xref: /openbmc/linux/crypto/skcipher.c (revision a347279d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Symmetric key cipher operations.
4  *
5  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
6  * multiple page boundaries by using temporary blocks.  In user context,
7  * the kernel is given a chance to schedule us once per page.
8  *
9  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
10  */
11 
12 #include <crypto/internal/aead.h>
13 #include <crypto/internal/cipher.h>
14 #include <crypto/internal/skcipher.h>
15 #include <crypto/scatterwalk.h>
16 #include <linux/bug.h>
17 #include <linux/cryptouser.h>
18 #include <linux/compiler.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/seq_file.h>
23 #include <net/netlink.h>
24 
25 #include "internal.h"
26 
27 enum {
28 	SKCIPHER_WALK_PHYS = 1 << 0,
29 	SKCIPHER_WALK_SLOW = 1 << 1,
30 	SKCIPHER_WALK_COPY = 1 << 2,
31 	SKCIPHER_WALK_DIFF = 1 << 3,
32 	SKCIPHER_WALK_SLEEP = 1 << 4,
33 };
34 
35 struct skcipher_walk_buffer {
36 	struct list_head entry;
37 	struct scatter_walk dst;
38 	unsigned int len;
39 	u8 *data;
40 	u8 buffer[];
41 };
42 
43 static int skcipher_walk_next(struct skcipher_walk *walk);
44 
45 static inline void skcipher_map_src(struct skcipher_walk *walk)
46 {
47 	walk->src.virt.addr = scatterwalk_map(&walk->in);
48 }
49 
50 static inline void skcipher_map_dst(struct skcipher_walk *walk)
51 {
52 	walk->dst.virt.addr = scatterwalk_map(&walk->out);
53 }
54 
55 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
56 {
57 	scatterwalk_unmap(walk->src.virt.addr);
58 }
59 
60 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
61 {
62 	scatterwalk_unmap(walk->dst.virt.addr);
63 }
64 
65 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
66 {
67 	return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
68 }
69 
70 /* Get a spot of the specified length that does not straddle a page.
71  * The caller needs to ensure that there is enough space for this operation.
72  */
73 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
74 {
75 	u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
76 
77 	return max(start, end_page);
78 }
79 
80 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
81 {
82 	u8 *addr;
83 
84 	addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
85 	addr = skcipher_get_spot(addr, bsize);
86 	scatterwalk_copychunks(addr, &walk->out, bsize,
87 			       (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
88 	return 0;
89 }
90 
91 int skcipher_walk_done(struct skcipher_walk *walk, int err)
92 {
93 	unsigned int n = walk->nbytes;
94 	unsigned int nbytes = 0;
95 
96 	if (!n)
97 		goto finish;
98 
99 	if (likely(err >= 0)) {
100 		n -= err;
101 		nbytes = walk->total - n;
102 	}
103 
104 	if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
105 				    SKCIPHER_WALK_SLOW |
106 				    SKCIPHER_WALK_COPY |
107 				    SKCIPHER_WALK_DIFF)))) {
108 unmap_src:
109 		skcipher_unmap_src(walk);
110 	} else if (walk->flags & SKCIPHER_WALK_DIFF) {
111 		skcipher_unmap_dst(walk);
112 		goto unmap_src;
113 	} else if (walk->flags & SKCIPHER_WALK_COPY) {
114 		skcipher_map_dst(walk);
115 		memcpy(walk->dst.virt.addr, walk->page, n);
116 		skcipher_unmap_dst(walk);
117 	} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
118 		if (err > 0) {
119 			/*
120 			 * Didn't process all bytes.  Either the algorithm is
121 			 * broken, or this was the last step and it turned out
122 			 * the message wasn't evenly divisible into blocks but
123 			 * the algorithm requires it.
