xref: /openbmc/linux/crypto/skcipher.c (revision 4984dd069f2995f239f075199ee8c0d9f020bcd9)
1 /*
2  * Symmetric key cipher operations.
3  *
4  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
5  * multiple page boundaries by using temporary blocks.  In user context,
6  * the kernel is given a chance to schedule us once per page.
7  *
8  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; either version 2 of the License, or (at your option)
13  * any later version.
14  *
15  */
16 
17 #include <crypto/internal/aead.h>
18 #include <crypto/internal/skcipher.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/bug.h>
21 #include <linux/cryptouser.h>
22 #include <linux/compiler.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/rtnetlink.h>
26 #include <linux/seq_file.h>
27 #include <net/netlink.h>
28 
29 #include "internal.h"
30 
31 enum {
32 	SKCIPHER_WALK_PHYS = 1 << 0,
33 	SKCIPHER_WALK_SLOW = 1 << 1,
34 	SKCIPHER_WALK_COPY = 1 << 2,
35 	SKCIPHER_WALK_DIFF = 1 << 3,
36 	SKCIPHER_WALK_SLEEP = 1 << 4,
37 };
38 
39 struct skcipher_walk_buffer {
40 	struct list_head entry;
41 	struct scatter_walk dst;
42 	unsigned int len;
43 	u8 *data;
44 	u8 buffer[];
45 };
46 
47 static int skcipher_walk_next(struct skcipher_walk *walk);
48 
49 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
50 {
51 	if (PageHighMem(scatterwalk_page(walk)))
52 		kunmap_atomic(vaddr);
53 }
54 
55 static inline void *skcipher_map(struct scatter_walk *walk)
56 {
57 	struct page *page = scatterwalk_page(walk);
58 
59 	return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
60 	       offset_in_page(walk->offset);
61 }
62 
63 static inline void skcipher_map_src(struct skcipher_walk *walk)
64 {
65 	walk->src.virt.addr = skcipher_map(&walk->in);
66 }
67 
68 static inline void skcipher_map_dst(struct skcipher_walk *walk)
69 {
70 	walk->dst.virt.addr = skcipher_map(&walk->out);
71 }
72 
73 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
74 {
75 	skcipher_unmap(&walk->in, walk->src.virt.addr);
76 }
77 
78 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
79 {
80 	skcipher_unmap(&walk->out, walk->dst.virt.addr);
81 }
82 
83 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
84 {
85 	return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
86 }
87 
88 /* Get a spot of the specified length that does not straddle a page.
89  * The caller needs to ensure that there is enough space for this operation.
90  */
91 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
92 {
93 	u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
94 
95 	return max(start, end_page);
96 }
97 
98 static void skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
99 {
100 	u8 *addr;
101 
102 	addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
103 	addr = skcipher_get_spot(addr, bsize);
104 	scatterwalk_copychunks(addr, &walk->out, bsize,
105 			       (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
106 }
107 
108 int skcipher_walk_done(struct skcipher_walk *walk, int err)
109 {
110 	unsigned int n; /* bytes processed */
111 	bool more;
112 
113 	if (unlikely(err < 0))
114 		goto finish;
115 
116 	n = walk->nbytes - err;
117 	walk->total -= n;
118 	more = (walk->total != 0);
119 
120 	if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
121 				    SKCIPHER_WALK_SLOW |
122 				    SKCIPHER_WALK_COPY |
123 				    SKCIPHER_WALK_DIFF)))) {
124 unmap_src:
125 		skcipher_unmap_src(walk);
126 	} else if (walk->flags & SKCIPHER_WALK_DIFF) {
127 		skcipher_unmap_dst(walk);
128 		goto unmap_src;
129 	} else if (walk->flags & SKCIPHER_WALK_COPY) {
130 		skcipher_map_dst(walk);
131 		memcpy(walk->dst.virt.addr, walk->page, n);
132 		skcipher_unmap_dst(walk);
133 	} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
134 		if (err) {
135 			/*
136 			 * Didn't process all bytes.  Either the algorithm is
137 			 * broken, or this was the last step and it turned out
138 			 * the message wasn't evenly divisible into blocks but
139 			 * the algorithm requires it.
