1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Symmetric key cipher operations. 4 * 5 * Generic encrypt/decrypt wrapper for ciphers, handles operations across 6 * multiple page boundaries by using temporary blocks. In user context, 7 * the kernel is given a chance to schedule us once per page. 8 * 9 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 10 */ 11 12 #include <crypto/internal/aead.h> 13 #include <crypto/internal/cipher.h> 14 #include <crypto/internal/skcipher.h> 15 #include <crypto/scatterwalk.h> 16 #include <linux/bug.h> 17 #include <linux/cryptouser.h> 18 #include <linux/err.h> 19 #include <linux/kernel.h> 20 #include <linux/list.h> 21 #include <linux/mm.h> 22 #include <linux/module.h> 23 #include <linux/seq_file.h> 24 #include <linux/slab.h> 25 #include <linux/string.h> 26 #include <net/netlink.h> 27 28 #include "internal.h" 29 30 enum { 31 SKCIPHER_WALK_PHYS = 1 << 0, 32 SKCIPHER_WALK_SLOW = 1 << 1, 33 SKCIPHER_WALK_COPY = 1 << 2, 34 SKCIPHER_WALK_DIFF = 1 << 3, 35 SKCIPHER_WALK_SLEEP = 1 << 4, 36 }; 37 38 struct skcipher_walk_buffer { 39 struct list_head entry; 40 struct scatter_walk dst; 41 unsigned int len; 42 u8 *data; 43 u8 buffer[]; 44 }; 45 46 static int skcipher_walk_next(struct skcipher_walk *walk); 47 48 static inline void skcipher_map_src(struct skcipher_walk *walk) 49 { 50 walk->src.virt.addr = scatterwalk_map(&walk->in); 51 } 52 53 static inline void skcipher_map_dst(struct skcipher_walk *walk) 54 { 55 walk->dst.virt.addr = scatterwalk_map(&walk->out); 56 } 57 58 static inline void skcipher_unmap_src(struct skcipher_walk *walk) 59 { 60 scatterwalk_unmap(walk->src.virt.addr); 61 } 62 63 static inline void skcipher_unmap_dst(struct skcipher_walk *walk) 64 { 65 scatterwalk_unmap(walk->dst.virt.addr); 66 } 67 68 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk) 69 { 70 return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC; 71 } 72 73 /* Get a spot of the specified length that does not straddle a page. 74 * The caller needs to ensure that there is enough space for this operation. 75 */ 76 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len) 77 { 78 u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK); 79 80 return max(start, end_page); 81 } 82 83 static inline struct skcipher_alg *__crypto_skcipher_alg( 84 struct crypto_alg *alg) 85 { 86 return container_of(alg, struct skcipher_alg, base); 87 } 88 89 static inline struct crypto_istat_cipher *skcipher_get_stat( 90 struct skcipher_alg *alg) 91 { 92 #ifdef CONFIG_CRYPTO_STATS 93 return &alg->stat; 94 #else 95 return NULL; 96 #endif 97 } 98 99 static inline int crypto_skcipher_errstat(struct skcipher_alg *alg, int err) 100 { 101 struct crypto_istat_cipher *istat = skcipher_get_stat(alg); 102 103 if (!IS_ENABLED(CONFIG_CRYPTO_STATS)) 104 return err; 105 106 if (err && err != -EINPROGRESS && err != -EBUSY) 107 atomic64_inc(&istat->err_cnt); 108 109 return err; 110 } 111 112 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize) 113 { 114 u8 *addr; 115 116 addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1); 117 addr = skcipher_get_spot(addr, bsize); 118 scatterwalk_copychunks(addr, &walk->out, bsize, 119 (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1); 120 return 0; 121 } 122 123 int skcipher_walk_done(struct skcipher_walk *walk, int err) 124 { 125 unsigned int n = walk->nbytes; 126 unsigned int nbytes = 0; 127 128 if (!n) 129 goto finish; 130 131 if (likely(err >= 0)) { 132 n -= err; 133 nbytes = walk->total - n; 134 } 135 136 if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS | 137 SKCIPHER_WALK_SLOW | 138 SKCIPHER_WALK_COPY | 139 SKCIPHER_WALK_DIFF)))) { 140 unmap_src: 141 