto_kpp *tfm, const struct kpp_testvec *vec, 3737 const char *alg) 3738 { 3739 struct kpp_request *req; 3740 void *input_buf = NULL; 3741 void *output_buf = NULL; 3742 void *a_public = NULL; 3743 void *a_ss = NULL; 3744 void *shared_secret = NULL; 3745 struct crypto_wait wait; 3746 unsigned int out_len_max; 3747 int err = -ENOMEM; 3748 struct scatterlist src, dst; 3749 3750 req = kpp_request_alloc(tfm, GFP_KERNEL); 3751 if (!req) 3752 return err; 3753 3754 crypto_init_wait(&wait); 3755 3756 err = crypto_kpp_set_secret(tfm, vec->secret, vec->secret_size); 3757 if (err < 0) 3758 goto free_req; 3759 3760 out_len_max = crypto_kpp_maxsize(tfm); 3761 output_buf = kzalloc(out_len_max, GFP_KERNEL); 3762 if (!output_buf) { 3763 err = -ENOMEM; 3764 goto free_req; 3765 } 3766 3767 /* Use appropriate parameter as base */ 3768 kpp_request_set_input(req, NULL, 0); 3769 sg_init_one(&dst, output_buf, out_len_max); 3770 kpp_request_set_output(req, &dst, out_len_max); 3771 kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3772 crypto_req_done, &wait); 3773 3774 /* Compute party A's public key */ 3775 err = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait); 3776 if (err) { 3777 pr_err("alg: %s: Party A: generate public key test failed. err %d\n", 3778 alg, err); 3779 goto free_output; 3780 } 3781 3782 if (vec->genkey) { 3783 /* Save party A's public key */ 3784 a_public = kmemdup(sg_virt(req->dst), out_len_max, GFP_KERNEL); 3785 if (!a_public) { 3786 err = -ENOMEM; 3787 goto free_output; 3788 } 3789 } else { 3790 /* Verify calculated public key */ 3791 if (memcmp(vec->expected_a_public, sg_virt(req->dst), 3792 vec->expected_a_public_size)) { 3793 pr_err("alg: %s: Party A: generate public key test failed. Invalid output\n", 3794 alg); 3795 err = -EINVAL; 3796 goto free_output; 3797 } 3798 } 3799 3800 /* Calculate shared secret key by using counter part (b) public key. */ 3801 input_buf = kmemdup(vec->b_public, vec->b_public_size, GFP_KERNEL); 3802 if (!input_buf) { 3803 err = -ENOMEM; 3804 goto free_output; 3805 } 3806 3807 sg_init_one(&src, input_buf, vec->b_public_size); 3808 sg_init_one(&dst, output_buf, out_len_max); 3809 kpp_request_set_input(req, &src, vec->b_public_size); 3810 kpp_request_set_output(req, &dst, out_len_max); 3811 kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3812 crypto_req_done, &wait); 3813 err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait); 3814 if (err) { 3815 pr_err("alg: %s: Party A: compute shared secret test failed. err %d\n", 3816 alg, err); 3817 goto free_all; 3818 } 3819 3820 if (vec->genkey) { 3821 /* Save the shared secret obtained by party A */ 3822 a_ss = kmemdup(sg_virt(req->dst), vec->expected_ss_size, GFP_KERNEL); 3823 if (!a_ss) { 3824 err = -ENOMEM; 3825 goto free_all; 3826 } 3827 3828 /* 3829 * Calculate party B's shared secret by using party A's 3830 * public key. 3831 */ 3832 err = crypto_kpp_set_secret(tfm, vec->b_secret, 3833 vec->b_secret_size); 3834 if (err < 0) 3835 goto free_all; 3836 3837 sg_init_one(&src, a_public, vec->expected_a_public_size); 3838 sg_init_one(&dst, output_buf, out_len_max); 3839 kpp_request_set_input(req, &src, vec->expected_a_public_size); 3840 kpp_request_set_output(req, &dst, out_len_max); 3841 kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3842 crypto_req_done, &wait); 3843 err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), 3844 &wait); 3845 if (err) { 3846 pr_err("alg: %s: Party B: compute shared secret failed. err %d\n", 3847 alg, err); 3848 goto free_all; 3849 } 3850 3851 shared_secret = a_ss; 3852 } else { 3853 shared_secret = (void *)vec->expected_ss; 3854 } 3855 3856 /* 3857 * verify shared secret from which the user will derive 3858 * secret key by executing whatever hash it has chosen 3859 */ 3860 if (memcmp(shared_secret, sg_virt(req->dst), 3861 vec->expected_ss_size)) { 3862 pr_err("alg: %s: compute shared secret test failed. Invalid output\n", 3863 alg); 3864 err = -EINVAL; 3865 } 3866 3867 free_all: 3868 kfree(a_ss); 3869 kfree(input_buf); 3870 free_output: 3871 kfree(a_public); 3872 kfree(output_buf); 3873 free_req: 3874 kpp_request_free(req); 3875 return err; 3876 } 3877 3878 static int test_kpp(struct crypto_kpp *tfm, const char *alg, 3879 const struct kpp_testvec *vecs, unsigned int tcount) 3880 { 3881 int ret, i; 3882 3883 for (i = 0; i < tcount; i++) { 3884 ret = do_test_kpp(tfm, vecs++, alg); 3885 if (ret) { 3886 pr_err("alg: %s: test failed on vector %d, err=%d\n", 3887 alg, i + 1, ret); 3888 return ret; 3889 } 3890 } 3891 return 0; 3892 } 3893 3894 static int alg_test_kpp(const struct alg_test_desc *desc, const char *driver, 3895 u32 type, u32 mask) 3896 { 3897 struct crypto_kpp *tfm; 3898 int err = 0; 3899 3900 tfm = crypto_alloc_kpp(driver, type, mask); 3901 if (IS_ERR(tfm)) { 3902 pr_err("alg: kpp: Failed to load tfm for %s: %ld\n", 3903 driver, PTR_ERR(tfm)); 3904 return PTR_ERR(tfm); 3905 } 3906 if (desc->suite.kpp.vecs) 3907 err = test_kpp(tfm, desc->alg, desc->suite.kpp.vecs, 3908 desc->suite.kpp.count); 3909 3910 crypto_free_kpp(tfm); 3911 return err; 3912 } 3913 3914 static u8 *test_pack_u32(u8 *dst, u32 val) 3915 { 3916 memcpy(dst, &val, sizeof(val)); 3917 return dst + sizeof(val); 3918 } 3919 3920 static int test_akcipher_one(struct crypto_akcipher *tfm, 3921 const struct akcipher_testvec *vecs) 3922 { 3923 char *xbuf[XBUFSIZE]; 3924 struct akcipher_request *req; 3925 void *outbuf_enc = NULL; 3926 void *outbuf_dec = NULL; 3927 struct crypto_wait wait; 3928 unsigned int out_len_max, out_len = 0; 3929 int err = -ENOMEM; 3930 struct scatterlist src, dst, src_tab[3]; 3931 const char *m, *c; 3932 unsigned int m_size, c_size; 3933 const char *op; 3934 u8 *key, *ptr; 3935 3936 if (testmgr_alloc_buf(xbuf)) 3937 return err; 3938 3939 req = akcipher_request_alloc(tfm, GFP_KERNEL); 3940 if (!req) 3941 goto free_xbuf; 3942 3943 crypto_init_wait(&wait); 3944 3945 key = kmalloc(vecs->key_len + sizeof(u32) * 2 + vecs->param_len, 3946 GFP_KERNEL); 3947 if (!key) 3948 goto free_req; 3949 memcpy(key, vecs->key, vecs->key_len); 3950 ptr = key + vecs->key_len; 3951 ptr = test_pack_u32(ptr, vecs->algo); 3952 ptr = test_pack_u32(ptr, vecs->param_len); 3953 memcpy(ptr, vecs->params, vecs->param_len); 3954 3955 if (vecs->public_key_vec) 3956 err = crypto_akcipher_set_pub_key(tfm, key, vecs->key_len); 3957 else 3958 err = crypto_akcipher_set_priv_key(tfm, key, vecs->key_len); 3959 if (err) 3960 goto free_key; 3961 3962 /* 3963 * First run test which do not require a private key, such as 3964 * encrypt or verify. 