140 			 */
141 			err = -EINVAL;
142 			goto finish;
143 		}
144 		skcipher_done_slow(walk, n);
145 		goto already_advanced;
146 	}
147 
148 	scatterwalk_advance(&walk->in, n);
149 	scatterwalk_advance(&walk->out, n);
150 already_advanced:
151 	scatterwalk_done(&walk->in, 0, more);
152 	scatterwalk_done(&walk->out, 1, more);
153 
154 	if (more) {
155 		crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
156 			     CRYPTO_TFM_REQ_MAY_SLEEP : 0);
157 		return skcipher_walk_next(walk);
158 	}
159 	err = 0;
160 finish:
161 	walk->nbytes = 0;
162 
163 	/* Short-circuit for the common/fast path. */
164 	if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
165 		goto out;
166 
167 	if (walk->flags & SKCIPHER_WALK_PHYS)
168 		goto out;
169 
170 	if (walk->iv != walk->oiv)
171 		memcpy(walk->oiv, walk->iv, walk->ivsize);
172 	if (walk->buffer != walk->page)
173 		kfree(walk->buffer);
174 	if (walk->page)
175 		free_page((unsigned long)walk->page);
176 
177 out:
178 	return err;
179 }
180 EXPORT_SYMBOL_GPL(skcipher_walk_done);
181 
182 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
183 {
184 	struct skcipher_walk_buffer *p, *tmp;
185 
186 	list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
187 		u8 *data;
188 
189 		if (err)
190 			goto done;
191 
192 		data = p->data;
193 		if (!data) {
194 			data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
195 			data = skcipher_get_spot(data, walk->stride);
196 		}
197 
198 		scatterwalk_copychunks(data, &p->dst, p->len, 1);
199 
200 		if (offset_in_page(p->data) + p->len + walk->stride >
201 		    PAGE_SIZE)
202 			free_page((unsigned long)p->data);
203 
204 done:
205 		list_del(&p->entry);
206 		kfree(p);
207 	}
208 
209 	if (!err && walk->iv != walk->oiv)
210 		memcpy(walk->oiv, walk->iv, walk->ivsize);
211 	if (walk->buffer != walk->page)
212 		kfree(walk->buffer);
213 	if (walk->page)
214 		free_page((unsigned long)walk->page);
215 }
216 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
217 
218 static void skcipher_queue_write(struct skcipher_walk *walk,
219 				 struct skcipher_walk_buffer *p)
220 {
221 	p->dst = walk->out;
222 	list_add_tail(&p->entry, &walk->buffers);
223 }
224 
225 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
226 {
227 	bool phys = walk->flags & SKCIPHER_WALK_PHYS;
228 	unsigned alignmask = walk->alignmask;
229 	struct skcipher_walk_buffer *p;
230 	unsigned a;
231 	unsigned n;
232 	u8 *buffer;
233 	void *v;
234 
235 	if (!phys) {
236 		if (!walk->buffer)
237 			walk->buffer = walk->page;
238 		buffer = walk->buffer;
239 		if (buffer)
240 			goto ok;
241 	}
242 
243 	/* Start with the minimum alignment of kmalloc. */
244 	a = crypto_tfm_ctx_alignment() - 1;
245 	n = bsize;
246 
247 	if (phys) {
248 		/* Calculate the minimum alignment of p->buffer. */
249 		a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
250 		n += sizeof(*p);
251 	}
252 
253 	/* Minimum size to align p->buffer by alignmask. */
254 	n += alignmask & ~a;
255 
256 	/* Minimum size to ensure p->buffer does not straddle a page. */
257 	n += (bsize - 1) & ~(alignmask | a);
258 
259 	v = kzalloc(n, skcipher_walk_gfp(walk));
260 	if (!v)
261 		return skcipher_walk_done(walk, -ENOMEM);
262 
263 	if (phys) {
264 		p = v;
265 		p->len = bsize;
266 		skcipher_queue_write(walk, p);
267 		buffer = p->buffer;
268 	} else {
269 		walk->buffer = v;
270 		buffer = v;
271 	}
272 
273 ok:
274 	walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
275 	walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
276 	walk->src.virt.addr = walk->dst.virt.addr;
277 
278 	scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
279 
280 	walk->nbytes = bsize;
281 	walk->flags |= SKCIPHER_WALK_SLOW;
282 
283 	return 0;
284 }
285 
286 static int skcipher_next_copy(struct skcipher_walk *walk)
287 {
288 	struct skcipher_walk_buffer *p;
289 	u8 *tmp = walk->page;
290 
291 	skcipher_map_src(walk);
292 	memcpy(tmp, walk->src.virt.addr, walk->nbytes);
293 	skcipher_unmap_src(walk);
294 
295 	walk->src.virt.addr = tmp;
296 	walk->dst.virt.addr = tmp;
297 
298 	if (!(walk->flags & SKCIPHER_WALK_PHYS))
299 		return 0;
300 
301 	p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
302 	if (!p)
303 		return -ENOMEM;
304 
