xref: /openbmc/linux/crypto/skcipher.c (revision d6e0cbb1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Symmetric key cipher operations.
4  *
5  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
6  * multiple page boundaries by using temporary blocks.  In user context,
7  * the kernel is given a chance to schedule us once per page.
8  *
9  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
10  */
11 
12 #include <crypto/internal/aead.h>
13 #include <crypto/internal/skcipher.h>
14 #include <crypto/scatterwalk.h>
15 #include <linux/bug.h>
16 #include <linux/cryptouser.h>
17 #include <linux/compiler.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/rtnetlink.h>
21 #include <linux/seq_file.h>
22 #include <net/netlink.h>
23 
24 #include "internal.h"
25 
26 enum {
27 	SKCIPHER_WALK_PHYS = 1 << 0,
28 	SKCIPHER_WALK_SLOW = 1 << 1,
29 	SKCIPHER_WALK_COPY = 1 << 2,
30 	SKCIPHER_WALK_DIFF = 1 << 3,
31 	SKCIPHER_WALK_SLEEP = 1 << 4,
32 };
33 
34 struct skcipher_walk_buffer {
35 	struct list_head entry;
36 	struct scatter_walk dst;
37 	unsigned int len;
38 	u8 *data;
39 	u8 buffer[];
40 };
41 
42 static int skcipher_walk_next(struct skcipher_walk *walk);
43 
44 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
45 {
46 	if (PageHighMem(scatterwalk_page(walk)))
47 		kunmap_atomic(vaddr);
48 }
49 
50 static inline void *skcipher_map(struct scatter_walk *walk)
51 {
52 	struct page *page = scatterwalk_page(walk);
53 
54 	return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
55 	       offset_in_page(walk->offset);
56 }
57 
58 static inline void skcipher_map_src(struct skcipher_walk *walk)
59 {
60 	walk->src.virt.addr = skcipher_map(&walk->in);
61 }
62 
63 static inline void skcipher_map_dst(struct skcipher_walk *walk)
64 {
65 	walk->dst.virt.addr = skcipher_map(&walk->out);
66 }
67 
68 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
69 {
70 	skcipher_unmap(&walk->in, walk->src.virt.addr);
71 }
72 
73 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
74 {
75 	skcipher_unmap(&walk->out, walk->dst.virt.addr);
76 }
77 
78 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
79 {
80 	return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
81 }
82 
83 /* Get a spot of the specified length that does not straddle a page.
84  * The caller needs to ensure that there is enough space for this operation.
85  */
86 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
87 {
88 	u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
89 
90 	return max(start, end_page);
91 }
92 
93 static void skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
94 {
95 	u8 *addr;
96 
97 	addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
98 	addr = skcipher_get_spot(addr, bsize);
99 	scatterwalk_copychunks(addr, &walk->out, bsize,
100 			       (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
101 }
102 
103 int skcipher_walk_done(struct skcipher_walk *walk, int err)
104 {
105 	unsigned int n; /* bytes processed */
106 	bool more;
107 
108 	if (unlikely(err < 0))
109 		goto finish;
110 
111 	n = walk->nbytes - err;
112 	walk->total -= n;
113 	more = (walk->total != 0);
114 
115 	if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
116 				    SKCIPHER_WALK_SLOW |
117 				    SKCIPHER_WALK_COPY |
118 				    SKCIPHER_WALK_DIFF)))) {
119 unmap_src:
120 		skcipher_unmap_src(walk);
121 	} else if (walk->flags & SKCIPHER_WALK_DIFF) {
122 		skcipher_unmap_dst(walk);
123 		goto unmap_src;
124 	} else if (walk->flags & SKCIPHER_WALK_COPY) {
125 		skcipher_map_dst(walk);
126 		memcpy(walk->dst.virt.addr, walk->page, n);
127 		skcipher_unmap_dst(walk);
128 	} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
129 		if (err) {
130 			/*
131 			 * Didn't process all bytes.  Either the algorithm is
132 			 * broken, or this was the last step and it turned out
133 			 * the message wasn't evenly divisible into blocks but
134 			 * the algorithm requires it.