3965 */ 3966 err = -ENOMEM; 3967 out_len_max = crypto_akcipher_maxsize(tfm); 3968 outbuf_enc = kzalloc(out_len_max, GFP_KERNEL); 3969 if (!outbuf_enc) 3970 goto free_key; 3971 3972 if (!vecs->siggen_sigver_test) { 3973 m = vecs->m; 3974 m_size = vecs->m_size; 3975 c = vecs->c; 3976 c_size = vecs->c_size; 3977 op = "encrypt"; 3978 } else { 3979 /* Swap args so we could keep plaintext (digest) 3980 * in vecs->m, and cooked signature in vecs->c. 3981 */ 3982 m = vecs->c; /* signature */ 3983 m_size = vecs->c_size; 3984 c = vecs->m; /* digest */ 3985 c_size = vecs->m_size; 3986 op = "verify"; 3987 } 3988 3989 err = -E2BIG; 3990 if (WARN_ON(m_size > PAGE_SIZE)) 3991 goto free_all; 3992 memcpy(xbuf[0], m, m_size); 3993 3994 sg_init_table(src_tab, 3); 3995 sg_set_buf(&src_tab[0], xbuf[0], 8); 3996 sg_set_buf(&src_tab[1], xbuf[0] + 8, m_size - 8); 3997 if (vecs->siggen_sigver_test) { 3998 if (WARN_ON(c_size > PAGE_SIZE)) 3999 goto free_all; 4000 memcpy(xbuf[1], c, c_size); 4001 sg_set_buf(&src_tab[2], xbuf[1], c_size); 4002 akcipher_request_set_crypt(req, src_tab, NULL, m_size, c_size); 4003 } else { 4004 sg_init_one(&dst, outbuf_enc, out_len_max); 4005 akcipher_request_set_crypt(req, src_tab, &dst, m_size, 4006 out_len_max); 4007 } 4008 akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 4009 crypto_req_done, &wait); 4010 4011 err = crypto_wait_req(vecs->siggen_sigver_test ? 4012 /* Run asymmetric signature verification */ 4013 crypto_akcipher_verify(req) : 4014 /* Run asymmetric encrypt */ 4015 crypto_akcipher_encrypt(req), &wait); 4016 if (err) { 4017 pr_err("alg: akcipher: %s test failed. err %d\n", op, err); 4018 goto free_all; 4019 } 4020 if (!vecs->siggen_sigver_test && c) { 4021 if (req->dst_len != c_size) { 4022 pr_err("alg: akcipher: %s test failed. Invalid output len\n", 4023 op); 4024 err = -EINVAL; 4025 goto free_all; 4026 } 4027 /* verify that encrypted message is equal to expected */ 4028 if (memcmp(c, outbuf_enc, c_size) != 0) { 4029 pr_err("alg: akcipher: %s test failed. Invalid output\n", 4030 op); 4031 hexdump(outbuf_enc, c_size); 4032 err = -EINVAL; 4033 goto free_all; 4034 } 4035 } 4036 4037 /* 4038 * Don't invoke (decrypt or sign) test which require a private key 4039 * for vectors with only a public key. 4040 */ 4041 if (vecs->public_key_vec) { 4042 err = 0; 4043 goto free_all; 4044 } 4045 outbuf_dec = kzalloc(out_len_max, GFP_KERNEL); 4046 if (!outbuf_dec) { 4047 err = -ENOMEM; 4048 goto free_all; 4049 } 4050 4051 if (!vecs->siggen_sigver_test && !c) { 4052 c = outbuf_enc; 4053 c_size = req->dst_len; 4054 } 4055 4056 err = -E2BIG; 4057 op = vecs->siggen_sigver_test ? "sign" : "decrypt"; 4058 if (WARN_ON(c_size > PAGE_SIZE)) 4059 goto free_all; 4060 memcpy(xbuf[0], c, c_size); 4061 4062 sg_init_one(&src, xbuf[0], c_size); 4063 sg_init_one(&dst, outbuf_dec, out_len_max); 4064 crypto_init_wait(&wait); 4065 akcipher_request_set_crypt(req, &src, &dst, c_size, out_len_max); 4066 4067 err = crypto_wait_req(vecs->siggen_sigver_test ? 4068 /* Run asymmetric signature generation */ 4069 crypto_akcipher_sign(req) : 4070 /* Run asymmetric decrypt */ 4071 crypto_akcipher_decrypt(req), &wait); 4072 if (err) { 4073 pr_err("alg: akcipher: %s test failed. err %d\n", op, err); 4074 goto free_all; 4075 } 4076 out_len = req->dst_len; 4077 if (out_len < m_size) { 4078 pr_err("alg: akcipher: %s test failed. Invalid output len %u\n", 4079 op, out_len); 4080 err = -EINVAL; 4081 goto free_all; 4082 } 4083 /* verify that decrypted message is equal to the original msg */ 4084 if (memchr_inv(outbuf_dec, 0, out_len - m_size) || 4085 memcmp(m, outbuf_dec + out_len - m_size, m_size)) { 4086 pr_err("alg: akcipher: %s test failed. Invalid output\n", op); 4087 hexdump(outbuf_dec, out_len); 4088 err = -EINVAL; 4089 } 4090 free_all: 4091 kfree(outbuf_dec); 4092 kfree(outbuf_enc); 4093 free_key: 4094 kfree(key); 4095 free_req: 4096 akcipher_request_free(req); 4097 free_xbuf: 4098 testmgr_free_buf(xbuf); 4099 return err; 4100 } 4101 4102 static int test_akcipher(struct crypto_akcipher *tfm, const char *alg, 4103 const struct akcipher_testvec *vecs, 4104 unsigned int tcount) 4105 { 4106 const char *algo = 4107 crypto_tfm_alg_driver_name(crypto_akcipher_tfm(tfm)); 4108 int ret, i; 4109 4110 for (i = 0; i < tcount; i++) { 4111 ret = test_akcipher_one(tfm, vecs++); 4112 if (!ret) 4113 continue; 4114 4115 pr_err("alg: akcipher: test %d failed for %s, err=%d\n", 4116 i + 1, algo, ret); 4117 return ret; 4118 } 4119 return 0; 4120 } 4121 4122 static int alg_test_akcipher(const struct alg_test_desc *desc, 4123 const char *driver, u32 type, u32 mask) 4124 { 4125 struct crypto_akcipher *tfm; 4126 int err = 0; 4127 4128 tfm = crypto_alloc_akcipher(driver, type, mask); 4129 if (IS_ERR(tfm)) { 4130 pr_err("alg: akcipher: Failed to load tfm for %s: %ld\n", 4131 driver, PTR_ERR(tfm)); 4132 return PTR_ERR(tfm); 4133 } 4134 if (desc->suite.akcipher.vecs) 4135 err = test_akcipher(tfm, desc->alg, desc->suite.akcipher.vecs, 4136 desc->suite.akcipher.count); 4137 4138 crypto_free_akcipher(tfm); 4139 return err; 4140 } 4141 4142 static int alg_test_null(const struct alg_test_desc *desc, 4143 const char *driver, u32 type, u32 mask) 4144 { 4145 return 0; 4146 } 4147 4148 #define ____VECS(tv) .vecs = tv, .count = ARRAY_SIZE(tv) 4149 #define __VECS(tv) { ____VECS(tv) } 4150 4151 /* Please keep this list sorted by algorithm name. */ 4152 static const struct alg_test_desc alg_test_descs[] = { 4153 { 4154 .alg = "adiantum(xchacha12,aes)", 4155 .generic_driver = "adiantum(xchacha12-generic,aes-generic,nhpoly1305-generic)", 