305 	p->data = walk->page;
306 	p->len = walk->nbytes;
307 	skcipher_queue_write(walk, p);
308 
309 	if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
310 	    PAGE_SIZE)
311 		walk->page = NULL;
312 	else
313 		walk->page += walk->nbytes;
314 
315 	return 0;
316 }
317 
318 static int skcipher_next_fast(struct skcipher_walk *walk)
319 {
320 	unsigned long diff;
321 
322 	walk->src.phys.page = scatterwalk_page(&walk->in);
323 	walk->src.phys.offset = offset_in_page(walk->in.offset);
324 	walk->dst.phys.page = scatterwalk_page(&walk->out);
325 	walk->dst.phys.offset = offset_in_page(walk->out.offset);
326 
327 	if (walk->flags & SKCIPHER_WALK_PHYS)
328 		return 0;
329 
330 	diff = walk->src.phys.offset - walk->dst.phys.offset;
331 	diff |= walk->src.virt.page - walk->dst.virt.page;
332 
333 	skcipher_map_src(walk);
334 	walk->dst.virt.addr = walk->src.virt.addr;
335 
336 	if (diff) {
337 		walk->flags |= SKCIPHER_WALK_DIFF;
338 		skcipher_map_dst(walk);
339 	}
340 
341 	return 0;
342 }
343 
344 static int skcipher_walk_next(struct skcipher_walk *walk)
345 {
346 	unsigned int bsize;
347 	unsigned int n;
348 	int err;
349 
350 	walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
351 			 SKCIPHER_WALK_DIFF);
352 
353 	n = walk->total;
354 	bsize = min(walk->stride, max(n, walk->blocksize));
355 	n = scatterwalk_clamp(&walk->in, n);
356 	n = scatterwalk_clamp(&walk->out, n);
357 
358 	if (unlikely(n < bsize)) {
359 		if (unlikely(walk->total < walk->blocksize))
360 			return skcipher_walk_done(walk, -EINVAL);
361 
362 slow_path:
363 		err = skcipher_next_slow(walk, bsize);
364 		goto set_phys_lowmem;
365 	}
366 
367 	if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
368 		if (!walk->page) {
369 			gfp_t gfp = skcipher_walk_gfp(walk);
370 
371 			walk->page = (void *)__get_free_page(gfp);
372 			if (!walk->page)
373 				goto slow_path;
374 		}
375 
376 		walk->nbytes = min_t(unsigned, n,
377 				     PAGE_SIZE - offset_in_page(walk->page));
378 		walk->flags |= SKCIPHER_WALK_COPY;
379 		err = skcipher_next_copy(walk);
380 		goto set_phys_lowmem;
381 	}
382 
383 	walk->nbytes = n;
384 
385 	return skcipher_next_fast(walk);
386 
387 set_phys_lowmem:
388 	if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
389 		walk->src.phys.page = virt_to_page(walk->src.virt.addr);
390 		walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
391 		walk->src.phys.offset &= PAGE_SIZE - 1;
392 		walk->dst.phys.offset &= PAGE_SIZE - 1;
393 	}
394 	return err;
395 }
396 
397 static int skcipher_copy_iv(struct skcipher_walk *walk)
398 {
399 	unsigned a = crypto_tfm_ctx_alignment() - 1;
400 	unsigned alignmask = walk->alignmask;
401 	unsigned ivsize = walk->ivsize;
402 	unsigned bs = walk->stride;
403 	unsigned aligned_bs;
404 	unsigned size;
405 	u8 *iv;
406 
407 	aligned_bs = ALIGN(bs, alignmask + 1);
408 
409 	/* Minimum size to align buffer by alignmask. */
410 	size = alignmask & ~a;
411 
412 	if (walk->flags & SKCIPHER_WALK_PHYS)
413 		size += ivsize;
414 	else {
415 		size += aligned_bs + ivsize;
416 
417 		/* Minimum size to ensure buffer does not straddle a page. */
418 		size += (bs - 1) & ~(alignmask | a);
419 	}
420 
421 	walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
422 	if (!walk->buffer)
423 		return -ENOMEM;
424 
425 	iv = PTR_ALIGN(walk->buffer, alignmask + 1);
426 	iv = skcipher_get_spot(iv, bs) + aligned_bs;
427 
428 	walk->iv = memcpy(iv, walk->iv, walk->ivsize);
429 	return 0;
430 }
431 
432 static int skcipher_walk_first(struct skcipher_walk *walk)
433 {
434 	if (WARN_ON_ONCE(in_irq()))
435 		return -EDEADLK;
436 
437 	walk->buffer = NULL;
438 	if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
439 		int err = skcipher_copy_iv(walk);
440 		if (err)
441 			return err;
442 	}
443 
444 	walk->page = NULL;
445 
446 	return skcipher_walk_next(walk);
447 }
448 
449 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
450 				  struct skcipher_request *req)
451 {
452 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
453 
454 	walk->total = req->cryptlen;
455 	walk->nbytes = 0;
456 	walk->iv = req->iv;
457 	walk->oiv = req->iv;
458 
459 	if (unlikely(!walk->total))
460 		return 0;
461 
462 	scatterwalk_start(&walk->in, req->src);