124 			 */
125 			err = -EINVAL;
126 			nbytes = 0;
127 		} else
128 			n = skcipher_done_slow(walk, n);
129 	}
130 
131 	if (err > 0)
132 		err = 0;
133 
134 	walk->total = nbytes;
135 	walk->nbytes = 0;
136 
137 	scatterwalk_advance(&walk->in, n);
138 	scatterwalk_advance(&walk->out, n);
139 	scatterwalk_done(&walk->in, 0, nbytes);
140 	scatterwalk_done(&walk->out, 1, nbytes);
141 
142 	if (nbytes) {
143 		crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
144 			     CRYPTO_TFM_REQ_MAY_SLEEP : 0);
145 		return skcipher_walk_next(walk);
146 	}
147 
148 finish:
149 	/* Short-circuit for the common/fast path. */
150 	if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
151 		goto out;
152 
153 	if (walk->flags & SKCIPHER_WALK_PHYS)
154 		goto out;
155 
156 	if (walk->iv != walk->oiv)
157 		memcpy(walk->oiv, walk->iv, walk->ivsize);
158 	if (walk->buffer != walk->page)
159 		kfree(walk->buffer);
160 	if (walk->page)
161 		free_page((unsigned long)walk->page);
162 
163 out:
164 	return err;
165 }
166 EXPORT_SYMBOL_GPL(skcipher_walk_done);
167 
168 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
169 {
170 	struct skcipher_walk_buffer *p, *tmp;
171 
172 	list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
173 		u8 *data;
174 
175 		if (err)
176 			goto done;
177 
178 		data = p->data;
179 		if (!data) {
180 			data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
181 			data = skcipher_get_spot(data, walk->stride);
182 		}
183 
184 		scatterwalk_copychunks(data, &p->dst, p->len, 1);
185 
186 		if (offset_in_page(p->data) + p->len + walk->stride >
187 		    PAGE_SIZE)
188 			free_page((unsigned long)p->data);
189 
190 done:
191 		list_del(&p->entry);
192 		kfree(p);
193 	}
194 
195 	if (!err && walk->iv != walk->oiv)
196 		memcpy(walk->oiv, walk->iv, walk->ivsize);
197 	if (walk->buffer != walk->page)
198 		kfree(walk->buffer);
199 	if (walk->page)
200 		free_page((unsigned long)walk->page);
201 }
202 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
203 
204 static void skcipher_queue_write(struct skcipher_walk *walk,
205 				 struct skcipher_walk_buffer *p)
206 {
207 	p->dst = walk->out;
208 	list_add_tail(&p->entry, &walk->buffers);
209 }
210 
211 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
212 {
213 	bool phys = walk->flags & SKCIPHER_WALK_PHYS;
214 	unsigned alignmask = walk->alignmask;
215 	struct skcipher_walk_buffer *p;
216 	unsigned a;
217 	unsigned n;
218 	u8 *buffer;
219 	void *v;
220 
221 	if (!phys) {
222 		if (!walk->buffer)
223 			walk->buffer = walk->page;
224 		buffer = walk->buffer;
225 		if (buffer)
226 			goto ok;
227 	}
228 
229 	/* Start with the minimum alignment of kmalloc. */
230 	a = crypto_tfm_ctx_alignment() - 1;
231 	n = bsize;
232 
233 	if (phys) {
234 		/* Calculate the minimum alignment of p->buffer. */
235 		a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
236 		n += sizeof(*p);
237 	}
238 
239 	/* Minimum size to align p->buffer by alignmask. */
240 	n += alignmask & ~a;
241 
242 	/* Minimum size to ensure p->buffer does not straddle a page. */
243 	n += (bsize - 1) & ~(alignmask | a);
244 
245 	v = kzalloc(n, skcipher_walk_gfp(walk));
246 	if (!v)
247 		return skcipher_walk_done(walk, -ENOMEM);
248 
249 	if (phys) {
250 		p = v;
251 		p->len = bsize;
252 		skcipher_queue_write(walk, p);
253 		buffer = p->buffer;
254 	} else {
255 		walk->buffer = v;
256 		buffer = v;
257 	}
258 
259 ok:
260 	walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
261 	walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
262 	walk->src.virt.addr = walk->dst.virt.addr;
263 
264 	scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
265 
266 	walk->nbytes = bsize;
267 	walk->flags |= SKCIPHER_WALK_SLOW;
268 
269 	return 0;
270 }
271 
272 static int skcipher_next_copy(struct skcipher_walk *walk)
273 {
274 	struct skcipher_walk_buffer *p;
275 	u8 *tmp = walk->page;
276 
277 	skcipher_map_src(walk);
278 	memcpy(tmp, walk->src.virt.addr, walk->nbytes);
279 	skcipher_unmap_src(walk);
280 
281 	walk->src.virt.addr = tmp;
282 	walk->dst.virt.addr = tmp;
283 
284 	if (!(walk->flags & SKCIPHER_WALK_PHYS))