4156 .test = alg_test_skcipher, 4157 .suite = { 4158 .cipher = __VECS(adiantum_xchacha12_aes_tv_template) 4159 }, 4160 }, { 4161 .alg = "adiantum(xchacha20,aes)", 4162 .generic_driver = "adiantum(xchacha20-generic,aes-generic,nhpoly1305-generic)", 4163 .test = alg_test_skcipher, 4164 .suite = { 4165 .cipher = __VECS(adiantum_xchacha20_aes_tv_template) 4166 }, 4167 }, { 4168 .alg = "aegis128", 4169 .test = alg_test_aead, 4170 .suite = { 4171 .aead = __VECS(aegis128_tv_template) 4172 } 4173 }, { 4174 .alg = "ansi_cprng", 4175 .test = alg_test_cprng, 4176 .suite = { 4177 .cprng = __VECS(ansi_cprng_aes_tv_template) 4178 } 4179 }, { 4180 .alg = "authenc(hmac(md5),ecb(cipher_null))", 4181 .test = alg_test_aead, 4182 .suite = { 4183 .aead = __VECS(hmac_md5_ecb_cipher_null_tv_template) 4184 } 4185 }, { 4186 .alg = "authenc(hmac(sha1),cbc(aes))", 4187 .test = alg_test_aead, 4188 .fips_allowed = 1, 4189 .suite = { 4190 .aead = __VECS(hmac_sha1_aes_cbc_tv_temp) 4191 } 4192 }, { 4193 .alg = "authenc(hmac(sha1),cbc(des))", 4194 .test = alg_test_aead, 4195 .suite = { 4196 .aead = __VECS(hmac_sha1_des_cbc_tv_temp) 4197 } 4198 }, { 4199 .alg = "authenc(hmac(sha1),cbc(des3_ede))", 4200 .test = alg_test_aead, 4201 .fips_allowed = 1, 4202 .suite = { 4203 .aead = __VECS(hmac_sha1_des3_ede_cbc_tv_temp) 4204 } 4205 }, { 4206 .alg = "authenc(hmac(sha1),ctr(aes))", 4207 .test = alg_test_null, 4208 .fips_allowed = 1, 4209 }, { 4210 .alg = "authenc(hmac(sha1),ecb(cipher_null))", 4211 .test = alg_test_aead, 4212 .suite = { 4213 .aead = __VECS(hmac_sha1_ecb_cipher_null_tv_temp) 4214 } 4215 }, { 4216 .alg = "authenc(hmac(sha1),rfc3686(ctr(aes)))", 4217 .test = alg_test_null, 4218 .fips_allowed = 1, 4219 }, { 4220 .alg = "authenc(hmac(sha224),cbc(des))", 4221 .test = alg_test_aead, 4222 .suite = { 4223 .aead = __VECS(hmac_sha224_des_cbc_tv_temp) 4224 } 4225 }, { 4226 .alg = "authenc(hmac(sha224),cbc(des3_ede))", 4227 .test = alg_test_aead, 4228 .fips_allowed = 1, 4229 .suite = { 4230 .aead = __VECS(hmac_sha224_des3_ede_cbc_tv_temp) 4231 } 4232 }, { 4233 .alg = "authenc(hmac(sha256),cbc(aes))", 4234 .test = alg_test_aead, 4235 .fips_allowed = 1, 4236 .suite = { 4237 .aead = __VECS(hmac_sha256_aes_cbc_tv_temp) 4238 } 4239 }, { 4240 .alg = "authenc(hmac(sha256),cbc(des))", 4241 .test = alg_test_aead, 4242 .suite = { 4243 .aead = __VECS(hmac_sha256_des_cbc_tv_temp) 4244 } 4245 }, { 4246 .alg = "authenc(hmac(sha256),cbc(des3_ede))", 4247 .test = alg_test_aead, 4248 .fips_allowed = 1, 4249 .suite = { 4250 .aead = __VECS(hmac_sha256_des3_ede_cbc_tv_temp) 4251 } 4252 }, { 4253 .alg = "authenc(hmac(sha256),ctr(aes))", 4254 .test = alg_test_null, 4255 .fips_allowed = 1, 4256 }, { 4257 .alg = "authenc(hmac(sha256),rfc3686(ctr(aes)))", 4258 .test = alg_test_null, 4259 .fips_allowed = 1, 4260 }, { 4261 .alg = "authenc(hmac(sha384),cbc(des))", 4262 .test = alg_test_aead, 4263 .suite = { 4264 .aead = __VECS(hmac_sha384_des_cbc_tv_temp) 4265 } 4266 }, { 4267 .alg = "authenc(hmac(sha384),cbc(des3_ede))", 4268 .test = alg_test_aead, 4269 .fips_allowed = 1, 4270 .suite = { 4271 .aead = __VECS(hmac_sha384_des3_ede_cbc_tv_temp) 4272 } 4273 }, { 4274 .alg = "authenc(hmac(sha384),ctr(aes))", 4275 .test = alg_test_null, 4276 .fips_allowed = 1, 4277 }, { 4278 .alg = "authenc(hmac(sha384),rfc3686(ctr(aes)))", 4279 .test = alg_test_null, 4280 .fips_allowed = 1, 4281 }, { 4282 .alg = "authenc(hmac(sha512),cbc(aes))", 4283 .fips_allowed = 1, 4284 .test = alg_test_aead, 4285 .suite = { 4286 .aead = __VECS(hmac_sha512_aes_cbc_tv_temp) 4287 } 4288 }, { 4289 .alg = "authenc(hmac(sha512),cbc(des))", 4290 .test = alg_test_aead, 4291 .suite = { 4292 .aead = __VECS(hmac_sha512_des_cbc_tv_temp) 4293 } 4294 }, { 4295 .alg = "authenc(hmac(sha512),cbc(des3_ede))", 4296 .test = alg_test_aead, 4297 .fips_allowed = 1, 4298 .suite = { 4299 .aead = __VECS(hmac_sha512_des3_ede_cbc_tv_temp) 4300 } 4301 }, { 4302 .alg = "authenc(hmac(sha512),ctr(aes))", 4303 .test = alg_test_null, 4304 .fips_allowed = 1, 4305 }, { 4306 .alg = "authenc(hmac(sha512),rfc3686(ctr(aes)))", 4307 .test = alg_test_null, 4308 .fips_allowed = 1, 4309 }, { 4310 .alg = "blake2b-160", 4311 .test = alg_test_hash, 4312 .fips_allowed = 0, 4313 .suite = { 4314 .hash = __VECS(blake2b_160_tv_template) 4315 } 4316 }, { 4317 .alg = "blake2b-256", 4318 .test = alg_test_hash, 4319 .fips_allowed = 0, 4320 .suite = { 4321 .hash = __VECS(blake2b_256_tv_template) 4322 } 4323 }, { 4324 .alg = "blake2b-384", 4325 .test = alg_test_hash, 4326 .fips_allowed = 0, 4327 .suite = { 4328 .hash = __VECS(blake2b_384_tv_template) 4329 } 4330 }, { 4331 .alg = "blake2b-512", 4332 .test = alg_test_hash, 4333 .fips_allowed = 0, 4334 .suite = { 4335 .hash = __VECS(blake2b_512_tv_template) 4336 } 4337 }, { 4338 .alg = "blake2s-128", 4339 .test = alg_test_hash, 4340 .suite = { 4341 .hash = __VECS(blakes2s_128_tv_template) 4342 } 4343 }, { 4344 .alg = "blake2s-160", 4345 .test = alg_test_hash, 4346 .suite = { 4347 .hash = __VECS(blakes2s_160_tv_template) 4348 } 4349 }, { 4350 .alg = "blake2s-224", 4351 .test = alg_test_hash, 4352 .suite = { 4353 .hash = __VECS(blakes2s_224_tv_template) 4354 } 4355 }, { 4356 .alg = "blake2s-256", 4357 .test = alg_test_hash, 4358 .suite = { 4359 .hash = __VECS(blakes2s_256_tv_template) 4360 } 4361 }, { 4362 .alg = "cbc(aes)", 4363 .test = alg_test_skcipher, 4364 .fips_allowed = 1, 4365 .suite = { 4366 .cipher = __VECS(aes_cbc_tv_template) 4367 }, 4368 }, { 4369 .alg = "cbc(anubis)", 4370 .test = alg_test_skcipher, 4371 .suite = { 4372 .cipher = __VECS(anubis_cbc_tv_template) 4373 }, 4374 }, { 4375 .alg = "cbc(blowfish)", 4376 .test = alg_test_skcipher, 4377 .suite = { 4378 .cipher = __VECS(bf_cbc_tv_template) 4379 }, 4380 }, { 4381 .alg = "cbc(camellia)", 4382 .test = alg_test_skcipher, 4383 .suite = { 4384 .cipher = __VECS(camellia_cbc_tv_template) 4385 }, 4386 }, { 4387 .alg = "cbc(cast5)", 4388 .test = alg_test_skcipher, 4389 .suite = { 4390 .cipher = __VECS(cast5_cbc_tv_template) 4391 }, 4392 }, { 4393 .alg = "cbc(cast6)", 4394 .test = alg_test_skcipher, 4395 .suite = { 4396 .cipher = __VECS(cast6_cbc_tv_template) 4397 }, 4398 }, { 4399 .alg = "cbc(des)", 4400 .test = alg_test_skcipher, 4401 .suite = { 4402 .cipher = __VECS(des_cbc_tv_template) 4403 }, 4404 }, { 4405 .alg = "cbc(des3_ede)", 4406 .test = alg_test_skcipher, 4407 .fips_allowed = 1, 4408 .suite = { 4409 .cipher = __VECS(des3_ede_cbc_tv_template) 4410 }, 4411 }, { 4412 /* Same as cbc(aes) except the key is stored in 4413 * hardware secure memory which we reference by index 4414 */ 4415 .alg = "cbc(paes)", 4416 .test = alg_test_null, 4417 .fips_allowed = 1, 4418 }, { 4419 /* Same as cbc(sm4) except the key is stored in 4420 * hardware secure memory which we reference by index 4421 */ 4422 .alg = "cbc(psm4)", 4423 .test = alg_test_null, 4424 }, { 4425 .alg = "cbc(serpent)", 4426 .test = alg_test_skcipher, 4427 .suite = { 4428 .cipher = __VECS(serpent_cbc_tv_template) 4429 }, 4430 }, { 4431 .alg = "cbc(sm4)", 4432 .test = alg_test_skcipher, 4433 .suite = { 4434 .cipher = __VECS(sm4_cbc_tv_template) 4435 } 4436 }, { 4437 .alg = "cbc(twofish)", 4438 .test = alg_test_skcipher, 4439 .suite = { 4440 .cipher = __VECS(tf_cbc_tv_template) 4441 }, 4442 }, { 4443 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 4444 .alg = "cbc-paes-s390", 4445 .fips_allowed = 1, 4446 .test = alg_test_skcipher, 4447 .suite = { 4448 .cipher = __VECS(aes_cbc_tv_template) 4449 } 4450 }, { 4451 #endif 4452 .alg = "cbcmac(aes)", 4453 .fips_allowed = 1, 4454 .test = alg_test_hash, 4455 .suite = { 4456 .hash = __VECS(aes_cbcmac_tv_template) 4457 } 4458 }, { 4459 .alg = "ccm(aes)", 4460 .generic_driver = "ccm_base(ctr(aes-generic),cbcmac(aes-generic))", 4461 .test = alg_test_aead, 4462 .fips_allowed = 1, 4463 .suite = { 4464 .aead = { 4465 ____VECS(aes_ccm_tv_template), 4466 .einval_allowed = 1, 4467 } 4468 } 4469 }, { 4470 .alg = "cfb(aes)", 4471 .test = alg_test_skcipher, 4472 .fips_allowed = 1, 4473 .suite = { 4474 .cipher = __VECS(aes_cfb_tv_template) 4475 }, 4476 }, { 4477 .alg = "cfb(sm4)", 4478 .test = alg_test_skcipher, 4479 .suite = { 4480 .cipher = __VECS(sm4_cfb_tv_template) 4481 } 4482 }, { 4483 .alg = "chacha20", 4484 .test = alg_test_skcipher, 4485 .suite = { 4486 .cipher = __VECS(chacha20_tv_template) 4487 }, 4488 }, { 4489 .alg = "cmac(aes)", 4490 .fips_allowed = 1, 4491 .test = alg_test_hash, 4492 .suite = { 4493 .hash = __VECS(aes_cmac128_tv_template) 4494 } 4495 }, { 4496 .alg = "cmac(des3_ede)", 4497 .fips_allowed = 1, 4498 .test = alg_test_hash, 4499 .suite = { 4500 .hash = __VECS(des3_ede_cmac64_tv_template) 4501 } 4502 }, { 4503 .alg = "compress_null", 4504 .test = alg_test_null, 4505 }, { 4506 .alg = "crc32", 4507 .test = alg_test_hash, 4508 .fips_allowed = 1, 4509 .suite = { 4510 .hash = __VECS(crc32_tv_template) 4511 } 4512 }, { 4513 .alg = "crc32c", 4514 .test = alg_test_crc32c, 4515 .fips_allowed = 1, 4516 .suite = { 4517 .hash = __VECS(crc32c_tv_template) 4518 } 4519 }, { 4520 .alg = "crct10dif", 4521 .test = alg_test_hash, 4522 .fips_allowed = 1, 4523 .suite = { 4524 .hash = __VECS(crct10dif_tv_template) 4525 } 4526 }, { 4527 .alg = "ctr(aes)", 4528 .test = alg_test_skcipher, 4529 .fips_allowed = 1, 4530 .suite = { 4531 .cipher = __VECS(aes_ctr_tv_template) 4532 } 4533 }, { 4534 .alg = "ctr(blowfish)", 4535 .test = alg_test_skcipher, 4536 .suite = { 4537 .cipher = __VECS(bf_ctr_tv_template) 4538 } 4539 }, { 4540 .alg = "ctr(camellia)", 4541 .test = alg_test_skcipher, 4542 .suite = { 4543 .cipher = __VECS(camellia_ctr_tv_template) 4544 } 4545 }, { 4546 .alg = "ctr(cast5)", 4547 .test = alg_test_skcipher, 4548 .suite = { 4549 .cipher = __VECS(cast5_ctr_tv_template) 4550 } 4551 }, { 4552 .alg = "ctr(cast6)", 4553 .test = alg_test_skcipher, 4554 .suite = { 4555 .cipher = __VECS(cast6_ctr_tv_template) 4556 } 4557 }, { 4558 .alg = "ctr(des)", 4559 .test = alg_test_skcipher, 4560 .suite = { 4561 .cipher = __VECS(des_ctr_tv_template) 4562 } 4563 }, { 4564 .alg = "ctr(des3_ede)", 4565 .test = alg_test_skcipher, 4566 .fips_allowed = 1, 4567 .suite = { 4568 .cipher = __VECS(des3_ede_ctr_tv_template) 4569 } 4570 }, { 4571 /* Same as ctr(aes) except the key is stored in 4572 * hardware secure memory which we reference by index 4573 */ 4574 .alg = "ctr(paes)", 4575 .test = alg_test_null, 4576 .fips_allowed = 1, 4577 }, { 4578 4579 /* Same as ctr(sm4) except the key is stored in 4580 * hardware secure memory which we reference by index 4581 */ 4582 .alg = "ctr(psm4)", 4583 .test = alg_test_null, 4584 }, { 4585 .alg = "ctr(serpent)", 4586 .test = alg_test_skcipher, 4587 .suite = { 4588 .cipher = __VECS(serpent_ctr_tv_template) 4589 } 4590 }, { 4591 .alg = "ctr(sm4)", 4592 .test = alg_test_skcipher, 4593 .suite = { 4594 .cipher = __VECS(sm4_ctr_tv_template) 4595 } 4596 }, { 4597 .alg = "ctr(twofish)", 4598 .test = alg_test_skcipher, 4599 .suite = { 4600 .cipher = __VECS(tf_ctr_tv_template) 4601 } 4602 }, { 4603 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 4604 .alg = "ctr-paes-s390", 4605 .fips_allowed = 1, 4606 .test = alg_test_skcipher, 4607 .suite = { 4608 .cipher = __VECS(aes_ctr_tv_template) 4609 } 4610 }, { 4611 #endif 4612 .alg = "cts(cbc(aes))", 4613 .test = alg_test_skcipher, 4614 .fips_allowed = 1, 4615 .suite = { 4616 .cipher = __VECS(cts_mode_tv_template) 4617 } 4618 }, { 4619 /* Same as cts(cbc((aes)) except the key is stored in 4620 * hardware secure memory which we reference by index 4621 */ 4622 .alg = "cts(cbc(paes))", 4623 .test = alg_test_null, 4624 .fips_allowed = 1, 4625 }, { 4626 .alg = "curve25519", 4627 .test = alg_test_kpp, 4628 .suite = { 4629 .kpp = __VECS(curve25519_tv_template) 4630 } 4631 }, { 4632 .alg = "deflate", 4633 .test = alg_test_comp, 4634 .fips_allowed = 1, 4635 .suite = { 4636 .comp = { 4637 .comp = __VECS(deflate_comp_tv_template), 4638 .decomp = __VECS(deflate_decomp_tv_template) 4639 } 4640 } 4641 }, { 4642 .alg = "dh", 4643 .test = alg_test_kpp, 4644 .fips_allowed = 1, 4645 .suite = { 4646 .kpp = __VECS(dh_tv_template) 4647 } 4648 }, { 4649 .alg = "digest_null", 4650 .test = alg_test_null, 4651 }, { 4652 .alg = "drbg_nopr_ctr_aes128", 4653 .test = alg_test_drbg, 4654 .fips_allowed = 1, 4655 .suite = { 4656 .drbg = __VECS(drbg_nopr_ctr_aes128_tv_template) 4657 } 4658 }, { 4659 .alg = "drbg_nopr_ctr_aes192", 4660 .test = alg_test_drbg, 4661 .fips_allowed = 1, 4662 .suite = { 4663 .drbg = __VECS(drbg_nopr_ctr_aes192_tv_template) 4664 } 4665 }, { 4666 .alg = "drbg_nopr_ctr_aes256", 4667 .test = alg_test_drbg, 4668 .fips_allowed = 1, 4669 .suite = { 4670 .drbg = __VECS(drbg_nopr_ctr_aes256_tv_template) 4671 } 4672 }, { 4673 /* 4674 * There is no need to specifically test the DRBG with every 4675 * backend cipher -- covered by drbg_nopr_hmac_sha256 test 4676 */ 4677 .alg = "drbg_nopr_hmac_sha1", 4678 .fips_allowed = 1, 4679 .test = alg_test_null, 4680 }, { 4681 .alg = "drbg_nopr_hmac_sha256", 4682 .test = alg_test_drbg, 4683 .fips_allowed = 1, 4684 .suite = { 4685 .drbg = __VECS(drbg_nopr_hmac_sha256_tv_template) 4686 } 4687 }, { 4688 /* covered by drbg_nopr_hmac_sha256 test */ 4689 .alg = "drbg_nopr_hmac_sha384", 4690 .fips_allowed = 1, 4691 .test = alg_test_null, 4692 }, { 4693 .alg = "drbg_nopr_hmac_sha512", 4694 .test = alg_test_null, 4695 .fips_allowed = 1, 4696 }, { 4697 .alg = "drbg_nopr_sha1", 4698 .fips_allowed = 1, 4699 .test = alg_test_null, 4700 }, { 4701 .alg = "drbg_nopr_sha256", 4702 .test = alg_test_drbg, 4703 .fips_allowed = 1, 4704 .suite = { 4705 .drbg = __VECS(drbg_nopr_sha256_tv_template) 4706 } 4707 }, { 4708 /* covered by drbg_nopr_sha256 test */ 4709 .alg = "drbg_nopr_sha384", 4710 .fips_allowed = 1, 4711 .test = alg_test_null, 4712 }, { 4713 .alg = "drbg_nopr_sha512", 4714 .fips_allowed = 1, 4715 .test = alg_test_null, 4716 }, { 4717 .alg = "drbg_pr_ctr_aes128", 4718 .test = alg_test_drbg, 4719 .fips_allowed = 1, 4720 .suite = { 4721 .drbg = __VECS(drbg_pr_ctr_aes128_tv_template) 4722 } 4723 }, { 4724 /* covered by drbg_pr_ctr_aes128 test */ 4725 .alg = "drbg_pr_ctr_aes192", 4726 .fips_allowed = 1, 4727 .test = alg_test_null, 4728 }, { 4729 .alg = "drbg_pr_ctr_aes256", 4730 .fips_allowed = 1, 4731 .test = alg_test_null, 4732 }, { 4733 .alg = "drbg_pr_hmac_sha1", 4734 .fips_allowed = 1, 4735 .test = alg_test_null, 4736 }, { 4737 .alg = "drbg_pr_hmac_sha256", 4738 .test = alg_test_drbg, 4739 .fips_allowed = 1, 4740 .suite = { 4741 .drbg = __VECS(drbg_pr_hmac_sha256_tv_template) 4742 } 4743 }, { 4744 /* covered by drbg_pr_hmac_sha256 test */ 4745 .alg = "drbg_pr_hmac_sha384", 4746 .fips_allowed = 1, 4747 .test = alg_test_null, 4748 }, { 4749 .alg = "drbg_pr_hmac_sha512", 4750 .test = alg_test_null, 4751 .fips_allowed = 1, 4752 }, { 4753 .alg = "drbg_pr_sha1", 4754 .fips_allowed = 1, 4755 .test = alg_test_null, 4756 }, { 4757 .alg = "drbg_pr_sha256", 4758 .test = alg_test_drbg, 4759 .fips_allowed = 1, 4760 .suite = { 4761 .drbg = __VECS(drbg_pr_sha256_tv_template) 4762 } 4763 }, { 4764 /* covered by drbg_pr_sha256 test */ 4765 .alg = "drbg_pr_sha384", 4766 .fips_allowed = 1, 4767 .test = alg_test_null, 4768 }, { 4769 .alg = "drbg_pr_sha512", 4770 .fips_allowed = 1, 4771 .test = alg_test_null, 4772 }, { 4773 .alg = "ecb(aes)", 4774 .test = alg_test_skcipher, 4775 .fips_allowed = 1, 4776 .suite = { 4777 .cipher = __VECS(aes_tv_template) 4778 } 4779 }, { 4780 .alg = "ecb(anubis)", 4781 .test = alg_test_skcipher, 4782 .suite = { 4783 .cipher = __VECS(anubis_tv_template) 4784 } 4785 }, { 4786 .alg = "ecb(arc4)", 4787 .generic_driver = "ecb(arc4)-generic", 4788 .test = alg_test_skcipher, 4789 .suite = { 4790 .cipher = __VECS(arc4_tv_template) 4791 } 4792 }, { 4793 .alg = "ecb(blowfish)", 4794 .test = alg_test_skcipher, 4795 .suite = { 4796 .cipher = __VECS(bf_tv_template) 4797 } 4798 }, { 4799 .alg = "ecb(camellia)", 4800 .test = alg_test_skcipher, 4801 .suite = { 4802 .cipher = __VECS(camellia_tv_template) 4803 } 4804 }, { 4805 .alg = "ecb(cast5)", 4806 .test = alg_test_skcipher, 4807 .suite = { 4808 .cipher = __VECS(cast5_tv_template) 4809 } 4810 }, { 4811 .alg = "ecb(cast6)", 4812 .test = alg_test_skcipher, 4813 .suite = { 4814 .cipher = __VECS(cast6_tv_template) 4815 } 4816 }, { 4817 .alg = "ecb(cipher_null)", 4818 .test = alg_test_null, 4819 .fips_allowed = 1, 4820 }, { 4821 .alg = "ecb(des)", 4822 .test = alg_test_skcipher, 4823 .suite = { 4824 .cipher = __VECS(des_tv_template) 4825 } 4826 }, { 4827 .alg = "ecb(des3_ede)", 4828 .test = alg_test_skcipher, 4829 .fips_allowed = 1, 4830 .suite = { 4831 .cipher = __VECS(des3_ede_tv_template) 4832 } 4833 }, { 4834 .alg = "ecb(fcrypt)", 4835 .test = alg_test_skcipher, 4836 .suite = { 4837 .cipher = { 4838 .vecs = fcrypt_pcbc_tv_template, 4839 .count = 1 4840 } 4841 } 4842 }, { 4843 .alg = "ecb(khazad)", 4844 .test = alg_test_skcipher, 4845 .suite = { 4846 .cipher = __VECS(khazad_tv_template) 4847 } 4848 }, { 4849 /* Same as ecb(aes) except the key is stored in 4850 * hardware secure memory which we reference by index 4851 */ 4852 .alg = "ecb(paes)", 4853 .test = alg_test_null, 4854 .fips_allowed = 1, 4855 }, { 4856 .alg = "ecb(seed)", 4857 .test = alg_test_skcipher, 4858 .suite = { 4859 .cipher = __VECS(seed_tv_template) 4860 } 4861 }, { 4862 .alg = "ecb(serpent)", 4863 .test = alg_test_skcipher, 4864 .suite = { 4865 .cipher = __VECS(serpent_tv_template) 4866 } 4867 }, { 4868 .alg = "ecb(sm4)", 4869 .test = alg_test_skcipher, 4870 .suite = { 4871 .cipher = __VECS(sm4_tv_template) 4872 } 4873 }, { 4874 .alg = "ecb(tea)", 4875 .test = alg_test_skcipher, 4876 .suite = { 4877 .cipher = __VECS(tea_tv_template) 4878 } 4879 }, { 4880 .alg = "ecb(tnepres)", 4881 .test = alg_test_skcipher, 4882 .suite = { 4883 .cipher = __VECS(tnepres_tv_template) 4884 } 4885 }, { 4886 .alg = "ecb(twofish)", 4887 .test = alg_test_skcipher, 4888 .suite = { 4889 .cipher = __VECS(tf_tv_template) 4890 } 4891 }, { 4892 .alg = "ecb(xeta)", 4893 .test = alg_test_skcipher, 4894 .suite = { 4895 .cipher = __VECS(xeta_tv_template) 4896 } 4897 }, { 4898 .alg = "ecb(xtea)", 4899 .test = alg_test_skcipher, 4900 .suite = { 4901 .cipher = __VECS(xtea_tv_template) 4902 } 4903 }, { 4904 