skcipher_unmap_src(walk); 142 } else if (walk->flags & SKCIPHER_WALK_DIFF) { 143 skcipher_unmap_dst(walk); 144 goto unmap_src; 145 } else if (walk->flags & SKCIPHER_WALK_COPY) { 146 skcipher_map_dst(walk); 147 memcpy(walk->dst.virt.addr, walk->page, n); 148 skcipher_unmap_dst(walk); 149 } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) { 150 if (err > 0) { 151 /* 152 * Didn't process all bytes. Either the algorithm is 153 * broken, or this was the last step and it turned out 154 * the message wasn't evenly divisible into blocks but 155 * the algorithm requires it. 156 */ 157 err = -EINVAL; 158 nbytes = 0; 159 } else 160 n = skcipher_done_slow(walk, n); 161 } 162 163 if (err > 0) 164 err = 0; 165 166 walk->total = nbytes; 167 walk->nbytes = 0; 168 169 scatterwalk_advance(&walk->in, n); 170 scatterwalk_advance(&walk->out, n); 171 scatterwalk_done(&walk->in, 0, nbytes); 172 scatterwalk_done(&walk->out, 1, nbytes); 173 174 if (nbytes) { 175 crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ? 176 CRYPTO_TFM_REQ_MAY_SLEEP : 0); 177 return skcipher_walk_next(walk); 178 } 179 180 finish: 181 /* Short-circuit for the common/fast path. */ 182 if (!((unsigned long)walk->buffer | (unsigned long)walk->page)) 183 goto out; 184 185 if (walk->flags & SKCIPHER_WALK_PHYS) 186 goto out; 187 188 if (walk->iv != walk->oiv) 189 memcpy(walk->oiv, walk->iv, walk->ivsize); 190 if (walk->buffer != walk->page) 191 kfree(walk->buffer); 192 if (walk->page) 193 free_page((unsigned long)walk->page); 194 195 out: 196 return err; 197 } 198 EXPORT_SYMBOL_GPL(skcipher_walk_done); 199 200 void skcipher_walk_complete(struct skcipher_walk *walk, int err) 201 { 202 struct skcipher_walk_buffer *p, *tmp; 203 204 list_for_each_entry_safe(p, tmp, &walk->buffers, entry) { 205 u8 *data; 206 207 if (err) 208 goto done; 209 210 data = p->data; 211 if (!data) { 212 data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1); 213 data = skcipher_get_spot(data, walk->stride); 214 } 215 216 scatterwalk_copychunks(data, &p->dst, p->len, 1); 217 218 if (offset_in_page(p->data) + p->len + walk->stride > 219 PAGE_SIZE) 220 free_page((unsigned long)p->data); 221 222 done: 223 list_del(&p->entry); 224 kfree(p); 225 } 226 227 if (!err && walk->iv != walk->oiv) 228 memcpy(walk->oiv, walk->iv, walk->ivsize); 229 if (walk->buffer != walk->page) 230 kfree(walk->buffer); 231 if (walk->page) 232 free_page((unsigned long)walk->page); 233 } 234 EXPORT_SYMBOL_GPL(skcipher_walk_complete); 235 236 static void skcipher_queue_write(struct skcipher_walk *walk, 237 struct skcipher_walk_buffer *p) 238 { 239 p->dst = walk->out; 240 list_add_tail(&p->entry, &walk->buffers); 241 } 242 243 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize) 244 { 245 bool phys = walk->flags & SKCIPHER_WALK_PHYS; 246 unsigned alignmask = walk->alignmask; 247 struct skcipher_walk_buffer *p; 248 unsigned a; 249 unsigned n; 250 u8 *buffer; 251 void *v; 252 253 if (!phys) { 254 if (!walk->buffer) 255 walk->buffer = walk->page; 256 buffer = walk->buffer; 257 if (buffer) 258 goto ok; 259 } 260 261 /* Start with the minimum alignment of kmalloc. */ 262 a = crypto_tfm_ctx_alignment() - 1; 263 n = bsize; 264 265 if (phys) { 266 /* Calculate the minimum alignment of p->buffer. */ 267 a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1; 268 n += sizeof(*p); 269 } 270 271 /* Minimum size to align p->buffer by alignmask. */ 272 n += alignmask & ~a; 273 274 /* Minimum size to ensure p->buffer does not straddle a page. */ 275 n += (bsize - 1) & ~(alignmask | a); 276 277 v = kzalloc(n, skcipher_walk_gfp(walk)); 278 if (!v) 279 return skcipher_walk_done(walk, -ENOMEM); 280 281 if (phys) { 282 p = v; 283 