285 		return 0;
286 
287 	p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
288 	if (!p)
289 		return -ENOMEM;
290 
291 	p->data = walk->page;
292 	p->len = walk->nbytes;
293 	skcipher_queue_write(walk, p);
294 
295 	if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
296 	    PAGE_SIZE)
297 		walk->page = NULL;
298 	else
299 		walk->page += walk->nbytes;
300 
301 	return 0;
302 }
303 
304 static int skcipher_next_fast(struct skcipher_walk *walk)
305 {
306 	unsigned long diff;
307 
308 	walk->src.phys.page = scatterwalk_page(&walk->in);
309 	walk->src.phys.offset = offset_in_page(walk->in.offset);
310 	walk->dst.phys.page = scatterwalk_page(&walk->out);
311 	walk->dst.phys.offset = offset_in_page(walk->out.offset);
312 
313 	if (walk->flags & SKCIPHER_WALK_PHYS)
314 		return 0;
315 
316 	diff = walk->src.phys.offset - walk->dst.phys.offset;
317 	diff |= walk->src.virt.page - walk->dst.virt.page;
318 
319 	skcipher_map_src(walk);
320 	walk->dst.virt.addr = walk->src.virt.addr;
321 
322 	if (diff) {
323 		walk->flags |= SKCIPHER_WALK_DIFF;
324 		skcipher_map_dst(walk);
325 	}
326 
327 	return 0;
328 }
329 
330 static int skcipher_walk_next(struct skcipher_walk *walk)
331 {
332 	unsigned int bsize;
333 	unsigned int n;
334 	int err;
335 
336 	walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
337 			 SKCIPHER_WALK_DIFF);
338 
339 	n = walk->total;
340 	bsize = min(walk->stride, max(n, walk->blocksize));
341 	n = scatterwalk_clamp(&walk->in, n);
342 	n = scatterwalk_clamp(&walk->out, n);
343 
344 	if (unlikely(n < bsize)) {
345 		if (unlikely(walk->total < walk->blocksize))
346 			return skcipher_walk_done(walk, -EINVAL);
347 
348 slow_path:
349 		err = skcipher_next_slow(walk, bsize);
350 		goto set_phys_lowmem;
351 	}
352 
353 	if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
354 		if (!walk->page) {
355 			gfp_t gfp = skcipher_walk_gfp(walk);
356 
357 			walk->page = (void *)__get_free_page(gfp);
358 			if (!walk->page)
359 				goto slow_path;
360 		}
361 
362 		walk->nbytes = min_t(unsigned, n,
363 				     PAGE_SIZE - offset_in_page(walk->page));
364 		walk->flags |= SKCIPHER_WALK_COPY;
365 		err = skcipher_next_copy(walk);
366 		goto set_phys_lowmem;
367 	}
368 
369 	walk->nbytes = n;
370 
371 	return skcipher_next_fast(walk);
372 
373 set_phys_lowmem:
374 	if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
375 		walk->src.phys.page = virt_to_page(walk->src.virt.addr);
376 		walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
377 		walk->src.phys.offset &= PAGE_SIZE - 1;
378 		walk->dst.phys.offset &= PAGE_SIZE - 1;
379 	}
380 	return err;
381 }
382 
383 static int skcipher_copy_iv(struct skcipher_walk *walk)
384 {
385 	unsigned a = crypto_tfm_ctx_alignment() - 1;
386 	unsigned alignmask = walk->alignmask;
387 	unsigned ivsize = walk->ivsize;
388 	unsigned bs = walk->stride;
389 	unsigned aligned_bs;
390 	unsigned size;
391 	u8 *iv;
392 
393 	aligned_bs = ALIGN(bs, alignmask + 1);
394 
395 	/* Minimum size to align buffer by alignmask. */
396 	size = alignmask & ~a;
397 
398 	if (walk->flags & SKCIPHER_WALK_PHYS)
399 		size += ivsize;
400 	else {
401 		size += aligned_bs + ivsize;
402 
403 		/* Minimum size to ensure buffer does not straddle a page. */
404 		size += (bs - 1) & ~(alignmask | a);
405 	}
406 
407 	walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
408 	if (!walk->buffer)
409 		return -ENOMEM;
410 
411 	iv = PTR_ALIGN(walk->buffer, alignmask + 1);
412 	iv = skcipher_get_spot(iv, bs) + aligned_bs;
413 
414 	walk->iv = memcpy(iv, walk->iv, walk->ivsize);
415 	return 0;
416 }
417 
418 static int skcipher_walk_first(struct skcipher_walk *walk)
419 {
420 	if (WARN_ON_ONCE(in_hardirq()))
421 		return -EDEADLK;
422 
423 	walk->buffer = NULL;
424 	if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
425 		int err = skcipher_copy_iv(walk);
426 		if (err)
427 			return err;
428 	}
429 
430 	walk->page = NULL;
431 
432 	return skcipher_walk_next(walk);
433 }
434 
435 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
436 				  struct skcipher_request *req)
437 {
