xref: /openbmc/linux/crypto/skcipher.c (revision 5b4cb650)
1 /*
2  * Symmetric key cipher operations.
3  *
4  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
5  * multiple page boundaries by using temporary blocks.  In user context,
6  * the kernel is given a chance to schedule us once per page.
7  *
8  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; either version 2 of the License, or (at your option)
13  * any later version.
14  *
15  */
16 
17 #include <crypto/internal/aead.h>
18 #include <crypto/internal/skcipher.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/bug.h>
21 #include <linux/cryptouser.h>
22 #include <linux/compiler.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/rtnetlink.h>
26 #include <linux/seq_file.h>
27 #include <net/netlink.h>
28 
29 #include "internal.h"
30 
31 enum {
32 	SKCIPHER_WALK_PHYS = 1 << 0,
33 	SKCIPHER_WALK_SLOW = 1 << 1,
34 	SKCIPHER_WALK_COPY = 1 << 2,
35 	SKCIPHER_WALK_DIFF = 1 << 3,
36 	SKCIPHER_WALK_SLEEP = 1 << 4,
37 };
38 
39 struct skcipher_walk_buffer {
40 	struct list_head entry;
41 	struct scatter_walk dst;
42 	unsigned int len;
43 	u8 *data;
44 	u8 buffer[];
45 };
46 
47 static int skcipher_walk_next(struct skcipher_walk *walk);
48 
49 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
50 {
51 	if (PageHighMem(scatterwalk_page(walk)))
52 		kunmap_atomic(vaddr);
53 }
54 
55 static inline void *skcipher_map(struct scatter_walk *walk)
56 {
57 	struct page *page = scatterwalk_page(walk);
58 
59 	return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
60 	       offset_in_page(walk->offset);
61 }
62 
63 static inline void skcipher_map_src(struct skcipher_walk *walk)
64 {
65 	walk->src.virt.addr = skcipher_map(&walk->in);
66 }
67 
68 static inline void skcipher_map_dst(struct skcipher_walk *walk)
69 {
70 	walk->dst.virt.addr = skcipher_map(&walk->out);
71 }
72 
73 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
74 {
75 	skcipher_unmap(&walk->in, walk->src.virt.addr);
76 }
77 
78 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
79 {
80 	skcipher_unmap(&walk->out, walk->dst.virt.addr);
81 }
82 
83 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
84 {
85 	return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
86 }
87 
88 /* Get a spot of the specified length that does not straddle a page.
89  * The caller needs to ensure that there is enough space for this operation.
90  */
91 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
92 {
93 	u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
94 
95 	return max(start, end_page);
96 }
97 
98 static void skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
99 {
100 	u8 *addr;
101 
102 	addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
103 	addr = skcipher_get_spot(addr, bsize);
104 	scatterwalk_copychunks(addr, &walk->out, bsize,
105 			       (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
106 }
107 
108 int skcipher_walk_done(struct skcipher_walk *walk, int err)
109 {
110 	unsigned int n; /* bytes processed */
111 	bool more;
112 
113 	if (unlikely(err < 0))
114 		goto finish;
115 
116 	n = walk->nbytes - err;
117 	walk->total -= n;
118 	more = (walk->total != 0);
119 
120 	if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
121 				    SKCIPHER_WALK_SLOW |
122 				    SKCIPHER_WALK_COPY |
123 				    SKCIPHER_WALK_DIFF)))) {
124 unmap_src:
125 		skcipher_unmap_src(walk);
126 	} else if (walk->flags & SKCIPHER_WALK_DIFF) {
127 		skcipher_unmap_dst(walk);
128 		goto unmap_src;
129 	} else if (walk->flags & SKCIPHER_WALK_COPY) {
130 		skcipher_map_dst(walk);
131 		memcpy(walk->dst.virt.addr, walk->page, n);
132 		skcipher_unmap_dst(walk);
133 	} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
134 		if (WARN_ON(err)) {
135 			/* unexpected case; didn't process all bytes */
136 			err = -EINVAL;
137 			goto finish;
138 		}
139 		skcipher_done_slow(walk, n);
140 		goto already_advanced;
141 	}
142 
143 	scatterwalk_advance(&walk->in, n);
144 	scatterwalk_advance(&walk->out, n);
145 already_advanced:
146 	scatterwalk_done(&walk->in, 0, more);