135 			 */
136 			err = -EINVAL;
137 			goto finish;
138 		}
139 		skcipher_done_slow(walk, n);
140 		goto already_advanced;
141 	}
142 
143 	scatterwalk_advance(&walk->in, n);
144 	scatterwalk_advance(&walk->out, n);
145 already_advanced:
146 	scatterwalk_done(&walk->in, 0, more);
147 	scatterwalk_done(&walk->out, 1, more);
148 
149 	if (more) {
150 		crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
151 			     CRYPTO_TFM_REQ_MAY_SLEEP : 0);
152 		return skcipher_walk_next(walk);
153 	}
154 	err = 0;
155 finish:
156 	walk->nbytes = 0;
157 
158 	/* Short-circuit for the common/fast path. */
159 	if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
160 		goto out;
161 
162 	if (walk->flags & SKCIPHER_WALK_PHYS)
163 		goto out;
164 
165 	if (walk->iv != walk->oiv)
166 		memcpy(walk->oiv, walk->iv, walk->ivsize);
167 	if (walk->buffer != walk->page)
168 		kfree(walk->buffer);
169 	if (walk->page)
170 		free_page((unsigned long)walk->page);
171 
172 out:
173 	return err;
174 }
175 EXPORT_SYMBOL_GPL(skcipher_walk_done);
176 
177 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
178 {
179 	struct skcipher_walk_buffer *p, *tmp;
180 
181 	list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
182 		u8 *data;
183 
184 		if (err)
185 			goto done;
186 
187 		data = p->data;
188 		if (!data) {
189 			data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
190 			data = skcipher_get_spot(data, walk->stride);
191 		}
192 
193 		scatterwalk_copychunks(data, &p->dst, p->len, 1);
194 
195 		if (offset_in_page(p->data) + p->len + walk->stride >
196 		    PAGE_SIZE)
197 			free_page((unsigned long)p->data);
198 
199 done:
200 		list_del(&p->entry);
201 		kfree(p);
202 	}
203 
204 	if (!err && walk->iv != walk->oiv)
205 		memcpy(walk->oiv, walk->iv, walk->ivsize);
206 	if (walk->buffer != walk->page)
207 		kfree(walk->buffer);
208 	if (walk->page)
209 		free_page((unsigned long)walk->page);
210 }
211 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
212 
213 static void skcipher_queue_write(struct skcipher_walk *walk,
214 				 struct skcipher_walk_buffer *p)
215 {
216 	p->dst = walk->out;
217 	list_add_tail(&p->entry, &walk->buffers);
218 }
219 
220 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
221 {
222 	bool phys = walk->flags & SKCIPHER_WALK_PHYS;
223 	unsigned alignmask = walk->alignmask;
224 	struct skcipher_walk_buffer *p;
225 	unsigned a;
226 	unsigned n;
227 	u8 *buffer;
228 	void *v;
229 
230 	if (!phys) {
231 		if (!walk->buffer)
232 			walk->buffer = walk->page;
233 		buffer = walk->buffer;
234 		if (buffer)
235 			goto ok;
236 	}
237 
238 	/* Start with the minimum alignment of kmalloc. */
239 	a = crypto_tfm_ctx_alignment() - 1;
240 	n = bsize;
241 
242 	if (phys) {
243 		/* Calculate the minimum alignment of p->buffer. */
244 		a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
245 		n += sizeof(*p);
246 	}
247 
248 	/* Minimum size to align p->buffer by alignmask. */
249 	n += alignmask & ~a;
250 
251 	/* Minimum size to ensure p->buffer does not straddle a page. */
252 	n += (bsize - 1) & ~(alignmask | a);
253 
254 	v = kzalloc(n, skcipher_walk_gfp(walk));
255 	if (!v)
256 		return skcipher_walk_done(walk, -ENOMEM);
257 
258 	if (phys) {
259 		p = v;
260 		p->len = bsize;
261 		skcipher_queue_write(walk, p);
262 		buffer = p->buffer;
263 	} else {
264 		walk->buffer = v;
265 		buffer = v;
266 	}
267 
268 ok:
269 	walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
270 	walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
271 	walk->src.virt.addr = walk->dst.virt.addr;
272 
273 	scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
274 
275 	walk->nbytes = bsize;
276 	walk->flags |= SKCIPHER_WALK_SLOW;
277 
278 	return 0;
279 }
280 
281 static int skcipher_next_copy(struct skcipher_walk *walk)
282 {
283 	struct skcipher_walk_buffer *p;
284 	u8 *tmp = walk->page;
285 
286 	skcipher_map_src(walk);
287 	memcpy(tmp, walk->src.virt.addr, walk->nbytes);
288 	skcipher_unmap_src(walk);
289 
290 	walk->src.virt.addr = tmp;
291 	walk->dst.virt.addr = tmp;
292 
293 	if (!(walk->flags & SKCIPHER_WALK_PHYS))
294 		return 0;
295 
296 	p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
297 	if (!p)
298 		return -ENOMEM;
299 
300 	p->data = walk->page;
301 	p->len = walk->nbytes;
302 	skcipher_queue_write(walk, p);
303 
304 	if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
305 	    PAGE_SIZE)
306 		walk->page = NULL;
307 	else
308 		walk->page += walk->nbytes;
309 
310 	return 0;
311 }
312 
313 static int skcipher_next_fast(struct skcipher_walk *walk)
314 {
315 	unsigned long diff;
316 
317 	walk->src.phys.page = scatterwalk_page(&walk->in);
318 	walk->src.phys.offset = offset_in_page(walk->in.offset);