p->len = bsize; 284 skcipher_queue_write(walk, p); 285 buffer = p->buffer; 286 } else { 287 walk->buffer = v; 288 buffer = v; 289 } 290 291 ok: 292 walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1); 293 walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize); 294 walk->src.virt.addr = walk->dst.virt.addr; 295 296 scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0); 297 298 walk->nbytes = bsize; 299 walk->flags |= SKCIPHER_WALK_SLOW; 300 301 return 0; 302 } 303 304 static int skcipher_next_copy(struct skcipher_walk *walk) 305 { 306 struct skcipher_walk_buffer *p; 307 u8 *tmp = walk->page; 308 309 skcipher_map_src(walk); 310 memcpy(tmp, walk->src.virt.addr, walk->nbytes); 311 skcipher_unmap_src(walk); 312 313 walk->src.virt.addr = tmp; 314 walk->dst.virt.addr = tmp; 315 316 if (!(walk->flags & SKCIPHER_WALK_PHYS)) 317 return 0; 318 319 p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk)); 320 if (!p) 321 return -ENOMEM; 322 323 p->data = walk->page; 324 p->len = walk->nbytes; 325 skcipher_queue_write(walk, p); 326 327 if (offset_in_page(walk->page) + walk->nbytes + walk->stride > 328 PAGE_SIZE) 329 walk->page = NULL; 330 else 331 walk->page += walk->nbytes; 332 333 return 0; 334 } 335 336 static int skcipher_next_fast(struct skcipher_walk *walk) 337 { 338 unsigned long diff; 339 340 walk->src.phys.page = scatterwalk_page(&walk->in); 341 walk->src.phys.offset = offset_in_page(walk->in.offset); 342 walk->dst.phys.page = scatterwalk_page(&walk->out); 343 walk->dst.phys.offset = offset_in_page(walk->out.offset); 344 345 if (walk->flags & SKCIPHER_WALK_PHYS) 346 return 0; 347 348 diff = walk->src.phys.offset - walk->dst.phys.offset; 349 diff |= walk->src.virt.page - walk->dst.virt.page; 350 351 skcipher_map_src(walk); 352 walk->dst.virt.addr = walk->src.virt.addr; 353 354 if (diff) { 355 walk->flags |= SKCIPHER_WALK_DIFF; 356 skcipher_map_dst(walk); 357 } 358 359 return 0; 360 } 361 362 static int skcipher_walk_next(struct skcipher_walk *walk) 363 { 364 unsigned int bsize; 365 unsigned int n; 366 int err; 367 368 walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY | 369 SKCIPHER_WALK_DIFF); 370 371 n = walk->total; 372 bsize = min(walk->stride, max(n, walk->blocksize)); 373 n = scatterwalk_clamp(&walk->in, n); 374 n = scatterwalk_clamp(&walk->out, n); 375 376 if (unlikely(n < bsize)) { 377 if (unlikely(walk->total < walk->blocksize)) 378 return skcipher_walk_done(walk, -EINVAL); 379 380 slow_path: 381 err = skcipher_next_slow(walk, bsize); 382 goto set_phys_lowmem; 383 } 384 385 if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) { 386 if (!walk->page) { 387 gfp_t gfp = skcipher_walk_gfp(walk); 388 389 walk->page = (void *)__get_free_page(gfp); 390 if (!walk->page) 391 goto slow_path; 392 } 393 394 walk->nbytes = min_t(unsigned, n, 395 PAGE_SIZE - offset_in_page(walk->page)); 396 walk->flags |= SKCIPHER_WALK_COPY; 397 err = skcipher_next_copy(walk); 398 goto set_phys_lowmem; 399 } 400 401 walk->nbytes = n; 402 403 return skcipher_next_fast(walk); 404 405 set_phys_lowmem: 406 if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) { 407 walk->src.phys.page = virt_to_page(walk->src.virt.addr); 408 walk->dst.phys.page = virt_to_page(walk->dst.virt.addr); 409 walk->src.phys.offset &= PAGE_SIZE - 1; 410 walk->dst.phys.offset &= PAGE_SIZE - 1; 411 } 412 return err; 413 } 414 415 static int skcipher_copy_iv(struct skcipher_walk *walk) 416 { 417 unsigned a = crypto_tfm_ctx_alignment() - 1; 418 unsigned alignmask = walk->alignmask; 419 unsigned ivsize = walk->ivsize; 420 unsigned bs = walk->stride; 421 unsigned aligned_bs; 422 unsigned size; 423 u8 *iv; 424 425 aligned_bs = ALIGN(bs, alignmask + 1); 426 427 /* Minimum size to align buffer by alignmask. */ 428 size = alignmask & ~a; 429 430 if (walk->flags & SKCIPHER_WALK_PHYS) 431 size += ivsize; 432 else { 433 size += aligned_bs + ivsize; 434 435 /* Minimum size to ensure buffer does not straddle a page. */ 436 size += (bs - 1) & ~(alignmask | a); 437 } 438 439 walk->buffer = kmalloc(size, skcipher_walk_gfp(walk)); 440 if (!walk->buffer) 441 return -ENOMEM; 442 443 iv = PTR_ALIGN(walk->buffer, alignmask + 1); 444 iv = skcipher_get_spot(iv, bs) + aligned_bs; 445 446 walk->iv = memcpy(iv, walk->iv, walk->ivsize); 447 return 0; 448 } 449 450 static int skcipher_walk_first(struct skcipher_walk *walk) 451 { 452 if (WARN_ON_ONCE(in_hardirq())) 453 return -EDEADLK; 454 455 walk->buffer = NULL; 456 if (unlikely(((unsigned long)walk->iv & walk->alignmask))) { 457 int err = skcipher_copy_iv(walk); 458 if (err) 459 return err; 460 } 461 462 walk->page = NULL; 463 464 return skcipher_walk_next(walk); 465 } 466 467 static int skcipher_walk_skcipher(struct skcipher_walk *walk, 468 struct skcipher_request *req) 469 { 470 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 471 472 walk->total = req->cryptlen; 473 walk->nbytes = 0; 474 walk->iv = req->iv; 475 walk->oiv = req->iv; 476 477 if (unlikely(!walk->total)) 478 return 0; 479 480 scatterwalk_start(&walk->in, req->src); 481 scatterwalk_start(&walk->out, req->dst); 482 483 walk->flags &= ~SKCIPHER_WALK_SLEEP; 484 walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? 485 SKCIPHER_WALK_SLEEP : 0; 486 487 walk->blocksize = crypto_skcipher_blocksize(tfm); 488 walk->stride = crypto_skcipher_walksize(tfm); 489 walk->ivsize = crypto_skcipher_ivsize(tfm); 490 walk->alignmask = crypto_skcipher_alignmask(tfm); 491 492 return skcipher_walk_first(walk); 493 } 494 495 int skcipher_walk_virt(struct skcipher_walk *walk, 496 struct skcipher_request *req, bool atomic) 497 { 498 int err; 499 500 might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP); 501 502 walk->flags &= ~SKCIPHER_WALK_PHYS; 503 504 err = skcipher_walk_skcipher(walk, req); 505 506 walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0; 507 508 return err; 509 } 510 EXPORT_SYMBOL_GPL(skcipher_walk_virt); 511 512 int skcipher_walk_async(struct skcipher_walk *walk, 513 struct skcipher_request *req) 514 { 515 walk->flags |= SKCIPHER_WALK_PHYS; 516 517 INIT_LIST_HEAD(&walk->buffers); 518 519 return skcipher_walk_skcipher(walk, req); 520 } 521 EXPORT_SYMBOL_GPL(skcipher_walk_async); 522 523 static int skcipher_walk_aead_common(struct skcipher_walk *walk, 524 struct aead_request *req, bool atomic) 525 { 526 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 527 int err; 528 529 walk->nbytes = 0; 530 walk->iv = req->iv; 531 walk->oiv = req->iv; 532 533 if (unlikely(!walk->total)) 534 return 0; 535 536 walk->flags &= ~SKCIPHER_WALK_PHYS; 537 538 scatterwalk_start(&walk->in, req->src); 539 scatterwalk_start(&walk->out, req->dst); 540 541 scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2); 542 scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2); 543 544 scatterwalk_done(&walk->in, 0, walk->total); 545 scatterwalk_done(&walk->out, 0, walk->total); 546 547 if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) 548 walk->flags |= SKCIPHER_WALK_SLEEP; 549 else 550 walk->flags &= ~SKCIPHER_WALK_SLEEP; 551 552 walk->blocksize = crypto_aead_blocksize(tfm); 553 walk->stride = crypto_aead_chunksize(tfm); 554 walk->ivsize = crypto_aead_ivsize(tfm); 555 walk->alignmask = crypto_aead_alignmask(tfm); 556 557 err = skcipher_walk_first(walk); 558 559 if (atomic) 560 walk->flags &= ~SKCIPHER_WALK_SLEEP; 561 562 return err; 563 } 564 565 