xref: /openbmc/linux/crypto/tea.c (revision 7f6964c5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Cryptographic API.
4  *
5  * TEA, XTEA, and XETA crypto alogrithms
6  *
7  * The TEA and Xtended TEA algorithms were developed by David Wheeler
8  * and Roger Needham at the Computer Laboratory of Cambridge University.
9  *
10  * Due to the order of evaluation in XTEA many people have incorrectly
11  * implemented it.  XETA (XTEA in the wrong order), exists for
12  * compatibility with these implementations.
13  *
14  * Copyright (c) 2004 Aaron Grothe ajgrothe@yahoo.com
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/mm.h>
20 #include <asm/byteorder.h>
21 #include <linux/crypto.h>
22 #include <linux/types.h>
23 
24 #define TEA_KEY_SIZE		16
25 #define TEA_BLOCK_SIZE		8
26 #define TEA_ROUNDS		32
27 #define TEA_DELTA		0x9e3779b9
28 
29 #define XTEA_KEY_SIZE		16
30 #define XTEA_BLOCK_SIZE		8
31 #define XTEA_ROUNDS		32
32 #define XTEA_DELTA		0x9e3779b9
33 
34 struct tea_ctx {
35 	u32 KEY[4];
36 };
37 
38 struct xtea_ctx {
39 	u32 KEY[4];
40 };
41 
42 static int tea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
43 		      unsigned int key_len)
44 {
45 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
46 	const __le32 *key = (const __le32 *)in_key;
47 
48 	ctx->KEY[0] = le32_to_cpu(key[0]);
49 	ctx->KEY[1] = le32_to_cpu(key[1]);
50 	ctx->KEY[2] = le32_to_cpu(key[2]);
51 	ctx->KEY[3] = le32_to_cpu(key[3]);
52 
53 	return 0;
54 
55 }
56 
57 static void tea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
58 {
59 	u32 y, z, n, sum = 0;
60 	u32 k0, k1, k2, k3;
61 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
62 	const __le32 *in = (const __le32 *)src;
63 	__le32 *out = (__le32 *)dst;
64 
65 	y = le32_to_cpu(in[0]);
66 	z = le32_to_cpu(in[1]);
67 
68 	k0 = ctx->KEY[0];
69 	k1 = ctx->KEY[1];
70 	k2 = ctx->KEY[2];
71 	k3 = ctx->KEY[3];
72 
73 	n = TEA_ROUNDS;
74 
75 	while (n-- > 0) {
76 		sum += TEA_DELTA;
77 		y += ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
78 		z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
79 	}
80 
81 	out[0] = cpu_to_le32(y);
82 	out[1] = cpu_to_le32(z);
83 }
84 
85 static void tea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
86 {
87 	u32 y, z, n, sum;
88 	u32 k0, k1, k2, k3;
89 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
90 	const __le32 *in = (const __le32 *)src;
91 	__le32 *out = (__le32 *)dst;
92 
93 	y = le32_to_cpu(in[0]);
94 	z = le32_to_cpu(in[1]);
95 
96 	k0 = ctx->KEY[0];
97 	k1 = ctx->KEY[1];
98 	k2 = ctx->KEY[2];
99 	k3 = ctx->KEY[3];
100 
101 	sum = TEA_DELTA << 5;
102 
103 	n = TEA_ROUNDS;
104 
105 	while (n-- > 0) {
106 		z -= ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
107 		y -= ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
108 		sum -= TEA_DELTA;
109 	}
110 
111 	out[0] = cpu_to_le32(y);
112 	out[1] = cpu_to_le32(z);
113 }
114 
115 static int xtea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
116 		       unsigned int key_len)
117 {
118 	struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
119 	const __le32 *key = (const __le32 *)in_key;
120 
121 	ctx->KEY[0] = le32_to_cpu(key[0]);
122 	ctx->KEY[1] = le32_to_cpu(key[1]);
123 	ctx->KEY[2] = le32_to_cpu(key[2]);
124 	ctx->KEY[3] = le32_to_cpu(key[3]);
125 
126 	return 0;
127 
128 }
129 
130 static void xtea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
131 {
132 	u32 y, z, sum = 0;
133 	u32 limit = XTEA_DELTA * XTEA_ROUNDS;
134 	struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
135 	const __le32 *in = (const __le32 *)src;
136 	__le32 *out = (__le32 *)dst;
137 
138 	y = le32_to_cpu(in[0]);
139 	z = le32_to_cpu(in[1]);
140 
141 	while (sum != limit) {
142 		y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]);
143 		sum += XTEA_DELTA;
144 		z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]);