319 	walk->dst.phys.page = scatterwalk_page(&walk->out);
320 	walk->dst.phys.offset = offset_in_page(walk->out.offset);
321 
322 	if (walk->flags & SKCIPHER_WALK_PHYS)
323 		return 0;
324 
325 	diff = walk->src.phys.offset - walk->dst.phys.offset;
326 	diff |= walk->src.virt.page - walk->dst.virt.page;
327 
328 	skcipher_map_src(walk);
329 	walk->dst.virt.addr = walk->src.virt.addr;
330 
331 	if (diff) {
332 		walk->flags |= SKCIPHER_WALK_DIFF;
333 		skcipher_map_dst(walk);
334 	}
335 
336 	return 0;
337 }
338 
339 static int skcipher_walk_next(struct skcipher_walk *walk)
340 {
341 	unsigned int bsize;
342 	unsigned int n;
343 	int err;
344 
345 	walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
346 			 SKCIPHER_WALK_DIFF);
347 
348 	n = walk->total;
349 	bsize = min(walk->stride, max(n, walk->blocksize));
350 	n = scatterwalk_clamp(&walk->in, n);
351 	n = scatterwalk_clamp(&walk->out, n);
352 
353 	if (unlikely(n < bsize)) {
354 		if (unlikely(walk->total < walk->blocksize))
355 			return skcipher_walk_done(walk, -EINVAL);
356 
357 slow_path:
358 		err = skcipher_next_slow(walk, bsize);
359 		goto set_phys_lowmem;
360 	}
361 
362 	if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
363 		if (!walk->page) {
364 			gfp_t gfp = skcipher_walk_gfp(walk);
365 
366 			walk->page = (void *)__get_free_page(gfp);
367 			if (!walk->page)
368 				goto slow_path;
369 		}
370 
371 		walk->nbytes = min_t(unsigned, n,
372 				     PAGE_SIZE - offset_in_page(walk->page));
373 		walk->flags |= SKCIPHER_WALK_COPY;
374 		err = skcipher_next_copy(walk);
375 		goto set_phys_lowmem;
376 	}
377 
378 	walk->nbytes = n;
379 
380 	return skcipher_next_fast(walk);
381 
382 set_phys_lowmem:
383 	if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
384 		walk->src.phys.page = virt_to_page(walk->src.virt.addr);
385 		walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
386 		walk->src.phys.offset &= PAGE_SIZE - 1;
387 		walk->dst.phys.offset &= PAGE_SIZE - 1;
388 	}
389 	return err;
390 }
391 
392 static int skcipher_copy_iv(struct skcipher_walk *walk)
393 {
394 	unsigned a = crypto_tfm_ctx_alignment() - 1;
395 	unsigned alignmask = walk->alignmask;
396 	unsigned ivsize = walk->ivsize;
397 	unsigned bs = walk->stride;
398 	unsigned aligned_bs;
399 	unsigned size;
400 	u8 *iv;
401 
402 	aligned_bs = ALIGN(bs, alignmask + 1);
403 
404 	/* Minimum size to align buffer by alignmask. */
405 	size = alignmask & ~a;
406 
407 	if (walk->flags & SKCIPHER_WALK_PHYS)
408 		size += ivsize;
409 	else {
410 		size += aligned_bs + ivsize;
411 
412 		/* Minimum size to ensure buffer does not straddle a page. */
413 		size += (bs - 1) & ~(alignmask | a);
414 	}
415 
416 	walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
417 	if (!walk->buffer)
418 		return -ENOMEM;
419 
420 	iv = PTR_ALIGN(walk->buffer, alignmask + 1);
421 	iv = skcipher_get_spot(iv, bs) + aligned_bs;
422 
423 	walk->iv = memcpy(iv, walk->iv, walk->ivsize);
424 	return 0;
425 }
426 
427 static int skcipher_walk_first(struct skcipher_walk *walk)
428 {
429 	if (WARN_ON_ONCE(in_irq()))
430 		return -EDEADLK;
431 
432 	walk->buffer = NULL;
433 	if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
434 		int err = skcipher_copy_iv(walk);
435 		if (err)
436 			return err;
437 	}
438 
439 	walk->page = NULL;
440 
441 	return skcipher_walk_next(walk);
442 }
443 
444 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
445 				  struct skcipher_request *req)
446 {
447 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
448 
449 	walk->total = req->cryptlen;
450 	walk->nbytes = 0;
451 	walk->iv = req->iv;
452 	walk->oiv = req->iv;
453 
454 	if (unlikely(!walk->total))
455 		return 0;
456 
457 	scatterwalk_start(&walk->in, req->src);
458 	scatterwalk_start(&walk->out, req->dst);
459 
460 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
461 	walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
462 		       SKCIPHER_WALK_SLEEP : 0;
463 
464 	walk->blocksize = crypto_skcipher_blocksize(tfm);
465 	walk->stride = crypto_skcipher_walksize(tfm);
466 	walk->ivsize = crypto_skcipher_ivsize(tfm);
467 	walk->alignmask = crypto_skcipher_alignmask(tfm);
468 
469 	return skcipher_walk_first(walk);
470 }
471 
472 int skcipher_walk_virt(struct skcipher_walk *walk,
473 		       struct skcipher_request *req, bool atomic)
474 {
475 	int err;
476 
477 	might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
478 
479 	walk->flags &= ~SKCIPHER_WALK_PHYS;
480 
481 	err = skcipher_walk_skcipher(walk, req);
482 
483 	walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
484 
485 	return err;
486 }
487 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
488 
489 void skcipher_walk_atomise(struct skcipher_walk *walk)
490 {