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk, 566 struct aead_request *req, bool atomic) 567 { 568 walk->total = req->cryptlen; 569 570 return skcipher_walk_aead_common(walk, req, atomic); 571 } 572 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt); 573 574 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk, 575 struct aead_request *req, bool atomic) 576 { 577 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 578 579 walk->total = req->cryptlen - crypto_aead_authsize(tfm); 580 581 return skcipher_walk_aead_common(walk, req, atomic); 582 } 583 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt); 584 585 static void skcipher_set_needkey(struct crypto_skcipher *tfm) 586 { 587 if (crypto_skcipher_max_keysize(tfm) != 0) 588 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY); 589 } 590 591 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm, 592 const u8 *key, unsigned int keylen) 593 { 594 unsigned long alignmask = crypto_skcipher_alignmask(tfm); 595 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); 596 u8 *buffer, *alignbuffer; 597 unsigned long absize; 598 int ret; 599 600 absize = keylen + alignmask; 601 buffer = kmalloc(absize, GFP_ATOMIC); 602 if (!buffer) 603 return -ENOMEM; 604 605 alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1); 606 memcpy(alignbuffer, key, keylen); 607 ret = cipher->setkey(tfm, alignbuffer, keylen); 608 kfree_sensitive(buffer); 609 return ret; 610 } 611 612 int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, 613 unsigned int keylen) 614 { 615 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); 616 unsigned long alignmask = crypto_skcipher_alignmask(tfm); 617 int err; 618 619 if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) 620 return -EINVAL; 621 622 if ((unsigned long)key & alignmask) 623 err = skcipher_setkey_unaligned(tfm, key, keylen); 624 else 625 err = cipher->setkey(tfm, key, keylen); 626 627 if (unlikely(err)) { 628 skcipher_set_needkey(tfm); 629 return err; 630 } 631 632 crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); 633 return 0; 634 } 635 EXPORT_SYMBOL_GPL(crypto_skcipher_setkey); 636 637 int crypto_skcipher_encrypt(struct skcipher_request *req) 638 { 639 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 640 struct skcipher_alg *alg = crypto_skcipher_alg(tfm); 641 int ret; 642 643 if (IS_ENABLED(CONFIG_CRYPTO_STATS)) { 644 struct crypto_istat_cipher *istat = skcipher_get_stat(alg); 645 646 atomic64_inc(&istat->encrypt_cnt); 647 atomic64_add(req->cryptlen, &istat->encrypt_tlen); 648 } 649 650 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 651 ret = -ENOKEY; 652 else 653 ret = alg->encrypt(req); 654 655 return crypto_skcipher_errstat(alg, ret); 656 } 657 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt); 658 659 int crypto_skcipher_decrypt(struct skcipher_request *req) 660 { 661 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 662 struct skcipher_alg *alg = crypto_skcipher_alg(tfm); 663 int ret; 664 665 if (IS_ENABLED(CONFIG_CRYPTO_STATS)) { 666 struct crypto_istat_cipher *istat = skcipher_get_stat(alg); 667 668 atomic64_inc(&istat->decrypt_cnt); 669 atomic64_add(req->cryptlen, &istat->decrypt_tlen); 670 } 671 672 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 673 ret = -ENOKEY; 674 else 675 ret = alg->decrypt(req); 676 677 return crypto_skcipher_errstat(alg, ret); 678 } 679 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt); 680 681 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm) 682 { 683 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); 684 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); 685 686 alg->exit(skcipher); 687 } 688 689 