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 4905 .alg = "ecb-paes-s390", 4906 .fips_allowed = 1, 4907 .test = alg_test_skcipher, 4908 .suite = { 4909 .cipher = __VECS(aes_tv_template) 4910 } 4911 }, { 4912 #endif 4913 .alg = "ecdh", 4914 .test = alg_test_kpp, 4915 .fips_allowed = 1, 4916 .suite = { 4917 .kpp = __VECS(ecdh_tv_template) 4918 } 4919 }, { 4920 .alg = "ecrdsa", 4921 .test = alg_test_akcipher, 4922 .suite = { 4923 .akcipher = __VECS(ecrdsa_tv_template) 4924 } 4925 }, { 4926 .alg = "essiv(authenc(hmac(sha256),cbc(aes)),sha256)", 4927 .test = alg_test_aead, 4928 .fips_allowed = 1, 4929 .suite = { 4930 .aead = __VECS(essiv_hmac_sha256_aes_cbc_tv_temp) 4931 } 4932 }, { 4933 .alg = "essiv(cbc(aes),sha256)", 4934 .test = alg_test_skcipher, 4935 .fips_allowed = 1, 4936 .suite = { 4937 .cipher = __VECS(essiv_aes_cbc_tv_template) 4938 } 4939 }, { 4940 .alg = "gcm(aes)", 4941 .generic_driver = "gcm_base(ctr(aes-generic),ghash-generic)", 4942 .test = alg_test_aead, 4943 .fips_allowed = 1, 4944 .suite = { 4945 .aead = __VECS(aes_gcm_tv_template) 4946 } 4947 }, { 4948 .alg = "ghash", 4949 .test = alg_test_hash, 4950 .fips_allowed = 1, 4951 .suite = { 4952 .hash = __VECS(ghash_tv_template) 4953 } 4954 }, { 4955 .alg = "hmac(md5)", 4956 .test = alg_test_hash, 4957 .suite = { 4958 .hash = __VECS(hmac_md5_tv_template) 4959 } 4960 }, { 4961 .alg = "hmac(rmd160)", 4962 .test = alg_test_hash, 4963 .suite = { 4964 .hash = __VECS(hmac_rmd160_tv_template) 4965 } 4966 }, { 4967 .alg = "hmac(sha1)", 4968 .test = alg_test_hash, 4969 .fips_allowed = 1, 4970 .suite = { 4971 .hash = __VECS(hmac_sha1_tv_template) 4972 } 4973 }, { 4974 .alg = "hmac(sha224)", 4975 .test = alg_test_hash, 4976 .fips_allowed = 1, 4977 .suite = { 4978 .hash = __VECS(hmac_sha224_tv_template) 4979 } 4980 }, { 4981 .alg = "hmac(sha256)", 4982 .test = alg_test_hash, 4983 .fips_allowed = 1, 4984 .suite = { 4985 .hash = __VECS(hmac_sha256_tv_template) 4986 } 4987 }, { 4988 .alg = "hmac(sha3-224)", 4989 .test = alg_test_hash, 4990 .fips_allowed = 1, 4991 .suite = { 4992 .hash = __VECS(hmac_sha3_224_tv_template) 4993 } 4994 }, { 4995 .alg = "hmac(sha3-256)", 4996 .test = alg_test_hash, 4997 .fips_allowed = 1, 4998 .suite = { 4999 .hash = __VECS(hmac_sha3_256_tv_template) 5000 } 5001 }, { 5002 .alg = "hmac(sha3-384)", 5003 .test = alg_test_hash, 5004 .fips_allowed = 1, 5005 .suite = { 5006 .hash = __VECS(hmac_sha3_384_tv_template) 5007 } 5008 }, { 5009 .alg = "hmac(sha3-512)", 5010 .test = alg_test_hash, 5011 .fips_allowed = 1, 5012 .suite = { 5013 .hash = __VECS(hmac_sha3_512_tv_template) 5014 } 5015 }, { 5016 .alg = "hmac(sha384)", 5017 .test = alg_test_hash, 5018 .fips_allowed = 1, 5019 .suite = { 5020 .hash = __VECS(hmac_sha384_tv_template) 5021 } 5022 }, { 5023 .alg = "hmac(sha512)", 5024 .test = alg_test_hash, 5025 .fips_allowed = 1, 5026 .suite = { 5027 .hash = __VECS(hmac_sha512_tv_template) 5028 } 5029 }, { 5030 .alg = "hmac(sm3)", 5031 .test = alg_test_hash, 5032 .suite = { 5033 .hash = __VECS(hmac_sm3_tv_template) 5034 } 5035 }, { 5036 .alg = "hmac(streebog256)", 5037 .test = alg_test_hash, 5038 .suite = { 5039 .hash = __VECS(hmac_streebog256_tv_template) 5040 } 5041 }, { 5042 .alg = "hmac(streebog512)", 5043 .test = alg_test_hash, 5044 .suite = { 5045 .hash = __VECS(hmac_streebog512_tv_template) 5046 } 5047 }, { 5048 .alg = "jitterentropy_rng", 5049 .fips_allowed = 1, 5050 .test = alg_test_null, 5051 }, { 5052 .alg = "kw(aes)", 5053 .test = alg_test_skcipher, 5054 .fips_allowed = 1, 5055 .suite = { 5056 .cipher = __VECS(aes_kw_tv_template) 5057 } 5058 }, { 5059 .alg = "lrw(aes)", 5060 .generic_driver = "lrw(ecb(aes-generic))", 5061 .test = alg_test_skcipher, 5062 .suite = { 5063 .cipher = __VECS(aes_lrw_tv_template) 5064 } 5065 }, { 5066 .alg = "lrw(camellia)", 5067 .generic_driver = "lrw(ecb(camellia-generic))", 5068 .test = alg_test_skcipher, 5069 .suite = { 5070 .cipher = __VECS(camellia_lrw_tv_template) 5071 } 5072 }, { 5073 .alg = "lrw(cast6)", 5074 .generic_driver = "lrw(ecb(cast6-generic))", 5075 .test = alg_test_skcipher, 5076 .suite = { 5077 .cipher = __VECS(cast6_lrw_tv_template) 5078 } 5079 }, { 5080 .alg = "lrw(serpent)", 5081 .generic_driver = "lrw(ecb(serpent-generic))", 5082 .test = alg_test_skcipher, 5083 .suite = { 5084 .cipher = __VECS(serpent_lrw_tv_template) 5085 } 5086 }, { 5087 .alg = "lrw(twofish)", 5088 .generic_driver = "lrw(ecb(twofish-generic))", 5089 .test = alg_test_skcipher, 5090 .suite = { 5091 .cipher = __VECS(tf_lrw_tv_template) 5092 } 5093 }, { 5094 .alg = "lz4", 5095 .test = alg_test_comp, 5096 .fips_allowed = 1, 5097 .suite = { 5098 .comp = { 5099 .comp = __VECS(lz4_comp_tv_template), 5100 .decomp = __VECS(lz4_decomp_tv_template) 5101 } 5102 } 5103 }, { 5104 .alg = "lz4hc", 5105 .test = alg_test_comp, 5106 .fips_allowed = 1, 5107 .suite = { 5108 .comp = { 5109 .comp = __VECS(lz4hc_comp_tv_template), 5110 .decomp = __VECS(lz4hc_decomp_tv_template) 5111 } 5112 } 5113 }, { 5114 .alg = "lzo", 5115 .test = alg_test_comp, 5116 .fips_allowed = 1, 5117 .suite = { 5118 .comp = { 5119 .comp = __VECS(lzo_comp_tv_template), 5120 .decomp = __VECS(lzo_decomp_tv_template) 5121 } 5122 } 5123 }, { 5124 .alg = "lzo-rle", 5125 .test = alg_test_comp, 5126 .fips_allowed = 1, 5127 .suite = { 5128 .comp = { 5129 .comp = __VECS(lzorle_comp_tv_template), 5130 .decomp = __VECS(lzorle_decomp_tv_template) 5131 } 5132 } 5133 }, { 5134 .alg = "md4", 5135 .test = alg_test_hash, 5136 .suite = { 5137 .hash = __VECS(md4_tv_template) 5138 } 5139 }, { 5140 .alg = "md5", 5141 .test = alg_test_hash, 5142 .suite = { 5143 .hash = __VECS(md5_tv_template) 5144 } 5145 }, { 5146 .alg = "michael_mic", 5147 .test = alg_test_hash, 5148 .suite = { 5149 .hash = __VECS(michael_mic_tv_template) 5150 } 5151 }, { 5152 .alg = "nhpoly1305", 5153 .test = alg_test_hash, 5154 .suite = { 5155 .hash = __VECS(nhpoly1305_tv_template) 5156 } 5157 }, { 5158 .alg = "ofb(aes)", 5159 .test = alg_test_skcipher, 5160 .fips_allowed = 1, 5161 .suite = { 5162 .cipher = __VECS(aes_ofb_tv_template) 5163 } 5164 }, { 5165 /* Same as ofb(aes) except the key is stored in 5166 * hardware secure memory which we reference by index 5167 */ 5168 .alg = "ofb(paes)", 5169 .test = alg_test_null, 5170 .fips_allowed = 1, 5171 }, { 5172 .alg = "ofb(sm4)", 5173 .test = alg_test_skcipher, 5174 .suite = { 5175 .cipher = __VECS(sm4_ofb_tv_template) 5176 } 5177 }, { 5178 .alg = "pcbc(fcrypt)", 5179 .test = alg_test_skcipher, 5180 .suite = { 5181 .cipher = __VECS(fcrypt_pcbc_tv_template) 5182 } 5183 }, { 5184 .alg = "pkcs1pad(rsa,sha224)", 5185 .test = alg_test_null, 5186 .fips_allowed = 1, 5187 }, { 5188 .alg = "pkcs1pad(rsa,sha256)", 5189 .test = alg_test_akcipher, 5190 .fips_allowed = 1, 5191 .suite = { 5192 .akcipher = __VECS(pkcs1pad_rsa_tv_template) 5193 } 5194 }, { 5195 .alg = "pkcs1pad(rsa,sha384)", 5196 .test = alg_test_null, 5197 .fips_allowed = 1, 5198 }, { 5199 .alg = "pkcs1pad(rsa,sha512)", 5200 .test = alg_test_null, 5201 .fips_allowed = 1, 5202 }, { 5203 .alg = "poly1305", 5204 .test = alg_test_hash, 5205 .suite = { 5206 .hash = __VECS(poly1305_tv_template) 5207 } 5208 }, { 5209 .alg = "rfc3686(ctr(aes))", 5210 .test = alg_test_skcipher, 5211 .fips_allowed = 1, 5212 .suite = { 5213 .cipher = __VECS(aes_ctr_rfc3686_tv_template) 5214 } 5215 }, { 5216 .alg = "rfc3686(ctr(sm4))", 5217 .test = alg_test_skcipher, 5218 .suite = { 5219 .cipher = __VECS(sm4_ctr_rfc3686_tv_template) 5220 } 5221 }, { 5222 .alg = "rfc4106(gcm(aes))", 5223 .generic_driver = "rfc4106(gcm_base(ctr(aes-generic),ghash-generic))", 5224 .test = alg_test_aead, 5225 .fips_allowed = 1, 5226 .suite = { 5227 .aead = { 5228 ____VECS(aes_gcm_rfc4106_tv_template), 5229 .einval_allowed = 1, 5230 .aad_iv = 1, 5231 } 5232 } 5233 }, { 5234 .alg = "rfc4309(ccm(aes))", 5235 .generic_driver = "rfc4309(ccm_base(ctr(aes-generic),cbcmac(aes-generic)))", 5236 .test = alg_test_aead, 5237 .fips_allowed = 1, 5238 .suite = { 5239 .aead = { 5240 ____VECS(aes_ccm_rfc4309_tv_template), 5241 .einval_allowed = 1, 5242 .aad_iv = 1, 5243 } 5244 } 5245 }, { 5246 .alg = "rfc4543(gcm(aes))", 5247 .generic_driver = "rfc4543(gcm_base(ctr(aes-generic),ghash-generic))", 5248 .test = alg_test_aead, 5249 .suite = { 5250 .aead = { 5251 ____VECS(aes_gcm_rfc4543_tv_template), 5252 .einval_allowed = 1, 5253 .aad_iv = 1, 5254 } 5255 } 5256 }, { 5257 .alg = "rfc7539(chacha20,poly1305)", 5258 .test = alg_test_aead, 5259 .suite = { 5260 .aead = __VECS(rfc7539_tv_template) 5261 } 5262 }, { 5263 .alg = "rfc7539esp(chacha20,poly1305)", 5264 .test = alg_test_aead, 5265 .suite = { 5266 .aead = { 5267 ____VECS(rfc7539esp_tv_template), 5268 .einval_allowed = 1, 5269 .aad_iv = 1, 5270 } 5271 } 5272 }, { 5273 .alg = "rmd160", 5274 .test = alg_test_hash, 5275 .suite = { 5276 .hash = __VECS(rmd160_tv_template) 5277 } 5278 }, { 5279 .alg = "rmd320", 5280 .test = alg_test_hash, 5281 .suite = { 5282 .hash = __VECS(rmd320_tv_template) 5283 } 5284 }, { 5285 .alg = "rsa", 5286 .test = alg_test_akcipher, 5287 .fips_allowed = 1, 5288 .suite = { 5289 .akcipher = __VECS(rsa_tv_template) 5290 } 5291 }, { 5292 .alg = "salsa20", 5293 .test = alg_test_skcipher, 5294 .suite = { 5295 .cipher = __VECS(salsa20_stream_tv_template) 5296 } 5297 }, { 5298 .alg = "sha1", 5299 .test = alg_test_hash, 5300 .fips_allowed = 1, 5301 .suite = { 5302 .hash = __VECS(sha1_tv_template) 5303 } 5304 }, { 5305 .alg = "sha224", 5306 .test = alg_test_hash, 5307 .fips_allowed = 1, 5308 .suite = { 5309 .hash = __VECS(sha224_tv_template) 5310 } 5311 }, { 5312 .alg = "sha256", 5313 .test = alg_test_hash, 5314 .fips_allowed = 1, 5315 .suite = { 5316 .hash = __VECS(sha256_tv_template) 5317 } 5318 }, { 5319 .alg = "sha3-224", 5320 .test = alg_test_hash, 5321 .fips_allowed = 1, 5322 .suite = { 5323 .hash = __VECS(sha3_224_tv_template) 5324 } 5325 }, { 5326 .alg = "sha3-256", 5327 .test = alg_test_hash, 5328 .fips_allowed = 1, 5329 .suite = { 5330 .hash = __VECS(sha3_256_tv_template) 5331 } 5332 }, { 5333 .alg = "sha3-384", 5334 .test = alg_test_hash, 5335 .fips_allowed = 1, 5336 .suite = { 5337 .hash = __VECS(sha3_384_tv_template) 5338 } 5339 }, { 5340 .alg = "sha3-512", 5341 .test = alg_test_hash, 5342 .fips_allowed = 1, 5343 .suite = { 5344 .hash = __VECS(sha3_512_tv_template) 5345 } 5346 }, { 5347 .alg = "sha384", 5348 .test = alg_test_hash, 5349 .fips_allowed = 1, 5350 .suite = { 5351 .hash = __VECS(sha384_tv_template) 5352 } 5353 }, { 5354 .alg = "sha512", 5355 .test = alg_test_hash, 5356 .fips_allowed = 1, 5357 .suite = { 5358 .hash = __VECS(sha512_tv_template) 5359 } 5360 }, { 5361 .alg = "sm2", 5362 .test = alg_test_akcipher, 5363 .suite = { 5364 .akcipher = __VECS(sm2_tv_template) 5365 } 5366 }, { 5367 .alg = "sm3", 5368 .test = alg_test_hash, 5369 .suite = { 5370 .hash = __VECS(sm3_tv_template) 5371 } 5372 }, { 5373 .alg = "streebog256", 5374 .test = alg_test_hash, 5375 .suite = { 5376 .hash = __VECS(streebog256_tv_template) 5377 } 5378 }, { 5379 .alg = "streebog512", 5380 .test = alg_test_hash, 5381 .suite = { 5382 .hash = __VECS(streebog512_tv_template) 5383 } 5384 }, { 5385 .alg = "tgr128", 5386 .test = alg_test_hash, 5387 .suite = { 5388 .hash = __VECS(tgr128_tv_template) 5389 } 5390 }, { 5391 .alg = "tgr160", 5392 .test = alg_test_hash, 5393 .suite = { 5394 .hash = __VECS(tgr160_tv_template) 5395 } 5396 }, { 5397 .alg = "tgr192", 5398 .test = alg_test_hash, 5399 .suite = { 5400 .hash = __VECS(tgr192_tv_template) 5401 } 5402 }, { 5403 .alg = "vmac64(aes)", 5404 .test = alg_test_hash, 5405 .suite = { 5406 .hash = __VECS(vmac64_aes_tv_template) 5407 } 5408 }, { 5409 .alg = "wp256", 5410 .test = alg_test_hash, 5411 .suite = { 5412 .hash = __VECS(wp256_tv_template) 5413 } 5414 }, { 5415 .alg = "wp384", 5416 .test = alg_test_hash, 5417 .suite = { 5418 .hash = __VECS(wp384_tv_template) 5419 } 5420 }, { 5421 .alg = "wp512", 5422 .test = alg_test_hash, 5423 .suite = { 5424 .hash = __VECS(wp512_tv_template) 5425 } 5426 }, { 5427 .alg = "xcbc(aes)", 5428 .test = alg_test_hash, 5429 .suite = { 5430 .hash = __VECS(aes_xcbc128_tv_template) 5431 } 5432 }, { 5433 .alg = "xchacha12", 5434 .test = alg_test_skcipher, 5435 .suite = { 5436 .cipher = __VECS(xchacha12_tv_template) 5437 }, 5438 }, { 5439 .alg = "xchacha20", 5440 .test = alg_test_skcipher, 5441 .suite = { 5442 .cipher = __VECS(xchacha20_tv_template) 5443 }, 5444 }, { 5445 .alg = "xts(aes)", 5446 .generic_driver = "xts(ecb(aes-generic))", 5447 .test = alg_test_skcipher, 5448 .fips_allowed = 1, 5449 .suite = { 5450 .cipher = __VECS(aes_xts_tv_template) 5451 } 5452 }, { 5453 .alg = "xts(camellia)", 5454 .generic_driver = "xts(ecb(camellia-generic))", 5455 .test = alg_test_skcipher, 5456 .suite = { 5457 .cipher = __VECS(camellia_xts_tv_template) 5458 } 5459 }, { 5460 .alg = "xts(cast6)", 5461 .generic_driver = "xts(ecb(cast6-generic))", 5462 .test = alg_test_skcipher, 5463 .suite = { 5464 .cipher = __VECS(cast6_xts_tv_template) 5465 } 5466 }, { 5467 /* Same as xts(aes) except the key is stored in 5468 * hardware secure memory which we reference by index 5469 */ 5470 .alg = "xts(paes)", 5471 .test = alg_test_null, 5472 .fips_allowed = 1, 5473 }, { 5474 .alg = "xts(serpent)", 5475 .generic_driver = "xts(ecb(serpent-generic))", 5476 .test = alg_test_skcipher, 5477 .suite = { 5478 .cipher = __VECS(serpent_xts_tv_template) 5479 } 5480 }, { 5481 .alg = "xts(twofish)", 5482 .generic_driver = "xts(ecb(twofish-generic))", 5483 .test = alg_test_skcipher, 5484 .suite = { 5485 .cipher = __VECS(tf_xts_tv_template) 5486 } 5487 }, { 5488 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 5489 .alg = "xts-paes-s390", 5490 .fips_allowed = 1, 5491 .test = alg_test_skcipher, 5492 .suite = { 5493 .cipher = __VECS(aes_xts_tv_template) 5494 } 5495 }, { 5496 #endif 5497 .alg = "xts4096(paes)", 5498 .test = alg_test_null, 5499 .fips_allowed = 1, 5500 }, { 5501 .alg = "xts512(paes)", 5502 .test = alg_test_null, 5503 .fips_allowed = 1, 5504 }, { 5505 .alg = "xxhash64", 5506 .test = alg_test_hash, 5507 .fips_allowed = 1, 5508 .suite = { 5509 .hash = __VECS(xxhash64_tv_template) 5510 } 5511 }, { 5512 .alg = "zlib-deflate", 5513 .test = alg_test_comp, 5514 .fips_allowed = 1, 5515 .suite = { 5516 .comp = { 5517 .comp = __VECS(zlib_deflate_comp_tv_template), 5518 .decomp = __VECS(zlib_deflate_decomp_tv_template) 5519 } 5520 } 5521 }, { 5522 .alg = "zstd", 5523 .test = alg_test_comp, 5524 .fips_allowed = 1, 5525 .suite = { 5526 .comp = { 5527 .comp = __VECS(zstd_comp_tv_template), 5528 .decomp = __VECS(zstd_decomp_tv_template) 5529 } 5530 } 5531 } 5532 }; 5533 5534 static void alg_check_test_descs_order(void) 5535 { 5536 int i; 5537 5538 for (i = 1; i < ARRAY_SIZE(alg_test_descs); i++) { 5539 int diff = strcmp(alg_test_descs[i - 1].alg, 5540 alg_test_descs[i].alg); 5541 5542 if (WARN_ON(diff > 0)) { 5543 pr_warn("testmgr: alg_test_descs entries in wrong order: '%s' before '%s'\n", 5544 alg_test_descs[i - 1].alg, 5545 alg_test_descs[i].alg); 5546 } 5547 5548 if (WARN_ON(diff == 0)) { 5549 pr_warn("testmgr: duplicate alg_test_descs entry: '%s'\n", 5550 alg_test_descs[i].alg); 5551 } 5552 } 5553 } 5554 5555 static void alg_check_testvec_configs(void) 5556 { 5557 int i; 5558 5559 for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) 5560 WARN_ON(!valid_testvec_config( 5561 &default_cipher_testvec_configs[i])); 5562 5563 for (i = 0; i < ARRAY_SIZE(default_hash_testvec_configs); i++) 5564 WARN_ON(!valid_testvec_config( 5565 &default_hash_testvec_configs[i])); 5566 } 5567 5568 static void testmgr_onetime_init(void) 5569 { 5570 alg_check_test_descs_order(); 5571 alg_check_testvec_configs(); 5572 5573 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 5574 pr_warn("alg: extra crypto tests enabled. This is intended for developer use only.\n"); 5575 #endif 5576 } 5577 5578 static int alg_find_test(const char *alg) 5579 { 5580 int start = 0; 5581 int end = ARRAY_SIZE(alg_test_descs); 5582 5583 while (start < end) { 5584 int i = (start + end) / 2; 5585 int diff = strcmp(alg_test_descs[i].alg, alg); 5586 5587 if (diff > 0) { 5588 end = i; 5589 continue; 5590 } 5591 5592 if (diff < 0) { 5593 start = i + 1; 5594 continue; 5595 } 5596 5597 return i; 5598 } 5599 5600 return -1; 5601 } 5602 5603 int alg_test(const char *driver, const char *alg, u32 type, u32 mask) 5604 { 5605 int i; 5606 int j; 5607 int rc; 5608 5609 if (!fips_enabled && notests) { 5610 printk_once(KERN_INFO "alg: self-tests disabled\n"); 5611 return 0; 5612 } 5613 5614 DO_ONCE(testmgr_onetime_init); 5615 5616 if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) { 5617 char nalg[CRYPTO_MAX_ALG_NAME]; 5618 5619 if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >= 5620 sizeof(nalg)) 5621 return -ENAMETOOLONG; 5622 5623 i = alg_find_test(nalg); 5624 if (i < 0) 5625 goto notest; 5626 5627 if (fips_enabled && !alg_test_descs[i].fips_allowed) 5628 goto non_fips_alg; 5629 5630 rc = alg_test_cipher(alg_test_descs + i, driver, type, mask); 5631 goto test_done; 5632 } 5633 5634 i = alg_find_test(alg); 5635 j = alg_find_test(driver); 5636 if (i < 0 && j < 0) 5637 goto notest; 5638 5639 if (fips_enabled && ((i >= 0 && !alg_test_descs[i].fips_allowed) || 5640 (j >= 0 && !alg_test_descs[j].fips_allowed))) 5641 goto non_fips_alg; 5642 5643 rc = 0; 5644 if (i >= 0) 5645 rc |= alg_test_descs[i].test(alg_test_descs + i, driver, 5646 type, mask); 5647 if (j >= 0 && j != i) 5648 rc |= alg_test_descs[j].test(alg_test_descs + j, driver, 5649 type, mask); 5650 5651 test_done: 5652 if (rc) { 5653 if (fips_enabled || panic_on_fail) { 5654 fips_fail_notify(); 5655 panic("alg: self-tests for %s (%s) failed in %s mode!\n", 5656 driver, alg, 5657 fips_enabled ? "fips" : "panic_on_fail"); 5658 } 5659 WARN(1, "alg: self-tests for %s (%s) failed (rc=%d)", 5660 driver, alg, rc); 5661 } else { 5662 if (fips_enabled) 5663 pr_info("alg: self-tests for %s (%s) passed\n", 5664 driver, alg); 5665 } 5666 5667 return rc; 5668 5669 notest: 5670 printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver); 5671 return 0; 5672 non_fips_alg: 5673 return -EINVAL; 5674 } 5675 5676 #endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */ 5677 5678 EXPORT_SYMBOL_GPL(alg_test); 5679