491 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
492 }
493 EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
494 
495 int skcipher_walk_async(struct skcipher_walk *walk,
496 			struct skcipher_request *req)
497 {
498 	walk->flags |= SKCIPHER_WALK_PHYS;
499 
500 	INIT_LIST_HEAD(&walk->buffers);
501 
502 	return skcipher_walk_skcipher(walk, req);
503 }
504 EXPORT_SYMBOL_GPL(skcipher_walk_async);
505 
506 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
507 				     struct aead_request *req, bool atomic)
508 {
509 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
510 	int err;
511 
512 	walk->nbytes = 0;
513 	walk->iv = req->iv;
514 	walk->oiv = req->iv;
515 
516 	if (unlikely(!walk->total))
517 		return 0;
518 
519 	walk->flags &= ~SKCIPHER_WALK_PHYS;
520 
521 	scatterwalk_start(&walk->in, req->src);
522 	scatterwalk_start(&walk->out, req->dst);
523 
524 	scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
525 	scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
526 
527 	scatterwalk_done(&walk->in, 0, walk->total);
528 	scatterwalk_done(&walk->out, 0, walk->total);
529 
530 	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
531 		walk->flags |= SKCIPHER_WALK_SLEEP;
532 	else
533 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
534 
535 	walk->blocksize = crypto_aead_blocksize(tfm);
536 	walk->stride = crypto_aead_chunksize(tfm);
537 	walk->ivsize = crypto_aead_ivsize(tfm);
538 	walk->alignmask = crypto_aead_alignmask(tfm);
539 
540 	err = skcipher_walk_first(walk);
541 
542 	if (atomic)
543 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
544 
545 	return err;
546 }
547 
548 int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req,
549 		       bool atomic)
550 {
551 	walk->total = req->cryptlen;
552 
553 	return skcipher_walk_aead_common(walk, req, atomic);
554 }
555 EXPORT_SYMBOL_GPL(skcipher_walk_aead);
556 
557 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
558 			       struct aead_request *req, bool atomic)
559 {
560 	walk->total = req->cryptlen;
561 
562 	return skcipher_walk_aead_common(walk, req, atomic);
563 }
564 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
565 
566 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
567 			       struct aead_request *req, bool atomic)
568 {
569 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
570 
571 	walk->total = req->cryptlen - crypto_aead_authsize(tfm);
572 
573 	return skcipher_walk_aead_common(walk, req, atomic);
574 }
575 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
576 
577 static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
578 {
579 	if (alg->cra_type == &crypto_blkcipher_type)
580 		return sizeof(struct crypto_blkcipher *);
581 
582 	if (alg->cra_type == &crypto_ablkcipher_type)
583 		return sizeof(struct crypto_ablkcipher *);
584 
585 	return crypto_alg_extsize(alg);
586 }
587 
588 static void skcipher_set_needkey(struct crypto_skcipher *tfm)
589 {
590 	if (tfm->keysize)
591 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
592 }
593 
594 static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm,
595 				     const u8 *key, unsigned int keylen)
596 {
597 	struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
598 	struct crypto_blkcipher *blkcipher = *ctx;
599 	int err;
600 
601 	crypto_blkcipher_clear_flags(blkcipher, ~0);
602 	crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) &
603 					      CRYPTO_TFM_REQ_MASK);
604 	err = crypto_blkcipher_setkey(blkcipher, key, keylen);
605 	crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) &
606 				       CRYPTO_TFM_RES_MASK);
607 	if (unlikely(err)) {
608 		skcipher_set_needkey(tfm);
609 		return err;
610 	}
611 
612 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
613 	return 0;
614 }
615 
616 static int skcipher_crypt_blkcipher(struct skcipher_request *req,
617 				    int (*crypt)(struct blkcipher_desc *,
618 						 struct scatterlist *,
619 						 struct scatterlist *,
620 						 unsigned int))
621 {
622 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
623 	struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
624 	struct blkcipher_desc desc = {
625 		.tfm = *ctx,
626 		.info = req->iv,
627 		.flags = req->base.flags,
628 	};
629 
630 
631 	return crypt(&desc, req->dst, req->src, req->cryptlen);
632 }
633 
634 static int skcipher_encrypt_blkcipher(struct skcipher_request *req)
635 {
636 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
637 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
638 	struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
639 
640 	return skcipher_crypt_blkcipher(req, alg->encrypt);
641 }
642 
643 static int skcipher_decrypt_blkcipher(struct skcipher_request *req)
644 {
645 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