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm) 690 { 691 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); 692 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); 693 694 skcipher_set_needkey(skcipher); 695 696 if (alg->exit) 697 skcipher->base.exit = crypto_skcipher_exit_tfm; 698 699 if (alg->init) 700 return alg->init(skcipher); 701 702 return 0; 703 } 704 705 static void crypto_skcipher_free_instance(struct crypto_instance *inst) 706 { 707 struct skcipher_instance *skcipher = 708 container_of(inst, struct skcipher_instance, s.base); 709 710 skcipher->free(skcipher); 711 } 712 713 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) 714 __maybe_unused; 715 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) 716 { 717 struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg); 718 719 seq_printf(m, "type : skcipher\n"); 720 seq_printf(m, "async : %s\n", 721 alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no"); 722 seq_printf(m, "blocksize : %u\n", alg->cra_blocksize); 723 seq_printf(m, "min keysize : %u\n", skcipher->min_keysize); 724 seq_printf(m, "max keysize : %u\n", skcipher->max_keysize); 725 seq_printf(m, "ivsize : %u\n", skcipher->ivsize); 726 seq_printf(m, "chunksize : %u\n", skcipher->chunksize); 727 seq_printf(m, "walksize : %u\n", skcipher->walksize); 728 } 729 730 static int __maybe_unused crypto_skcipher_report( 731 struct sk_buff *skb, struct crypto_alg *alg) 732 { 733 struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg); 734 struct crypto_report_blkcipher rblkcipher; 735 736 memset(&rblkcipher, 0, sizeof(rblkcipher)); 737 738 strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type)); 739 strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv)); 740 741 rblkcipher.blocksize = alg->cra_blocksize; 742 rblkcipher.min_keysize = skcipher->min_keysize; 743 rblkcipher.max_keysize = skcipher->max_keysize; 744 rblkcipher.ivsize = skcipher->ivsize; 745 746 return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER, 747 sizeof(rblkcipher), &rblkcipher); 748 } 749 750 static int __maybe_unused crypto_skcipher_report_stat( 751 struct sk_buff *skb, struct crypto_alg *alg) 752 { 753 struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg); 754 struct crypto_istat_cipher *istat; 755 struct crypto_stat_cipher rcipher; 756 757 istat = skcipher_get_stat(skcipher); 758 759 memset(&rcipher, 0, sizeof(rcipher)); 760 761 strscpy(rcipher.type, "cipher", sizeof(rcipher.type)); 762 763 rcipher.stat_encrypt_cnt = atomic64_read(&istat->encrypt_cnt); 764 rcipher.stat_encrypt_tlen = atomic64_read(&istat->encrypt_tlen); 765 rcipher.stat_decrypt_cnt = atomic64_read(&istat->decrypt_cnt); 766 rcipher.stat_decrypt_tlen = atomic64_read(&istat->decrypt_tlen); 767 rcipher.stat_err_cnt = atomic64_read(&istat->err_cnt); 768 769 return nla_put(skb, CRYPTOCFGA_STAT_CIPHER, sizeof(rcipher), &rcipher); 770 } 771 772 static const struct crypto_type crypto_skcipher_type = { 773 .extsize = crypto_alg_extsize, 774 .init_tfm = crypto_skcipher_init_tfm, 775 .free = crypto_skcipher_free_instance, 776 #ifdef CONFIG_PROC_FS 777 .show = crypto_skcipher_show, 778 #endif 779 #ifdef CONFIG_CRYPTO_USER 780 .report = crypto_skcipher_report, 781 #endif 782 #ifdef CONFIG_CRYPTO_STATS 783 .report_stat = crypto_skcipher_report_stat, 784 #endif 785 .maskclear = ~CRYPTO_ALG_TYPE_MASK, 786 .maskset = CRYPTO_ALG_TYPE_MASK, 787 .type = CRYPTO_ALG_TYPE_SKCIPHER, 788 .tfmsize = offsetof(struct crypto_skcipher, base), 789 }; 790 791 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn, 792 struct crypto_instance *inst, 793 const char *name, u32 type, u32 mask) 794 { 795 spawn->base.frontend = &crypto_skcipher_type; 796 return