147 	scatterwalk_done(&walk->out, 1, more);
148 
149 	if (more) {
150 		crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
151 			     CRYPTO_TFM_REQ_MAY_SLEEP : 0);
152 		return skcipher_walk_next(walk);
153 	}
154 	err = 0;
155 finish:
156 	walk->nbytes = 0;
157 
158 	/* Short-circuit for the common/fast path. */
159 	if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
160 		goto out;
161 
162 	if (walk->flags & SKCIPHER_WALK_PHYS)
163 		goto out;
164 
165 	if (walk->iv != walk->oiv)
166 		memcpy(walk->oiv, walk->iv, walk->ivsize);
167 	if (walk->buffer != walk->page)
168 		kfree(walk->buffer);
169 	if (walk->page)
170 		free_page((unsigned long)walk->page);
171 
172 out:
173 	return err;
174 }
175 EXPORT_SYMBOL_GPL(skcipher_walk_done);
176 
177 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
178 {
179 	struct skcipher_walk_buffer *p, *tmp;
180 
181 	list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
182 		u8 *data;
183 
184 		if (err)
185 			goto done;
186 
187 		data = p->data;
188 		if (!data) {
189 			data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
190 			data = skcipher_get_spot(data, walk->stride);
191 		}
192 
193 		scatterwalk_copychunks(data, &p->dst, p->len, 1);
194 
195 		if (offset_in_page(p->data) + p->len + walk->stride >
196 		    PAGE_SIZE)
197 			free_page((unsigned long)p->data);
198 
199 done:
200 		list_del(&p->entry);
201 		kfree(p);
202 	}
203 
204 	if (!err && walk->iv != walk->oiv)
205 		memcpy(walk->oiv, walk->iv, walk->ivsize);
206 	if (walk->buffer != walk->page)
207 		kfree(walk->buffer);
208 	if (walk->page)
209 		free_page((unsigned long)walk->page);
210 }
211 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
212 
213 static void skcipher_queue_write(struct skcipher_walk *walk,
214 				 struct skcipher_walk_buffer *p)
215 {
216 	p->dst = walk->out;
217 	list_add_tail(&p->entry, &walk->buffers);
218 }
219 
220 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
221 {
222 	bool phys = walk->flags & SKCIPHER_WALK_PHYS;
223 	unsigned alignmask = walk->alignmask;
224 	struct skcipher_walk_buffer *p;
225 	unsigned a;
226 	unsigned n;
227 	u8 *buffer;
228 	void *v;
229 
230 	if (!phys) {
231 		if (!walk->buffer)
232 			walk->buffer = walk->page;
233 		buffer = walk->buffer;
234 		if (buffer)
235 			goto ok;
236 	}
237 
238 	/* Start with the minimum alignment of kmalloc. */
239 	a = crypto_tfm_ctx_alignment() - 1;
240 	n = bsize;
241 
242 	if (phys) {
243 		/* Calculate the minimum alignment of p->buffer. */
244 		a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
245 		n += sizeof(*p);
246 	}
247 
248 	/* Minimum size to align p->buffer by alignmask. */
249 	n += alignmask & ~a;
250 
251 	/* Minimum size to ensure p->buffer does not straddle a page. */
252 	n += (bsize - 1) & ~(alignmask | a);
253 
254 	v = kzalloc(n, skcipher_walk_gfp(walk));
255 	if (!v)
256 		return skcipher_walk_done(walk, -ENOMEM);
257 
258 	if (phys) {
259 		p = v;
260 		p->len = bsize;
261 		skcipher_queue_write(walk, p);
262 		buffer = p->buffer;
263 	} else {
264 		walk->buffer = v;
265 		buffer = v;
266 	}
267 
268 ok:
269 	walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
270 	walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
271 	walk->src.virt.addr = walk->dst.virt.addr;
272 
273 	scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
274 
275 	walk->nbytes = bsize;
276 	walk->flags |= SKCIPHER_WALK_SLOW;
277 
278 	return 0;
279 }
280 
281 static int skcipher_next_copy(struct skcipher_walk *walk)
282 {
283 	struct skcipher_walk_buffer *p;
284 	u8 *tmp = walk->page;
285 
286 	skcipher_map_src(walk);
287 	memcpy(tmp, walk->src.virt.addr, walk->nbytes);
288 	skcipher_unmap_src(walk);
289 
290 	walk->src.virt.addr = tmp;
291 	walk->dst.virt.addr = tmp;
292 
293 	if (!(walk->flags & SKCIPHER_WALK_PHYS))
294 		return 0;
295 
296 	p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
297 	if (!p)
298 		return -ENOMEM;
299 
300 	p->data = walk->page;
301 	p->len = walk->nbytes;
302 	skcipher_queue_write(walk, p);
303 