646 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
647 	struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
648 
649 	return skcipher_crypt_blkcipher(req, alg->decrypt);
650 }
651 
652 static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
653 {
654 	struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
655 
656 	crypto_free_blkcipher(*ctx);
657 }
658 
659 static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
660 {
661 	struct crypto_alg *calg = tfm->__crt_alg;
662 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
663 	struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
664 	struct crypto_blkcipher *blkcipher;
665 	struct crypto_tfm *btfm;
666 
667 	if (!crypto_mod_get(calg))
668 		return -EAGAIN;
669 
670 	btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER,
671 					CRYPTO_ALG_TYPE_MASK);
672 	if (IS_ERR(btfm)) {
673 		crypto_mod_put(calg);
674 		return PTR_ERR(btfm);
675 	}
676 
677 	blkcipher = __crypto_blkcipher_cast(btfm);
678 	*ctx = blkcipher;
679 	tfm->exit = crypto_exit_skcipher_ops_blkcipher;
680 
681 	skcipher->setkey = skcipher_setkey_blkcipher;
682 	skcipher->encrypt = skcipher_encrypt_blkcipher;
683 	skcipher->decrypt = skcipher_decrypt_blkcipher;
684 
685 	skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher);
686 	skcipher->keysize = calg->cra_blkcipher.max_keysize;
687 
688 	skcipher_set_needkey(skcipher);
689 
690 	return 0;
691 }
692 
693 static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm,
694 				      const u8 *key, unsigned int keylen)
695 {
696 	struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
697 	struct crypto_ablkcipher *ablkcipher = *ctx;
698 	int err;
699 
700 	crypto_ablkcipher_clear_flags(ablkcipher, ~0);
701 	crypto_ablkcipher_set_flags(ablkcipher,
702 				    crypto_skcipher_get_flags(tfm) &
703 				    CRYPTO_TFM_REQ_MASK);
704 	err = crypto_ablkcipher_setkey(ablkcipher, key, keylen);
705 	crypto_skcipher_set_flags(tfm,
706 				  crypto_ablkcipher_get_flags(ablkcipher) &
707 				  CRYPTO_TFM_RES_MASK);
708 	if (unlikely(err)) {
709 		skcipher_set_needkey(tfm);
710 		return err;
711 	}
712 
713 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
714 	return 0;
715 }
716 
717 static int skcipher_crypt_ablkcipher(struct skcipher_request *req,
718 				     int (*crypt)(struct ablkcipher_request *))
719 {
720 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
721 	struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
722 	struct ablkcipher_request *subreq = skcipher_request_ctx(req);
723 
724 	ablkcipher_request_set_tfm(subreq, *ctx);
725 	ablkcipher_request_set_callback(subreq, skcipher_request_flags(req),
726 					req->base.complete, req->base.data);
727 	ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
728 				     req->iv);
729 
730 	return crypt(subreq);
731 }
732 
733 static int skcipher_encrypt_ablkcipher(struct skcipher_request *req)
734 {
735 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
736 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
737 	struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
738 
739 	return skcipher_crypt_ablkcipher(req, alg->encrypt);
740 }
741 
742 static int skcipher_decrypt_ablkcipher(struct skcipher_request *req)
743 {
744 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
745 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
746 	struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
747 
748 	return skcipher_crypt_ablkcipher(req, alg->decrypt);
749 }
750 
751 static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
752 {
753 	struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
754 
755 	crypto_free_ablkcipher(*ctx);
756 }
757 
758 static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
759 {
760 	struct crypto_alg *calg = tfm->__crt_alg;
761 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
762 	struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
763 	struct crypto_ablkcipher *ablkcipher;
764 	struct crypto_tfm *abtfm;
765 
766 	if (!crypto_mod_get(calg))
767 		return -EAGAIN;
768 
769 	abtfm = __crypto_alloc_tfm(calg, 0, 0);
770 	if (IS_ERR(abtfm)) {
771 		crypto_mod_put(calg);
772 		return PTR_ERR(abtfm);
773 	}
774 
775 	ablkcipher = __crypto_ablkcipher_cast(abtfm);
776 	*ctx = ablkcipher;
777 	tfm->exit = crypto_exit_skcipher_ops_ablkcipher;
778 
779 	skcipher->setkey = skcipher_setkey_ablkcipher;
780 	skcipher->encrypt = skcipher_encrypt_ablkcipher;
781 	skcipher->decrypt = skcipher_decrypt_ablkcipher;
782 
783 	skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher);
784 	skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) +
785 			    sizeof(struct ablkcipher_request);
786 	skcipher->keysize = calg->cra_ablkcipher.max_keysize;
787 
