xref: /openbmc/linux/crypto/tea.c (revision 560c06ae)
1 /*
2  * Cryptographic API.
3  *
4  * TEA, XTEA, and XETA crypto alogrithms
5  *
6  * The TEA and Xtended TEA algorithms were developed by David Wheeler
7  * and Roger Needham at the Computer Laboratory of Cambridge University.
8  *
9  * Due to the order of evaluation in XTEA many people have incorrectly
10  * implemented it.  XETA (XTEA in the wrong order), exists for
11  * compatibility with these implementations.
12  *
13  * Copyright (c) 2004 Aaron Grothe ajgrothe@yahoo.com
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  */
21 
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <asm/byteorder.h>
26 #include <asm/scatterlist.h>
27 #include <linux/crypto.h>
28 #include <linux/types.h>
29 
30 #define TEA_KEY_SIZE		16
31 #define TEA_BLOCK_SIZE		8
32 #define TEA_ROUNDS		32
33 #define TEA_DELTA		0x9e3779b9
34 
35 #define XTEA_KEY_SIZE		16
36 #define XTEA_BLOCK_SIZE		8
37 #define XTEA_ROUNDS		32
38 #define XTEA_DELTA		0x9e3779b9
39 
40 struct tea_ctx {
41 	u32 KEY[4];
42 };
43 
44 struct xtea_ctx {
45 	u32 KEY[4];
46 };
47 
48 static int tea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
49 		      unsigned int key_len)
50 {
51 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
52 	const __le32 *key = (const __le32 *)in_key;
53 
54 	ctx->KEY[0] = le32_to_cpu(key[0]);
55 	ctx->KEY[1] = le32_to_cpu(key[1]);
56 	ctx->KEY[2] = le32_to_cpu(key[2]);
57 	ctx->KEY[3] = le32_to_cpu(key[3]);
58 
59 	return 0;
60 
61 }
62 
63 static void tea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
64 {
65 	u32 y, z, n, sum = 0;
66 	u32 k0, k1, k2, k3;
67 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
68 	const __le32 *in = (const __le32 *)src;
69 	__le32 *out = (__le32 *)dst;
70 
71 	y = le32_to_cpu(in[0]);
72 	z = le32_to_cpu(in[1]);
73 
74 	k0 = ctx->KEY[0];
75 	k1 = ctx->KEY[1];
76 	k2 = ctx->KEY[2];
77 	k3 = ctx->KEY[3];
78 
79 	n = TEA_ROUNDS;
80 
81 	while (n-- > 0) {
82 		sum += TEA_DELTA;
83 		y += ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
84 		z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
85 	}
86 
87 	out[0] = cpu_to_le32(y);
88 	out[1] = cpu_to_le32(z);
89 }
90 
91 static void tea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
92 {
93 	u32 y, z, n, sum;
94 	u32 k0, k1, k2, k3;
95 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
96 	const __le32 *in = (const __le32 *)src;
97 	__le32 *out = (__le32 *)dst;
98 
99 	y = le32_to_cpu(in[0]);
100 	z = le32_to_cpu(in[1]);
101 
102 	k0 = ctx->KEY[0];
103 	k1 = ctx->KEY[1];
104 	k2 = ctx->KEY[2];
105 	k3 = ctx->KEY[3];
106 
107 	sum = TEA_DELTA << 5;
108 
109 	n = TEA_ROUNDS;
110 
111 	while (n-- > 0) {
112 		z -= ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
113 		y -= ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
114 		sum -= TEA_DELTA;
115 	}
116 
117 	out[0] = cpu_to_le32(y);
118 	out[1] = cpu_to_le32(z);
119 }
120 
121 static int xtea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
122 		       unsigned int key_len)
123 {
124 	struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
125 	const __le32 *key = (const __le32 *)in_key;
126 
127 	ctx->KEY[0] = le32_to_cpu(key[0]);
128 	ctx->KEY[1] = le32_to_cpu(key[1]);
129 	ctx->KEY[2] = le32_to_cpu(key[2]);
130 	ctx->KEY[3] = le32_to_cpu(key[3]);
131 
132 	return 0;
133 
134 }
135 
136 static void xtea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
137 {
138 	u32 y, z, sum = 0;
139 	u32 limit = XTEA_DELTA * XTEA_ROUNDS;
140 	struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
141 	const __le32 *in = (const __le32 *)src;
142 	__le32 *out = (__le32 *)dst;
143 
144 	y = le32_to_cpu(in[0]);
145 	z = le32_to_cpu(in[1]);
146 
147 	while (sum != limit) {
148 		y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]);
149 		sum += XTEA_DELTA;
150 		z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]);
151 	}
152 
153 	out[0] = cpu_to_le32(y);
154 	out[1] = cpu_to_le32(z);
155 }
156 
157 static void xtea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
158 {
159 	u32 y, z, sum;
160 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