304 	if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
305 	    PAGE_SIZE)
306 		walk->page = NULL;
307 	else
308 		walk->page += walk->nbytes;
309 
310 	return 0;
311 }
312 
313 static int skcipher_next_fast(struct skcipher_walk *walk)
314 {
315 	unsigned long diff;
316 
317 	walk->src.phys.page = scatterwalk_page(&walk->in);
318 	walk->src.phys.offset = offset_in_page(walk->in.offset);
319 	walk->dst.phys.page = scatterwalk_page(&walk->out);
320 	walk->dst.phys.offset = offset_in_page(walk->out.offset);
321 
322 	if (walk->flags & SKCIPHER_WALK_PHYS)
323 		return 0;
324 
325 	diff = walk->src.phys.offset - walk->dst.phys.offset;
326 	diff |= walk->src.virt.page - walk->dst.virt.page;
327 
328 	skcipher_map_src(walk);
329 	walk->dst.virt.addr = walk->src.virt.addr;
330 
331 	if (diff) {
332 		walk->flags |= SKCIPHER_WALK_DIFF;
333 		skcipher_map_dst(walk);
334 	}
335 
336 	return 0;
337 }
338 
339 static int skcipher_walk_next(struct skcipher_walk *walk)
340 {
341 	unsigned int bsize;
342 	unsigned int n;
343 	int err;
344 
345 	walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
346 			 SKCIPHER_WALK_DIFF);
347 
348 	n = walk->total;
349 	bsize = min(walk->stride, max(n, walk->blocksize));
350 	n = scatterwalk_clamp(&walk->in, n);
351 	n = scatterwalk_clamp(&walk->out, n);
352 
353 	if (unlikely(n < bsize)) {
354 		if (unlikely(walk->total < walk->blocksize))
355 			return skcipher_walk_done(walk, -EINVAL);
356 
357 slow_path:
358 		err = skcipher_next_slow(walk, bsize);
359 		goto set_phys_lowmem;
360 	}
361 
362 	if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
363 		if (!walk->page) {
364 			gfp_t gfp = skcipher_walk_gfp(walk);
365 
366 			walk->page = (void *)__get_free_page(gfp);
367 			if (!walk->page)
368 				goto slow_path;
369 		}
370 
371 		walk->nbytes = min_t(unsigned, n,
372 				     PAGE_SIZE - offset_in_page(walk->page));
373 		walk->flags |= SKCIPHER_WALK_COPY;
374 		err = skcipher_next_copy(walk);
375 		goto set_phys_lowmem;
376 	}
377 
378 	walk->nbytes = n;
379 
380 	return skcipher_next_fast(walk);
381 
382 set_phys_lowmem:
383 	if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
384 		walk->src.phys.page = virt_to_page(walk->src.virt.addr);
385 		walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
386 		walk->src.phys.offset &= PAGE_SIZE - 1;
387 		walk->dst.phys.offset &= PAGE_SIZE - 1;
388 	}
389 	return err;
390 }
391 
392 static int skcipher_copy_iv(struct skcipher_walk *walk)
393 {
394 	unsigned a = crypto_tfm_ctx_alignment() - 1;
395 	unsigned alignmask = walk->alignmask;
396 	unsigned ivsize = walk->ivsize;
397 	unsigned bs = walk->stride;
398 	unsigned aligned_bs;
399 	unsigned size;
400 	u8 *iv;
401 
402 	aligned_bs = ALIGN(bs, alignmask + 1);
403 
404 	/* Minimum size to align buffer by alignmask. */
405 	size = alignmask & ~a;
406 
407 	if (walk->flags & SKCIPHER_WALK_PHYS)
408 		size += ivsize;
409 	else {
410 		size += aligned_bs + ivsize;
411 
412 		/* Minimum size to ensure buffer does not straddle a page. */
413 		size += (bs - 1) & ~(alignmask | a);
414 	}
415 
416 	walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
417 	if (!walk->buffer)
418 		return -ENOMEM;
419 
420 	iv = PTR_ALIGN(walk->buffer, alignmask + 1);
421 	iv = skcipher_get_spot(iv, bs) + aligned_bs;
422 
423 	walk->iv = memcpy(iv, walk->iv, walk->ivsize);
424 	return 0;
425 }
426 
427 static int skcipher_walk_first(struct skcipher_walk *walk)
428 {
429 	if (WARN_ON_ONCE(in_irq()))
430 		return -EDEADLK;
431 
432 	walk->buffer = NULL;
433 	if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
434 		int err = skcipher_copy_iv(walk);
435 		if (err)
436 			return err;
437 	}
438 
439 	walk->page = NULL;
440 
441 	return skcipher_walk_next(walk);
442 }
443 
444 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
445 				  struct skcipher_request *req)
446 {
447 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
448 
449 	walk->total = req->cryptlen;
450 	walk->nbytes = 0;
451 	walk->iv = req->iv;
452 	walk->oiv = req->iv;
453 
454 	if (unlikely(!walk->total))