788 	skcipher_set_needkey(skcipher);
789 
790 	return 0;
791 }
792 
793 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
794 				     const u8 *key, unsigned int keylen)
795 {
796 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
797 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
798 	u8 *buffer, *alignbuffer;
799 	unsigned long absize;
800 	int ret;
801 
802 	absize = keylen + alignmask;
803 	buffer = kmalloc(absize, GFP_ATOMIC);
804 	if (!buffer)
805 		return -ENOMEM;
806 
807 	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
808 	memcpy(alignbuffer, key, keylen);
809 	ret = cipher->setkey(tfm, alignbuffer, keylen);
810 	kzfree(buffer);
811 	return ret;
812 }
813 
814 static int skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
815 			   unsigned int keylen)
816 {
817 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
818 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
819 	int err;
820 
821 	if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) {
822 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
823 		return -EINVAL;
824 	}
825 
826 	if ((unsigned long)key & alignmask)
827 		err = skcipher_setkey_unaligned(tfm, key, keylen);
828 	else
829 		err = cipher->setkey(tfm, key, keylen);
830 
831 	if (unlikely(err)) {
832 		skcipher_set_needkey(tfm);
833 		return err;
834 	}
835 
836 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
837 	return 0;
838 }
839 
840 int crypto_skcipher_encrypt(struct skcipher_request *req)
841 {
842 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
843 	struct crypto_alg *alg = tfm->base.__crt_alg;
844 	unsigned int cryptlen = req->cryptlen;
845 	int ret;
846 
847 	crypto_stats_get(alg);
848 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
849 		ret = -ENOKEY;
850 	else
851 		ret = tfm->encrypt(req);
852 	crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
853 	return ret;
854 }
855 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
856 
857 int crypto_skcipher_decrypt(struct skcipher_request *req)
858 {
859 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
860 	struct crypto_alg *alg = tfm->base.__crt_alg;
861 	unsigned int cryptlen = req->cryptlen;
862 	int ret;
863 
864 	crypto_stats_get(alg);
865 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
866 		ret = -ENOKEY;
867 	else
868 		ret = tfm->decrypt(req);
869 	crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
870 	return ret;
871 }
872 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
873 
874 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
875 {
876 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
877 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
878 
879 	alg->exit(skcipher);
880 }
881 
882 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
883 {
884 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
885 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
886 
887 	if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type)
888 		return crypto_init_skcipher_ops_blkcipher(tfm);
889 
890 	if (tfm->__crt_alg->cra_type == &crypto_ablkcipher_type)
891 		return crypto_init_skcipher_ops_ablkcipher(tfm);
892 
893 	skcipher->setkey = skcipher_setkey;
894 	skcipher->encrypt = alg->encrypt;
895 	skcipher->decrypt = alg->decrypt;
896 	skcipher->ivsize = alg->ivsize;
897 	skcipher->keysize = alg->max_keysize;
898 
899 	skcipher_set_needkey(skcipher);
900 
901 	if (alg->exit)
902 		skcipher->base.exit = crypto_skcipher_exit_tfm;
903 
904 	if (alg->init)
905 		return alg->init(skcipher);
906 
907 	return 0;
908 }
909 
910 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
911 {
912 	struct skcipher_instance *skcipher =
913 		container_of(inst, struct skcipher_instance, s.base);
914 
915 	skcipher->free(skcipher);
916 }
917 
918 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
919 	__maybe_unused;
920 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
921 {
922 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
923 						     base);
924 
925 	seq_printf(m, "type         : skcipher\n");
926 	seq_printf(m, "async        : %s\n",
927 		   alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
928 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
929 	seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
930 	seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
931 	seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
932 	seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
933 	seq_printf(m, "walksize     : %u\n", skcipher->walksize);
934 }
935 
936 #ifdef CONFIG_NET
937 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
938 {
939 	struct crypto_report_blkcipher rblkcipher;
940 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
941 						     base);
942 