438 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
439 
440 	walk->total = req->cryptlen;
441 	walk->nbytes = 0;
442 	walk->iv = req->iv;
443 	walk->oiv = req->iv;
444 
445 	if (unlikely(!walk->total))
446 		return 0;
447 
448 	scatterwalk_start(&walk->in, req->src);
449 	scatterwalk_start(&walk->out, req->dst);
450 
451 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
452 	walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
453 		       SKCIPHER_WALK_SLEEP : 0;
454 
455 	walk->blocksize = crypto_skcipher_blocksize(tfm);
456 	walk->stride = crypto_skcipher_walksize(tfm);
457 	walk->ivsize = crypto_skcipher_ivsize(tfm);
458 	walk->alignmask = crypto_skcipher_alignmask(tfm);
459 
460 	return skcipher_walk_first(walk);
461 }
462 
463 int skcipher_walk_virt(struct skcipher_walk *walk,
464 		       struct skcipher_request *req, bool atomic)
465 {
466 	int err;
467 
468 	might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
469 
470 	walk->flags &= ~SKCIPHER_WALK_PHYS;
471 
472 	err = skcipher_walk_skcipher(walk, req);
473 
474 	walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
475 
476 	return err;
477 }
478 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
479 
480 int skcipher_walk_async(struct skcipher_walk *walk,
481 			struct skcipher_request *req)
482 {
483 	walk->flags |= SKCIPHER_WALK_PHYS;
484 
485 	INIT_LIST_HEAD(&walk->buffers);
486 
487 	return skcipher_walk_skcipher(walk, req);
488 }
489 EXPORT_SYMBOL_GPL(skcipher_walk_async);
490 
491 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
492 				     struct aead_request *req, bool atomic)
493 {
494 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
495 	int err;
496 
497 	walk->nbytes = 0;
498 	walk->iv = req->iv;
499 	walk->oiv = req->iv;
500 
501 	if (unlikely(!walk->total))
502 		return 0;
503 
504 	walk->flags &= ~SKCIPHER_WALK_PHYS;
505 
506 	scatterwalk_start(&walk->in, req->src);
507 	scatterwalk_start(&walk->out, req->dst);
508 
509 	scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
510 	scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
511 
512 	scatterwalk_done(&walk->in, 0, walk->total);
513 	scatterwalk_done(&walk->out, 0, walk->total);
514 
515 	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
516 		walk->flags |= SKCIPHER_WALK_SLEEP;
517 	else
518 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
519 
520 	walk->blocksize = crypto_aead_blocksize(tfm);
521 	walk->stride = crypto_aead_chunksize(tfm);
522 	walk->ivsize = crypto_aead_ivsize(tfm);
523 	walk->alignmask = crypto_aead_alignmask(tfm);
524 
525 	err = skcipher_walk_first(walk);
526 
527 	if (atomic)
528 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
529 
530 	return err;
531 }
532 
533 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
534 			       struct aead_request *req, bool atomic)
535 {
536 	walk->total = req->cryptlen;
537 
538 	return skcipher_walk_aead_common(walk, req, atomic);
539 }
540 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
541 
542 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
543 			       struct aead_request *req, bool atomic)
544 {
545 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
546 
547 	walk->total = req->cryptlen - crypto_aead_authsize(tfm);
548 
549 	return skcipher_walk_aead_common(walk, req, atomic);
550 }
551 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
552 
553 static void skcipher_set_needkey(struct crypto_skcipher *tfm)
554 {
555 	if (crypto_skcipher_max_keysize(tfm) != 0)
556 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
557 }
558 
559 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
560 				     const u8 *key, unsigned int keylen)
561 {
562 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
563 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
564 	u8 *buffer, *alignbuffer;
565 	unsigned long absize;
566 	int ret;
567 
568 	absize = keylen + alignmask;
569 	buffer = kmalloc(absize, GFP_ATOMIC);
570 	if (!buffer)
571 		return -ENOMEM;
572 
573 	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
574 	memcpy(alignbuffer, key, keylen);
575 	ret = cipher->setkey(tfm, alignbuffer, keylen);