455 		return 0;
456 
457 	scatterwalk_start(&walk->in, req->src);
458 	scatterwalk_start(&walk->out, req->dst);
459 
460 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
461 	walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
462 		       SKCIPHER_WALK_SLEEP : 0;
463 
464 	walk->blocksize = crypto_skcipher_blocksize(tfm);
465 	walk->stride = crypto_skcipher_walksize(tfm);
466 	walk->ivsize = crypto_skcipher_ivsize(tfm);
467 	walk->alignmask = crypto_skcipher_alignmask(tfm);
468 
469 	return skcipher_walk_first(walk);
470 }
471 
472 int skcipher_walk_virt(struct skcipher_walk *walk,
473 		       struct skcipher_request *req, bool atomic)
474 {
475 	int err;
476 
477 	might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
478 
479 	walk->flags &= ~SKCIPHER_WALK_PHYS;
480 
481 	err = skcipher_walk_skcipher(walk, req);
482 
483 	walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
484 
485 	return err;
486 }
487 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
488 
489 void skcipher_walk_atomise(struct skcipher_walk *walk)
490 {
491 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
492 }
493 EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
494 
495 int skcipher_walk_async(struct skcipher_walk *walk,
496 			struct skcipher_request *req)
497 {
498 	walk->flags |= SKCIPHER_WALK_PHYS;
499 
500 	INIT_LIST_HEAD(&walk->buffers);
501 
502 	return skcipher_walk_skcipher(walk, req);
503 }
504 EXPORT_SYMBOL_GPL(skcipher_walk_async);
505 
506 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
507 				     struct aead_request *req, bool atomic)
508 {
509 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
510 	int err;
511 
512 	walk->nbytes = 0;
513 	walk->iv = req->iv;
514 	walk->oiv = req->iv;
515 
516 	if (unlikely(!walk->total))
517 		return 0;
518 
519 	walk->flags &= ~SKCIPHER_WALK_PHYS;
520 
521 	scatterwalk_start(&walk->in, req->src);
522 	scatterwalk_start(&walk->out, req->dst);
523 
524 	scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
525 	scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
526 
527 	scatterwalk_done(&walk->in, 0, walk->total);
528 	scatterwalk_done(&walk->out, 0, walk->total);
529 
530 	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
531 		walk->flags |= SKCIPHER_WALK_SLEEP;
532 	else
533 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
534 
535 	walk->blocksize = crypto_aead_blocksize(tfm);
536 	walk->stride = crypto_aead_chunksize(tfm);
537 	walk->ivsize = crypto_aead_ivsize(tfm);
538 	walk->alignmask = crypto_aead_alignmask(tfm);
539 
540 	err = skcipher_walk_first(walk);
541 
542 	if (atomic)
543 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
544 
545 	return err;
546 }
547 
548 int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req,
549 		       bool atomic)
550 {
551 	walk->total = req->cryptlen;
552 
553 	return skcipher_walk_aead_common(walk, req, atomic);
554 }
555 EXPORT_SYMBOL_GPL(skcipher_walk_aead);
556 
557 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
558 			       struct aead_request *req, bool atomic)
559 {
560 	walk->total = req->cryptlen;
561 
562 	return skcipher_walk_aead_common(walk, req, atomic);
563 }
564 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
565 
566 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
567 			       struct aead_request *req, bool atomic)
568 {
569 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
570 
571 	walk->total = req->cryptlen - crypto_aead_authsize(tfm);
572 
573 	return skcipher_walk_aead_common(walk, req, atomic);
574 }
575 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
576 
577 static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
578 {
579 	if (alg->cra_type == &crypto_blkcipher_type)
580 		return sizeof(struct crypto_blkcipher *);
581 
582 	if (alg->cra_type == &crypto_ablkcipher_type)
583 		return sizeof(struct crypto_ablkcipher *);
584 
585 	return crypto_alg_extsize(alg);
586 }
587 
588 static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm,
589 				     const u8 *key, unsigned int keylen)