943 	memset(&rblkcipher, 0, sizeof(rblkcipher));
944 
945 	strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
946 	strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
947 
948 	rblkcipher.blocksize = alg->cra_blocksize;
949 	rblkcipher.min_keysize = skcipher->min_keysize;
950 	rblkcipher.max_keysize = skcipher->max_keysize;
951 	rblkcipher.ivsize = skcipher->ivsize;
952 
953 	return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
954 		       sizeof(rblkcipher), &rblkcipher);
955 }
956 #else
957 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
958 {
959 	return -ENOSYS;
960 }
961 #endif
962 
963 static const struct crypto_type crypto_skcipher_type2 = {
964 	.extsize = crypto_skcipher_extsize,
965 	.init_tfm = crypto_skcipher_init_tfm,
966 	.free = crypto_skcipher_free_instance,
967 #ifdef CONFIG_PROC_FS
968 	.show = crypto_skcipher_show,
969 #endif
970 	.report = crypto_skcipher_report,
971 	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
972 	.maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
973 	.type = CRYPTO_ALG_TYPE_SKCIPHER,
974 	.tfmsize = offsetof(struct crypto_skcipher, base),
975 };
976 
977 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
978 			  const char *name, u32 type, u32 mask)
979 {
980 	spawn->base.frontend = &crypto_skcipher_type2;
981 	return crypto_grab_spawn(&spawn->base, name, type, mask);
982 }
983 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
984 
985 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
986 					      u32 type, u32 mask)
987 {
988 	return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
989 }
990 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
991 
992 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
993 				const char *alg_name, u32 type, u32 mask)
994 {
995 	struct crypto_skcipher *tfm;
996 
997 	/* Only sync algorithms allowed. */
998 	mask |= CRYPTO_ALG_ASYNC;
999 
1000 	tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
1001 
1002 	/*
1003 	 * Make sure we do not allocate something that might get used with
1004 	 * an on-stack request: check the request size.
1005 	 */
1006 	if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
1007 				    MAX_SYNC_SKCIPHER_REQSIZE)) {
1008 		crypto_free_skcipher(tfm);
1009 		return ERR_PTR(-EINVAL);
1010 	}
1011 
1012 	return (struct crypto_sync_skcipher *)tfm;
1013 }
1014 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
1015 
1016 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask)
1017 {
1018 	return crypto_type_has_alg(alg_name, &crypto_skcipher_type2,
1019 				   type, mask);
1020 }
1021 EXPORT_SYMBOL_GPL(crypto_has_skcipher2);
1022 
1023 static int skcipher_prepare_alg(struct skcipher_alg *alg)
1024 {
1025 	struct crypto_alg *base = &alg->base;
1026 
1027 	if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
1028 	    alg->walksize > PAGE_SIZE / 8)
1029 		return -EINVAL;
1030 
1031 	if (!alg->chunksize)
1032 		alg->chunksize = base->cra_blocksize;
1033 	if (!alg->walksize)
1034 		alg->walksize = alg->chunksize;
1035 
1036 	base->cra_type = &crypto_skcipher_type2;
1037 	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
1038 	base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
1039 
1040 	return 0;
1041 }
1042 
1043 int crypto_register_skcipher(struct skcipher_alg *alg)
1044 {
1045 	struct crypto_alg *base = &alg->base;
1046 	int err;
1047 
1048 	err = skcipher_prepare_alg(alg);
1049 	if (err)
1050 		return err;
1051 
1052 	return crypto_register_alg(base);
1053 }
1054 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
1055 
1056 void crypto_unregister_skcipher(struct skcipher_alg *alg)
1057 {
1058 	crypto_unregister_alg(&alg->base);
1059 }
1060 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
1061 
1062 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
1063 {
1064 	int i, ret;
1065 
1066 	for (i = 0; i < count; i++) {
1067 		ret = crypto_register_skcipher(&algs[i]);
1068 		if (ret)
1069 			goto err;
1070 	}
1071 
1072 	return 0;
1073 
1074 err:
1075 	for (--i; i >= 0; --i)
1076 		crypto_unregister_skcipher(&algs[i]);
1077 
1078 	return ret;
1079 }
1080 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
1081 
1082 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
1083 {
1084 	int i;
1085 
1086 	for (i = count - 1; i >= 0; --i)
1087 		crypto_unregister_skcipher(&algs[i]);
1088 }
1089 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
1090 
1091 int skcipher_register_instance(struct crypto_template *tmpl,
1092 			   struct skcipher_instance *inst)
1093 {
1094 	int err;
1095 
1096 	err = skcipher_prepare_alg(&inst->alg);
1097 	if (err)
1098 		return err;
1099 
1100 	return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
1101 }
1102 EXPORT_SYMBOL_GPL(skcipher_register_instance);