161 	const __le32 *in = (const __le32 *)src;
162 	__le32 *out = (__le32 *)dst;
163 
164 	y = le32_to_cpu(in[0]);
165 	z = le32_to_cpu(in[1]);
166 
167 	sum = XTEA_DELTA * XTEA_ROUNDS;
168 
169 	while (sum) {
170 		z -= ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 & 3]);
171 		sum -= XTEA_DELTA;
172 		y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
173 	}
174 
175 	out[0] = cpu_to_le32(y);
176 	out[1] = cpu_to_le32(z);
177 }
178 
179 
180 static void xeta_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
181 {
182 	u32 y, z, sum = 0;
183 	u32 limit = XTEA_DELTA * XTEA_ROUNDS;
184 	struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
185 	const __le32 *in = (const __le32 *)src;
186 	__le32 *out = (__le32 *)dst;
187 
188 	y = le32_to_cpu(in[0]);
189 	z = le32_to_cpu(in[1]);
190 
191 	while (sum != limit) {
192 		y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
193 		sum += XTEA_DELTA;
194 		z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
195 	}
196 
197 	out[0] = cpu_to_le32(y);
198 	out[1] = cpu_to_le32(z);
199 }
200 
201 static void xeta_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
202 {
203 	u32 y, z, sum;
204 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
205 	const __le32 *in = (const __le32 *)src;
206 	__le32 *out = (__le32 *)dst;
207 
208 	y = le32_to_cpu(in[0]);
209 	z = le32_to_cpu(in[1]);
210 
211 	sum = XTEA_DELTA * XTEA_ROUNDS;
212 
213 	while (sum) {
214 		z -= (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 & 3];
215 		sum -= XTEA_DELTA;
216 		y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
217 	}
218 
219 	out[0] = cpu_to_le32(y);
220 	out[1] = cpu_to_le32(z);
221 }
222 
223 static struct crypto_alg tea_alg = {
224 	.cra_name		=	"tea",
225 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
226 	.cra_blocksize		=	TEA_BLOCK_SIZE,
227 	.cra_ctxsize		=	sizeof (struct tea_ctx),
228 	.cra_alignmask		=	3,
229 	.cra_module		=	THIS_MODULE,
230 	.cra_list		=	LIST_HEAD_INIT(tea_alg.cra_list),
231 	.cra_u			=	{ .cipher = {
232 	.cia_min_keysize	=	TEA_KEY_SIZE,
233 	.cia_max_keysize	=	TEA_KEY_SIZE,
234 	.cia_setkey		= 	tea_setkey,
235 	.cia_encrypt		=	tea_encrypt,
236 	.cia_decrypt		=	tea_decrypt } }
237 };
238 
239 static struct crypto_alg xtea_alg = {
240 	.cra_name		=	"xtea",
241 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
242 	.cra_blocksize		=	XTEA_BLOCK_SIZE,
243 	.cra_ctxsize		=	sizeof (struct xtea_ctx),
244 	.cra_alignmask		=	3,
245 	.cra_module		=	THIS_MODULE,
246 	.cra_list		=	LIST_HEAD_INIT(xtea_alg.cra_list),
247 	.cra_u			=	{ .cipher = {
248 	.cia_min_keysize	=	XTEA_KEY_SIZE,
249 	.cia_max_keysize	=	XTEA_KEY_SIZE,
250 	.cia_setkey		= 	xtea_setkey,
251 	.cia_encrypt		=	xtea_encrypt,
252 	.cia_decrypt		=	xtea_decrypt } }
253 };
254 
255 static struct crypto_alg xeta_alg = {
256 	.cra_name		=	"xeta",
257 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
258 	.cra_blocksize		=	XTEA_BLOCK_SIZE,
259 	.cra_ctxsize		=	sizeof (struct xtea_ctx),
260 	.cra_alignmask		=	3,
261 	.cra_module		=	THIS_MODULE,
262 	.cra_list		=	LIST_HEAD_INIT(xtea_alg.cra_list),
263 	.cra_u			=	{ .cipher = {
264 	.cia_min_keysize	=	XTEA_KEY_SIZE,
265 	.cia_max_keysize	=	XTEA_KEY_SIZE,
266 	.cia_setkey		= 	xtea_setkey,
267 	.cia_encrypt		=	xeta_encrypt,
268 	.cia_decrypt		=	xeta_decrypt } }
269 };
270 
271 static int __init init(void)
272 {
273 	int ret = 0;
274 
275 	ret = crypto_register_alg(&tea_alg);
276 	if (ret < 0)
277 		goto out;
278 
279 	ret = crypto_register_alg(&xtea_alg);
280 	if (ret < 0) {
281 		crypto_unregister_alg(&tea_alg);
282 		goto out;
283 	}
284 
285 	ret = crypto_register_alg(&xeta_alg);
286 	if (ret < 0) {
287 		crypto_unregister_alg(&tea_alg);
288 		crypto_unregister_alg(&xtea_alg);
289 		goto out;
290 	}
291 
292 out:
293 	return ret;
294 }
295 
296 static void __exit fini(void)
297 {
298 	crypto_unregister_alg(&tea_alg);
299 	crypto_unregister_alg(&xtea_alg);
300 	crypto_unregister_alg(&xeta_alg);
301 }
302 
303 MODULE_ALIAS("xtea");
304 MODULE_ALIAS("xeta");
305 
306 module_init(init);
307 module_exit(fini);
308 
309 MODULE_LICENSE("GPL");
310 MODULE_DESCRIPTION("TEA, XTEA & XETA Cryptographic Algorithms");
311