590 {
591 	struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
592 	struct crypto_blkcipher *blkcipher = *ctx;
593 	int err;
594 
595 	crypto_blkcipher_clear_flags(blkcipher, ~0);
596 	crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) &
597 					      CRYPTO_TFM_REQ_MASK);
598 	err = crypto_blkcipher_setkey(blkcipher, key, keylen);
599 	crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) &
600 				       CRYPTO_TFM_RES_MASK);
601 	if (err)
602 		return err;
603 
604 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
605 	return 0;
606 }
607 
608 static int skcipher_crypt_blkcipher(struct skcipher_request *req,
609 				    int (*crypt)(struct blkcipher_desc *,
610 						 struct scatterlist *,
611 						 struct scatterlist *,
612 						 unsigned int))
613 {
614 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
615 	struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
616 	struct blkcipher_desc desc = {
617 		.tfm = *ctx,
618 		.info = req->iv,
619 		.flags = req->base.flags,
620 	};
621 
622 
623 	return crypt(&desc, req->dst, req->src, req->cryptlen);
624 }
625 
626 static int skcipher_encrypt_blkcipher(struct skcipher_request *req)
627 {
628 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
629 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
630 	struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
631 
632 	return skcipher_crypt_blkcipher(req, alg->encrypt);
633 }
634 
635 static int skcipher_decrypt_blkcipher(struct skcipher_request *req)
636 {
637 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
638 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
639 	struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
640 
641 	return skcipher_crypt_blkcipher(req, alg->decrypt);
642 }
643 
644 static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
645 {
646 	struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
647 
648 	crypto_free_blkcipher(*ctx);
649 }
650 
651 static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
652 {
653 	struct crypto_alg *calg = tfm->__crt_alg;
654 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
655 	struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
656 	struct crypto_blkcipher *blkcipher;
657 	struct crypto_tfm *btfm;
658 
659 	if (!crypto_mod_get(calg))
660 		return -EAGAIN;
661 
662 	btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER,
663 					CRYPTO_ALG_TYPE_MASK);
664 	if (IS_ERR(btfm)) {
665 		crypto_mod_put(calg);
666 		return PTR_ERR(btfm);
667 	}
668 
669 	blkcipher = __crypto_blkcipher_cast(btfm);
670 	*ctx = blkcipher;
671 	tfm->exit = crypto_exit_skcipher_ops_blkcipher;
672 
673 	skcipher->setkey = skcipher_setkey_blkcipher;
674 	skcipher->encrypt = skcipher_encrypt_blkcipher;
675 	skcipher->decrypt = skcipher_decrypt_blkcipher;
676 
677 	skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher);
678 	skcipher->keysize = calg->cra_blkcipher.max_keysize;
679 
680 	if (skcipher->keysize)
681 		crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_NEED_KEY);
682 
683 	return 0;
684 }
685 
686 static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm,
687 				      const u8 *key, unsigned int keylen)
688 {
689 	struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
690 	struct crypto_ablkcipher *ablkcipher = *ctx;
691 	int err;
692 
693 	crypto_ablkcipher_clear_flags(ablkcipher, ~0);
694 	crypto_ablkcipher_set_flags(ablkcipher,
695 				    crypto_skcipher_get_flags(tfm) &
696 				    CRYPTO_TFM_REQ_MASK);
697 	err = crypto_ablkcipher_setkey(ablkcipher, key, keylen);
698 	crypto_skcipher_set_flags(tfm,
699 				  crypto_ablkcipher_get_flags(ablkcipher) &
700 				  CRYPTO_TFM_RES_MASK);
701 	if (err)
702 		return err;
703 
704 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
705 	return 0;
706 }
707 
708 static int skcipher_crypt_ablkcipher(struct skcipher_request *req,
709 				     int (*crypt)(struct ablkcipher_request *))
710 {
711 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
712 	struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