1103 
1104 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
1105 				  unsigned int keylen)
1106 {
1107 	struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
1108 	int err;
1109 
1110 	crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
1111 	crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
1112 				CRYPTO_TFM_REQ_MASK);
1113 	err = crypto_cipher_setkey(cipher, key, keylen);
1114 	crypto_skcipher_set_flags(tfm, crypto_cipher_get_flags(cipher) &
1115 				  CRYPTO_TFM_RES_MASK);
1116 	return err;
1117 }
1118 
1119 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
1120 {
1121 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
1122 	struct crypto_spawn *spawn = skcipher_instance_ctx(inst);
1123 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
1124 	struct crypto_cipher *cipher;
1125 
1126 	cipher = crypto_spawn_cipher(spawn);
1127 	if (IS_ERR(cipher))
1128 		return PTR_ERR(cipher);
1129 
1130 	ctx->cipher = cipher;
1131 	return 0;
1132 }
1133 
1134 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
1135 {
1136 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
1137 
1138 	crypto_free_cipher(ctx->cipher);
1139 }
1140 
1141 static void skcipher_free_instance_simple(struct skcipher_instance *inst)
1142 {
1143 	crypto_drop_spawn(skcipher_instance_ctx(inst));
1144 	kfree(inst);
1145 }
1146 
1147 /**
1148  * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
1149  *
1150  * Allocate an skcipher_instance for a simple block cipher mode of operation,
1151  * e.g. cbc or ecb.  The instance context will have just a single crypto_spawn,
1152  * that for the underlying cipher.  The {min,max}_keysize, ivsize, blocksize,
1153  * alignmask, and priority are set from the underlying cipher but can be
1154  * overridden if needed.  The tfm context defaults to skcipher_ctx_simple, and
1155  * default ->setkey(), ->init(), and ->exit() methods are installed.
1156  *
1157  * @tmpl: the template being instantiated
1158  * @tb: the template parameters
1159  * @cipher_alg_ret: on success, a pointer to the underlying cipher algorithm is
1160  *		    returned here.  It must be dropped with crypto_mod_put().
1161  *
1162  * Return: a pointer to the new instance, or an ERR_PTR().  The caller still
1163  *	   needs to register the instance.
1164  */
1165 struct skcipher_instance *
1166 skcipher_alloc_instance_simple(struct crypto_template *tmpl, struct rtattr **tb,
1167 			       struct crypto_alg **cipher_alg_ret)
1168 {
1169 	struct crypto_attr_type *algt;
1170 	struct crypto_alg *cipher_alg;
1171 	struct skcipher_instance *inst;
1172 	struct crypto_spawn *spawn;
1173 	u32 mask;
1174 	int err;
1175 
1176 	algt = crypto_get_attr_type(tb);
1177 	if (IS_ERR(algt))
1178 		return ERR_CAST(algt);
1179 
1180 	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
1181 		return ERR_PTR(-EINVAL);
1182 
1183 	mask = CRYPTO_ALG_TYPE_MASK |
1184 		crypto_requires_off(algt->type, algt->mask,
1185 				    CRYPTO_ALG_NEED_FALLBACK);
1186 
1187 	cipher_alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, mask);
1188 	if (IS_ERR(cipher_alg))
1189 		return ERR_CAST(cipher_alg);
1190 
1191 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
1192 	if (!inst) {
1193 		err = -ENOMEM;
1194 		goto err_put_cipher_alg;
1195 	}
1196 	spawn = skcipher_instance_ctx(inst);
1197 
1198 	err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
1199 				  cipher_alg);
1200 	if (err)
1201 		goto err_free_inst;
1202 
1203 	err = crypto_init_spawn(spawn, cipher_alg,
1204 				skcipher_crypto_instance(inst),
1205 				CRYPTO_ALG_TYPE_MASK);
1206 	if (err)
1207 		goto err_free_inst;
1208 	inst->free = skcipher_free_instance_simple;
1209 
1210 	/* Default algorithm properties, can be overridden */
1211 	inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
1212 	inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
1213 	inst->alg.base.cra_priority = cipher_alg->cra_priority;
1214 	inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
1215 	inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
1216 	inst->alg.ivsize = cipher_alg->cra_blocksize;
1217 
1218 	/* Use skcipher_ctx_simple by default, can be overridden */
1219 	inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
1220 	inst->alg.setkey = skcipher_setkey_simple;
1221 	inst->alg.init = skcipher_init_tfm_simple;
1222 	inst->alg.exit = skcipher_exit_tfm_simple;
1223 
1224 	*cipher_alg_ret = cipher_alg;
1225 	return inst;
1226 
1227 err_free_inst:
1228 	kfree(inst);
1229 err_put_cipher_alg:
1230 	crypto_mod_put(cipher_alg);
1231 	return ERR_PTR(err);
1232 }
1233 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
1234 
1235 MODULE_LICENSE("GPL");
1236 MODULE_DESCRIPTION("Symmetric key cipher type");
1237