576 	kfree_sensitive(buffer);
577 	return ret;
578 }
579 
580 int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
581 			   unsigned int keylen)
582 {
583 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
584 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
585 	int err;
586 
587 	if (keylen < cipher->min_keysize || keylen > cipher->max_keysize)
588 		return -EINVAL;
589 
590 	if ((unsigned long)key & alignmask)
591 		err = skcipher_setkey_unaligned(tfm, key, keylen);
592 	else
593 		err = cipher->setkey(tfm, key, keylen);
594 
595 	if (unlikely(err)) {
596 		skcipher_set_needkey(tfm);
597 		return err;
598 	}
599 
600 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
601 	return 0;
602 }
603 EXPORT_SYMBOL_GPL(crypto_skcipher_setkey);
604 
605 int crypto_skcipher_encrypt(struct skcipher_request *req)
606 {
607 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
608 	struct crypto_alg *alg = tfm->base.__crt_alg;
609 	unsigned int cryptlen = req->cryptlen;
610 	int ret;
611 
612 	crypto_stats_get(alg);
613 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
614 		ret = -ENOKEY;
615 	else
616 		ret = crypto_skcipher_alg(tfm)->encrypt(req);
617 	crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
618 	return ret;
619 }
620 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
621 
622 int crypto_skcipher_decrypt(struct skcipher_request *req)
623 {
624 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
625 	struct crypto_alg *alg = tfm->base.__crt_alg;
626 	unsigned int cryptlen = req->cryptlen;
627 	int ret;
628 
629 	crypto_stats_get(alg);
630 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
631 		ret = -ENOKEY;
632 	else
633 		ret = crypto_skcipher_alg(tfm)->decrypt(req);
634 	crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
635 	return ret;
636 }
637 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
638 
639 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
640 {
641 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
642 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
643 
644 	alg->exit(skcipher);
645 }
646 
647 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
648 {
649 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
650 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
651 
652 	skcipher_set_needkey(skcipher);
653 
654 	if (alg->exit)
655 		skcipher->base.exit = crypto_skcipher_exit_tfm;
656 
657 	if (alg->init)
658 		return alg->init(skcipher);
659 
660 	return 0;
661 }
662 
663 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
664 {
665 	struct skcipher_instance *skcipher =
666 		container_of(inst, struct skcipher_instance, s.base);
667 
668 	skcipher->free(skcipher);
669 }
670 
671 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
672 	__maybe_unused;
673 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
674 {
675 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
676 						     base);
677 
678 	seq_printf(m, "type         : skcipher\n");
679 	seq_printf(m, "async        : %s\n",
680 		   alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
681 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
682 	seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
683 	seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
684 	seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
685 	seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
686 	seq_printf(m, "walksize     : %u\n", skcipher->walksize);
687 }
688 
689 #ifdef CONFIG_NET
690 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
691 {
692 	struct crypto_report_blkcipher rblkcipher;
693 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
694 						     base);
695 
696 	memset(&rblkcipher, 0, sizeof(rblkcipher));
697 
698 	strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
699 	strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
700 
701 	rblkcipher.blocksize = alg->cra_blocksize;
702 	rblkcipher.min_keysize = skcipher->min_keysize;
703 	rblkcipher.max_keysize = skcipher->max_keysize;
704 	rblkcipher.ivsize = skcipher->ivsize;
705 