713 	struct ablkcipher_request *subreq = skcipher_request_ctx(req);
714 
715 	ablkcipher_request_set_tfm(subreq, *ctx);
716 	ablkcipher_request_set_callback(subreq, skcipher_request_flags(req),
717 					req->base.complete, req->base.data);
718 	ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
719 				     req->iv);
720 
721 	return crypt(subreq);
722 }
723 
724 static int skcipher_encrypt_ablkcipher(struct skcipher_request *req)
725 {
726 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
727 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
728 	struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
729 
730 	return skcipher_crypt_ablkcipher(req, alg->encrypt);
731 }
732 
733 static int skcipher_decrypt_ablkcipher(struct skcipher_request *req)
734 {
735 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
736 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
737 	struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
738 
739 	return skcipher_crypt_ablkcipher(req, alg->decrypt);
740 }
741 
742 static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
743 {
744 	struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
745 
746 	crypto_free_ablkcipher(*ctx);
747 }
748 
749 static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
750 {
751 	struct crypto_alg *calg = tfm->__crt_alg;
752 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
753 	struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
754 	struct crypto_ablkcipher *ablkcipher;
755 	struct crypto_tfm *abtfm;
756 
757 	if (!crypto_mod_get(calg))
758 		return -EAGAIN;
759 
760 	abtfm = __crypto_alloc_tfm(calg, 0, 0);
761 	if (IS_ERR(abtfm)) {
762 		crypto_mod_put(calg);
763 		return PTR_ERR(abtfm);
764 	}
765 
766 	ablkcipher = __crypto_ablkcipher_cast(abtfm);
767 	*ctx = ablkcipher;
768 	tfm->exit = crypto_exit_skcipher_ops_ablkcipher;
769 
770 	skcipher->setkey = skcipher_setkey_ablkcipher;
771 	skcipher->encrypt = skcipher_encrypt_ablkcipher;
772 	skcipher->decrypt = skcipher_decrypt_ablkcipher;
773 
774 	skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher);
775 	skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) +
776 			    sizeof(struct ablkcipher_request);
777 	skcipher->keysize = calg->cra_ablkcipher.max_keysize;
778 
779 	if (skcipher->keysize)
780 		crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_NEED_KEY);
781 
782 	return 0;
783 }
784 
785 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
786 				     const u8 *key, unsigned int keylen)
787 {
788 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
789 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
790 	u8 *buffer, *alignbuffer;
791 	unsigned long absize;
792 	int ret;
793 
794 	absize = keylen + alignmask;
795 	buffer = kmalloc(absize, GFP_ATOMIC);
796 	if (!buffer)
797 		return -ENOMEM;
798 
799 	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
800 	memcpy(alignbuffer, key, keylen);
801 	ret = cipher->setkey(tfm, alignbuffer, keylen);
802 	kzfree(buffer);
803 	return ret;
804 }
805 
806 static int skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
807 			   unsigned int keylen)
808 {
809 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
810 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
811 	int err;
812 
813 	if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) {
814 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
815 		return -EINVAL;
816 	}
817 
818 	if ((unsigned long)key & alignmask)
819 		err = skcipher_setkey_unaligned(tfm, key, keylen);
820 	else
821 		err = cipher->setkey(tfm, key, keylen);
822 
823 	if (err)
824 		return err;
825 
826 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
827 	return 0;
828 }
829 
830 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
831 {
832 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
833 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
834 
835 	alg->exit(skcipher);
836 }
837 
838 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
839 {
840 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