crypto_grab_spawn(&spawn->base, inst, name, type, mask); 797 } 798 EXPORT_SYMBOL_GPL(crypto_grab_skcipher); 799 800 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, 801 u32 type, u32 mask) 802 { 803 return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask); 804 } 805 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher); 806 807 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher( 808 const char *alg_name, u32 type, u32 mask) 809 { 810 struct crypto_skcipher *tfm; 811 812 /* Only sync algorithms allowed. */ 813 mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_SKCIPHER_REQSIZE_LARGE; 814 815 tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask); 816 817 /* 818 * Make sure we do not allocate something that might get used with 819 * an on-stack request: check the request size. 820 */ 821 if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) > 822 MAX_SYNC_SKCIPHER_REQSIZE)) { 823 crypto_free_skcipher(tfm); 824 return ERR_PTR(-EINVAL); 825 } 826 827 return (struct crypto_sync_skcipher *)tfm; 828 } 829 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher); 830 831 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask) 832 { 833 return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask); 834 } 835 EXPORT_SYMBOL_GPL(crypto_has_skcipher); 836 837 static int skcipher_prepare_alg(struct skcipher_alg *alg) 838 { 839 struct crypto_istat_cipher *istat = skcipher_get_stat(alg); 840 struct crypto_alg *base = &alg->base; 841 842 if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 || 843 alg->walksize > PAGE_SIZE / 8) 844 return -EINVAL; 845 846 if (!alg->chunksize) 847 alg->chunksize = base->cra_blocksize; 848 if (!alg->walksize) 849 alg->walksize = alg->chunksize; 850 851 base->cra_type = &crypto_skcipher_type; 852 base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK; 853 base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER; 854 855 if (IS_ENABLED(CONFIG_CRYPTO_STATS)) 856 memset(istat, 0, sizeof(*istat)); 857 858 return 0; 859 } 860 861 int crypto_register_skcipher(struct skcipher_alg *alg) 862 { 863 struct crypto_alg *base = &alg->base; 864 int err; 865 866 err = skcipher_prepare_alg(alg); 867 if (err) 868 return err; 869 870 return crypto_register_alg(base); 871 } 872 EXPORT_SYMBOL_GPL(crypto_register_skcipher); 873 874 void crypto_unregister_skcipher(struct skcipher_alg *alg) 875 { 876 crypto_unregister_alg(&alg->base); 877 } 878 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher); 879 880 int crypto_register_skciphers(struct skcipher_alg *algs, int count) 881 { 882 int i, ret; 883 884 for (i = 0; i < count; i++) { 885 ret = crypto_register_skcipher(&algs[i]); 886 if (ret) 887 goto err; 888 } 889 890 return 0; 891 892 err: 893 for (--i; i >= 0; --i) 894 crypto_unregister_skcipher(&algs[i]); 895 896 return ret; 897 } 898 EXPORT_SYMBOL_GPL(crypto_register_skciphers); 899 900 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count) 901 { 902 int i; 903 904 for (i = count - 1; i >= 0; --i) 905 crypto_unregister_skcipher(&algs[i]); 906 } 907 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers); 908 909 int skcipher_register_instance(struct crypto_template *tmpl, 910 struct skcipher_instance *inst) 911 { 912 int err; 913 914 if (WARN_ON(!inst->free)) 915 return -EINVAL; 916 917 err = skcipher_prepare_alg(&inst->alg); 918 if (err) 919 return err; 920 921 return crypto_register_instance(tmpl, skcipher_crypto_instance(inst)); 922 } 923 EXPORT_SYMBOL_GPL(skcipher_register_instance); 924 925 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key, 926 unsigned int keylen) 927 { 928 struct crypto_cipher *cipher = skcipher_cipher_simple(tfm); 929 930 crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK); 931 crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) & 932 CRYPTO_TFM_REQ_MASK); 933 return crypto_cipher_setkey(cipher, key, keylen); 934 } 935 936 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm) 937 { 938 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 939 struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst); 940 struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); 941 struct crypto_cipher *cipher; 942 943 cipher = crypto_spawn_cipher(spawn); 944 if (IS_ERR(cipher)) 945 return PTR_ERR(cipher); 946 947 ctx->cipher = cipher; 948 return 0; 949 } 950 951 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm) 952 { 953 struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); 954 955 crypto_free_cipher(ctx->cipher); 956 } 957 958 static void skcipher_free_instance_simple(struct skcipher_instance *inst) 959 { 960 crypto_drop_cipher(skcipher_instance_ctx(inst)); 961 kfree(inst); 962 } 963 964 /** 965 * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode 966 * 967 * Allocate an skcipher_instance for a simple block cipher mode of operation, 968 * e.g. cbc or ecb. The instance context will have just a single crypto_spawn, 969 * that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize, 970 * alignmask, and priority are set from the underlying cipher but can be 971 * overridden if needed. The tfm context defaults to skcipher_ctx_simple, and 972 * default ->setkey(), ->init(), and ->exit() methods are installed. 973 * 974 * @tmpl: the template being instantiated 975 * @tb: the template parameters 976 * 977 * Return: a pointer to the new instance, or an ERR_PTR(). The caller still 978 * needs to register the instance. 979 */ 980 struct skcipher_instance *skcipher_alloc_instance_simple( 981 struct crypto_template *tmpl, struct rtattr **tb) 982 { 983 u32 mask; 984 struct skcipher_instance *inst; 985 struct crypto_cipher_spawn *spawn; 986 struct crypto_alg *cipher_alg; 987 int err; 988 989 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); 990 if (err) 991 return ERR_PTR(err); 992 993 inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); 994 if (!inst) 995 return ERR_PTR(-ENOMEM); 996 spawn = skcipher_instance_ctx(inst); 997 998 err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst), 999 crypto_attr_alg_name(tb[1]), 0, mask); 1000 if (err) 1001 goto err_free_inst; 1002 cipher_alg = crypto_spawn_cipher_alg(spawn); 1003 1004 err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name, 1005 cipher_alg); 1006 if (err) 1007 goto err_free_inst; 1008 1009 inst->free = skcipher_free_instance_simple; 1010 1011 /* Default algorithm properties, can be overridden */ 1012 inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize; 1013 inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask; 1014 inst->alg.base.cra_priority = cipher_alg->cra_priority; 1015 inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize; 1016 inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize; 1017 inst->alg.ivsize = cipher_alg->cra_blocksize; 1018 1019 /* Use skcipher_ctx_simple by default, can be overridden */ 1020 inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple); 1021 inst->alg.setkey = skcipher_setkey_simple; 1022 inst->alg.init = skcipher_init_tfm_simple; 1023 inst->alg.exit = skcipher_exit_tfm_simple; 1024 1025 return inst; 1026 1027 err_free_inst: 1028 skcipher_free_instance_simple(inst); 1029 return ERR_PTR(err); 1030 } 1031 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple); 1032 1033 MODULE_LICENSE("GPL"); 1034 MODULE_DESCRIPTION("Symmetric key cipher type"); 1035 MODULE_IMPORT_NS(CRYPTO_INTERNAL); 1036