706 	return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
707 		       sizeof(rblkcipher), &rblkcipher);
708 }
709 #else
710 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
711 {
712 	return -ENOSYS;
713 }
714 #endif
715 
716 static const struct crypto_type crypto_skcipher_type = {
717 	.extsize = crypto_alg_extsize,
718 	.init_tfm = crypto_skcipher_init_tfm,
719 	.free = crypto_skcipher_free_instance,
720 #ifdef CONFIG_PROC_FS
721 	.show = crypto_skcipher_show,
722 #endif
723 	.report = crypto_skcipher_report,
724 	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
725 	.maskset = CRYPTO_ALG_TYPE_MASK,
726 	.type = CRYPTO_ALG_TYPE_SKCIPHER,
727 	.tfmsize = offsetof(struct crypto_skcipher, base),
728 };
729 
730 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
731 			 struct crypto_instance *inst,
732 			 const char *name, u32 type, u32 mask)
733 {
734 	spawn->base.frontend = &crypto_skcipher_type;
735 	return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
736 }
737 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
738 
739 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
740 					      u32 type, u32 mask)
741 {
742 	return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
743 }
744 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
745 
746 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
747 				const char *alg_name, u32 type, u32 mask)
748 {
749 	struct crypto_skcipher *tfm;
750 
751 	/* Only sync algorithms allowed. */
752 	mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_SKCIPHER_REQSIZE_LARGE;
753 
754 	tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
755 
756 	/*
757 	 * Make sure we do not allocate something that might get used with
758 	 * an on-stack request: check the request size.
759 	 */
760 	if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
761 				    MAX_SYNC_SKCIPHER_REQSIZE)) {
762 		crypto_free_skcipher(tfm);
763 		return ERR_PTR(-EINVAL);
764 	}
765 
766 	return (struct crypto_sync_skcipher *)tfm;
767 }
768 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
769 
770 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
771 {
772 	return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask);
773 }
774 EXPORT_SYMBOL_GPL(crypto_has_skcipher);
775 
776 static int skcipher_prepare_alg(struct skcipher_alg *alg)
777 {
778 	struct crypto_alg *base = &alg->base;
779 
780 	if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
781 	    alg->walksize > PAGE_SIZE / 8)
782 		return -EINVAL;
783 
784 	if (!alg->chunksize)
785 		alg->chunksize = base->cra_blocksize;
786 	if (!alg->walksize)
787 		alg->walksize = alg->chunksize;
788 
789 	base->cra_type = &crypto_skcipher_type;
790 	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
791 	base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
792 
793 	return 0;
794 }
795 
796 int crypto_register_skcipher(struct skcipher_alg *alg)
797 {
798 	struct crypto_alg *base = &alg->base;
799 	int err;
800 
801 	err = skcipher_prepare_alg(alg);
802 	if (err)
803 		return err;
804 
805 	return crypto_register_alg(base);
806 }
807 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
808 
809 void crypto_unregister_skcipher(struct skcipher_alg *alg)
810 {
811 	crypto_unregister_alg(&alg->base);
812 }
813 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
814 
815 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
816 {
817 	int i, ret;
818 
819 	for (i = 0; i < count; i++) {
820 		ret = crypto_register_skcipher(&algs[i]);
821 		if (ret)
822 			goto err;
823 	}
824 
825 	return 0;
826 
827 err:
828 	for (--i; i >= 0; --i)
829 		crypto_unregister_skcipher(&algs[i]);
830 
831 	return ret;
832 }
833 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
834 
835 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
836 {
837 	int i;
838 
839 	for (i = count - 1; i >= 0; --i)
840 		crypto_unregister_skcipher(&algs[i]);
841 }
842 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
843 
844 int skcipher_register_instance(struct crypto_template *tmpl,
845 			   struct skcipher_instance *inst)
846 {
847 	int err;
848 
849 	if (WARN_ON(!inst->free))