841 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
842 
843 	if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type)
844 		return crypto_init_skcipher_ops_blkcipher(tfm);
845 
846 	if (tfm->__crt_alg->cra_type == &crypto_ablkcipher_type)
847 		return crypto_init_skcipher_ops_ablkcipher(tfm);
848 
849 	skcipher->setkey = skcipher_setkey;
850 	skcipher->encrypt = alg->encrypt;
851 	skcipher->decrypt = alg->decrypt;
852 	skcipher->ivsize = alg->ivsize;
853 	skcipher->keysize = alg->max_keysize;
854 
855 	if (skcipher->keysize)
856 		crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_NEED_KEY);
857 
858 	if (alg->exit)
859 		skcipher->base.exit = crypto_skcipher_exit_tfm;
860 
861 	if (alg->init)
862 		return alg->init(skcipher);
863 
864 	return 0;
865 }
866 
867 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
868 {
869 	struct skcipher_instance *skcipher =
870 		container_of(inst, struct skcipher_instance, s.base);
871 
872 	skcipher->free(skcipher);
873 }
874 
875 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
876 	__maybe_unused;
877 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
878 {
879 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
880 						     base);
881 
882 	seq_printf(m, "type         : skcipher\n");
883 	seq_printf(m, "async        : %s\n",
884 		   alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
885 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
886 	seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
887 	seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
888 	seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
889 	seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
890 	seq_printf(m, "walksize     : %u\n", skcipher->walksize);
891 }
892 
893 #ifdef CONFIG_NET
894 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
895 {
896 	struct crypto_report_blkcipher rblkcipher;
897 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
898 						     base);
899 
900 	memset(&rblkcipher, 0, sizeof(rblkcipher));
901 
902 	strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
903 	strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
904 
905 	rblkcipher.blocksize = alg->cra_blocksize;
906 	rblkcipher.min_keysize = skcipher->min_keysize;
907 	rblkcipher.max_keysize = skcipher->max_keysize;
908 	rblkcipher.ivsize = skcipher->ivsize;
909 
910 	return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
911 		       sizeof(rblkcipher), &rblkcipher);
912 }
913 #else
914 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
915 {
916 	return -ENOSYS;
917 }
918 #endif
919 
920 static const struct crypto_type crypto_skcipher_type2 = {
921 	.extsize = crypto_skcipher_extsize,
922 	.init_tfm = crypto_skcipher_init_tfm,
923 	.free = crypto_skcipher_free_instance,
924 #ifdef CONFIG_PROC_FS
925 	.show = crypto_skcipher_show,
926 #endif
927 	.report = crypto_skcipher_report,
928 	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
929 	.maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
930 	.type = CRYPTO_ALG_TYPE_SKCIPHER,
931 	.tfmsize = offsetof(struct crypto_skcipher, base),
932 };
933 
934 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
935 			  const char *name, u32 type, u32 mask)
936 {
937 	spawn->base.frontend = &crypto_skcipher_type2;
938 	return crypto_grab_spawn(&spawn->base, name, type, mask);
939 }
940 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
941 
942 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
943 					      u32 type, u32 mask)
944 {
945 	return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
946 }
947 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
948 
949 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
950 				const char *alg_name, u32 type, u32 mask)
951 {
952 	struct crypto_skcipher *tfm;
953 
954 	/* Only sync algorithms allowed. */
955 	mask |= CRYPTO_ALG_ASYNC;
956 
957 	tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
958 
959 	/*
960 	 * Make sure we do not allocate something that might get used with
961 	 * an on-stack request: check the request size.