145 	}
146 
147 	out[0] = cpu_to_le32(y);
148 	out[1] = cpu_to_le32(z);
149 }
150 
151 static void xtea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
152 {
153 	u32 y, z, sum;
154 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
155 	const __le32 *in = (const __le32 *)src;
156 	__le32 *out = (__le32 *)dst;
157 
158 	y = le32_to_cpu(in[0]);
159 	z = le32_to_cpu(in[1]);
160 
161 	sum = XTEA_DELTA * XTEA_ROUNDS;
162 
163 	while (sum) {
164 		z -= ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 & 3]);
165 		sum -= XTEA_DELTA;
166 		y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
167 	}
168 
169 	out[0] = cpu_to_le32(y);
170 	out[1] = cpu_to_le32(z);
171 }
172 
173 
174 static void xeta_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
175 {
176 	u32 y, z, sum = 0;
177 	u32 limit = XTEA_DELTA * XTEA_ROUNDS;
178 	struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
179 	const __le32 *in = (const __le32 *)src;
180 	__le32 *out = (__le32 *)dst;
181 
182 	y = le32_to_cpu(in[0]);
183 	z = le32_to_cpu(in[1]);
184 
185 	while (sum != limit) {
186 		y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
187 		sum += XTEA_DELTA;
188 		z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
189 	}
190 
191 	out[0] = cpu_to_le32(y);
192 	out[1] = cpu_to_le32(z);
193 }
194 
195 static void xeta_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
196 {
197 	u32 y, z, sum;
198 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
199 	const __le32 *in = (const __le32 *)src;
200 	__le32 *out = (__le32 *)dst;
201 
202 	y = le32_to_cpu(in[0]);
203 	z = le32_to_cpu(in[1]);
204 
205 	sum = XTEA_DELTA * XTEA_ROUNDS;
206 
207 	while (sum) {
208 		z -= (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 & 3];
209 		sum -= XTEA_DELTA;
210 		y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
211 	}
212 
213 	out[0] = cpu_to_le32(y);
214 	out[1] = cpu_to_le32(z);
215 }
216 
217 static struct crypto_alg tea_algs[3] = { {
218 	.cra_name		=	"tea",
219 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
220 	.cra_blocksize		=	TEA_BLOCK_SIZE,
221 	.cra_ctxsize		=	sizeof (struct tea_ctx),
222 	.cra_alignmask		=	3,
223 	.cra_module		=	THIS_MODULE,
224 	.cra_u			=	{ .cipher = {
225 	.cia_min_keysize	=	TEA_KEY_SIZE,
226 	.cia_max_keysize	=	TEA_KEY_SIZE,
227 	.cia_setkey		= 	tea_setkey,
228 	.cia_encrypt		=	tea_encrypt,
229 	.cia_decrypt		=	tea_decrypt } }
230 }, {
231 	.cra_name		=	"xtea",
232 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
233 	.cra_blocksize		=	XTEA_BLOCK_SIZE,
234 	.cra_ctxsize		=	sizeof (struct xtea_ctx),
235 	.cra_alignmask		=	3,
236 	.cra_module		=	THIS_MODULE,
237 	.cra_u			=	{ .cipher = {
238 	.cia_min_keysize	=	XTEA_KEY_SIZE,
239 	.cia_max_keysize	=	XTEA_KEY_SIZE,
240 	.cia_setkey		= 	xtea_setkey,
241 	.cia_encrypt		=	xtea_encrypt,
242 	.cia_decrypt		=	xtea_decrypt } }
243 }, {
244 	.cra_name		=	"xeta",
245 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
246 	.cra_blocksize		=	XTEA_BLOCK_SIZE,
247 	.cra_ctxsize		=	sizeof (struct xtea_ctx),
248 	.cra_alignmask		=	3,
249 	.cra_module		=	THIS_MODULE,
250 	.cra_u			=	{ .cipher = {
251 	.cia_min_keysize	=	XTEA_KEY_SIZE,
252 	.cia_max_keysize	=	XTEA_KEY_SIZE,
253 	.cia_setkey		= 	xtea_setkey,
254 	.cia_encrypt		=	xeta_encrypt,
255 	.cia_decrypt		=	xeta_decrypt } }
256 } };
257 
258 static int __init tea_mod_init(void)
259 {
260 	return crypto_register_algs(tea_algs, ARRAY_SIZE(tea_algs));
261 }
262 
263 static void __exit tea_mod_fini(void)
264 {
265 	crypto_unregister_algs(tea_algs, ARRAY_SIZE(tea_algs));
266 }
267 
268 MODULE_ALIAS_CRYPTO("tea");
269 MODULE_ALIAS_CRYPTO("xtea");
270 MODULE_ALIAS_CRYPTO("xeta");
271 
272 subsys_initcall(tea_mod_init);
273 module_exit(tea_mod_fini);
274 
275 MODULE_LICENSE("GPL");
276 MODULE_DESCRIPTION("TEA, XTEA & XETA Cryptographic Algorithms");
277