850 		return -EINVAL;
851 
852 	err = skcipher_prepare_alg(&inst->alg);
853 	if (err)
854 		return err;
855 
856 	return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
857 }
858 EXPORT_SYMBOL_GPL(skcipher_register_instance);
859 
860 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
861 				  unsigned int keylen)
862 {
863 	struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
864 
865 	crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
866 	crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
867 				CRYPTO_TFM_REQ_MASK);
868 	return crypto_cipher_setkey(cipher, key, keylen);
869 }
870 
871 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
872 {
873 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
874 	struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst);
875 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
876 	struct crypto_cipher *cipher;
877 
878 	cipher = crypto_spawn_cipher(spawn);
879 	if (IS_ERR(cipher))
880 		return PTR_ERR(cipher);
881 
882 	ctx->cipher = cipher;
883 	return 0;
884 }
885 
886 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
887 {
888 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
889 
890 	crypto_free_cipher(ctx->cipher);
891 }
892 
893 static void skcipher_free_instance_simple(struct skcipher_instance *inst)
894 {
895 	crypto_drop_cipher(skcipher_instance_ctx(inst));
896 	kfree(inst);
897 }
898 
899 /**
900  * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
901  *
902  * Allocate an skcipher_instance for a simple block cipher mode of operation,
903  * e.g. cbc or ecb.  The instance context will have just a single crypto_spawn,
904  * that for the underlying cipher.  The {min,max}_keysize, ivsize, blocksize,
905  * alignmask, and priority are set from the underlying cipher but can be
906  * overridden if needed.  The tfm context defaults to skcipher_ctx_simple, and
907  * default ->setkey(), ->init(), and ->exit() methods are installed.
908  *
909  * @tmpl: the template being instantiated
910  * @tb: the template parameters
911  *
912  * Return: a pointer to the new instance, or an ERR_PTR().  The caller still
913  *	   needs to register the instance.
914  */
915 struct skcipher_instance *skcipher_alloc_instance_simple(
916 	struct crypto_template *tmpl, struct rtattr **tb)
917 {
918 	u32 mask;
919 	struct skcipher_instance *inst;
920 	struct crypto_cipher_spawn *spawn;
921 	struct crypto_alg *cipher_alg;
922 	int err;
923 
924 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
925 	if (err)
926 		return ERR_PTR(err);
927 
928 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
929 	if (!inst)
930 		return ERR_PTR(-ENOMEM);
931 	spawn = skcipher_instance_ctx(inst);
932 
933 	err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst),
934 				 crypto_attr_alg_name(tb[1]), 0, mask);
935 	if (err)
936 		goto err_free_inst;
937 	cipher_alg = crypto_spawn_cipher_alg(spawn);
938 
939 	err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
940 				  cipher_alg);
941 	if (err)
942 		goto err_free_inst;
943 
944 	inst->free = skcipher_free_instance_simple;
945 
946 	/* Default algorithm properties, can be overridden */
947 	inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
948 	inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
949 	inst->alg.base.cra_priority = cipher_alg->cra_priority;
950 	inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
951 	inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
952 	inst->alg.ivsize = cipher_alg->cra_blocksize;
953 
954 	/* Use skcipher_ctx_simple by default, can be overridden */
955 	inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
956 	inst->alg.setkey = skcipher_setkey_simple;
957 	inst->alg.init = skcipher_init_tfm_simple;
958 	inst->alg.exit = skcipher_exit_tfm_simple;
959 
960 	return inst;
961 
962 err_free_inst:
963 	skcipher_free_instance_simple(inst);
964 	return ERR_PTR(err);
965 }
966 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
967 
968 MODULE_LICENSE("GPL");
969 MODULE_DESCRIPTION("Symmetric key cipher type");
970 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
971