962 	 */
963 	if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
964 				    MAX_SYNC_SKCIPHER_REQSIZE)) {
965 		crypto_free_skcipher(tfm);
966 		return ERR_PTR(-EINVAL);
967 	}
968 
969 	return (struct crypto_sync_skcipher *)tfm;
970 }
971 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
972 
973 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask)
974 {
975 	return crypto_type_has_alg(alg_name, &crypto_skcipher_type2,
976 				   type, mask);
977 }
978 EXPORT_SYMBOL_GPL(crypto_has_skcipher2);
979 
980 static int skcipher_prepare_alg(struct skcipher_alg *alg)
981 {
982 	struct crypto_alg *base = &alg->base;
983 
984 	if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
985 	    alg->walksize > PAGE_SIZE / 8)
986 		return -EINVAL;
987 
988 	if (!alg->chunksize)
989 		alg->chunksize = base->cra_blocksize;
990 	if (!alg->walksize)
991 		alg->walksize = alg->chunksize;
992 
993 	base->cra_type = &crypto_skcipher_type2;
994 	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
995 	base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
996 
997 	return 0;
998 }
999 
1000 int crypto_register_skcipher(struct skcipher_alg *alg)
1001 {
1002 	struct crypto_alg *base = &alg->base;
1003 	int err;
1004 
1005 	err = skcipher_prepare_alg(alg);
1006 	if (err)
1007 		return err;
1008 
1009 	return crypto_register_alg(base);
1010 }
1011 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
1012 
1013 void crypto_unregister_skcipher(struct skcipher_alg *alg)
1014 {
1015 	crypto_unregister_alg(&alg->base);
1016 }
1017 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
1018 
1019 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
1020 {
1021 	int i, ret;
1022 
1023 	for (i = 0; i < count; i++) {
1024 		ret = crypto_register_skcipher(&algs[i]);
1025 		if (ret)
1026 			goto err;
1027 	}
1028 
1029 	return 0;
1030 
1031 err:
1032 	for (--i; i >= 0; --i)
1033 		crypto_unregister_skcipher(&algs[i]);
1034 
1035 	return ret;
1036 }
1037 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
1038 
1039 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
1040 {
1041 	int i;
1042 
1043 	for (i = count - 1; i >= 0; --i)
1044 		crypto_unregister_skcipher(&algs[i]);
1045 }
1046 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
1047 
1048 int skcipher_register_instance(struct crypto_template *tmpl,
1049 			   struct skcipher_instance *inst)
1050 {
1051 	int err;
1052 
1053 	err = skcipher_prepare_alg(&inst->alg);
1054 	if (err)
1055 		return err;
1056 
1057 	return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
1058 }
1059 EXPORT_SYMBOL_GPL(skcipher_register_instance);
1060 
1061 MODULE_LICENSE("GPL");
1062 MODULE_DESCRIPTION("Symmetric key cipher type");
1063