463 	scatterwalk_start(&walk->out, req->dst);
464 
465 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
466 	walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
467 		       SKCIPHER_WALK_SLEEP : 0;
468 
469 	walk->blocksize = crypto_skcipher_blocksize(tfm);
470 	walk->stride = crypto_skcipher_walksize(tfm);
471 	walk->ivsize = crypto_skcipher_ivsize(tfm);
472 	walk->alignmask = crypto_skcipher_alignmask(tfm);
473 
474 	return skcipher_walk_first(walk);
475 }
476 
477 int skcipher_walk_virt(struct skcipher_walk *walk,
478 		       struct skcipher_request *req, bool atomic)
479 {
480 	int err;
481 
482 	might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
483 
484 	walk->flags &= ~SKCIPHER_WALK_PHYS;
485 
486 	err = skcipher_walk_skcipher(walk, req);
487 
488 	walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
489 
490 	return err;
491 }
492 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
493 
494 void skcipher_walk_atomise(struct skcipher_walk *walk)
495 {
496 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
497 }
498 EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
499 
500 int skcipher_walk_async(struct skcipher_walk *walk,
501 			struct skcipher_request *req)
502 {
503 	walk->flags |= SKCIPHER_WALK_PHYS;
504 
505 	INIT_LIST_HEAD(&walk->buffers);
506 
507 	return skcipher_walk_skcipher(walk, req);
508 }
509 EXPORT_SYMBOL_GPL(skcipher_walk_async);
510 
511 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
512 				     struct aead_request *req, bool atomic)
513 {
514 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
515 	int err;
516 
517 	walk->nbytes = 0;
518 	walk->iv = req->iv;
519 	walk->oiv = req->iv;
520 
521 	if (unlikely(!walk->total))
522 		return 0;
523 
524 	walk->flags &= ~SKCIPHER_WALK_PHYS;
525 
526 	scatterwalk_start(&walk->in, req->src);
527 	scatterwalk_start(&walk->out, req->dst);
528 
529 	scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
530 	scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
531 
532 	scatterwalk_done(&walk->in, 0, walk->total);
533 	scatterwalk_done(&walk->out, 0, walk->total);
534 
535 	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
536 		walk->flags |= SKCIPHER_WALK_SLEEP;
537 	else
538 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
539 
540 	walk->blocksize = crypto_aead_blocksize(tfm);
541 	walk->stride = crypto_aead_chunksize(tfm);
542 	walk->ivsize = crypto_aead_ivsize(tfm);
543 	walk->alignmask = crypto_aead_alignmask(tfm);
544 
545 	err = skcipher_walk_first(walk);
546 
547 	if (atomic)
548 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
549 
550 	return err;
551 }
552 
553 int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req,
554 		       bool atomic)
555 {
556 	walk->total = req->cryptlen;
557 
558 	return skcipher_walk_aead_common(walk, req, atomic);
559 }
560 EXPORT_SYMBOL_GPL(skcipher_walk_aead);
561 
562 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
563 			       struct aead_request *req, bool atomic)
564 {
565 	walk->total = req->cryptlen;
566 
567 	return skcipher_walk_aead_common(walk, req, atomic);
568 }
569 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
570 
571 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
572 			       struct aead_request *req, bool atomic)
573 {
574 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
575 
576 	walk->total = req->cryptlen - crypto_aead_authsize(tfm);
577 
578 	return skcipher_walk_aead_common(walk, req, atomic);
579 }
580 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
581 
582 static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
583 {
584 	if (alg->cra_type == &crypto_blkcipher_type)
585 		return sizeof(struct crypto_blkcipher *);
586 
587 	if (alg->cra_type == &crypto_ablkcipher_type)
588 		return sizeof(struct crypto_ablkcipher *);
589 
590 	return crypto_alg_extsize(alg);
591 }
592 
593 static void skcipher_set_needkey(struct crypto_skcipher *tfm)
594 {
595 	if (tfm->keysize)
596 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
597 }
598 
599 static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm,
600 				     const u8 *key, unsigned int keylen)
601 {
602 	struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
603 	struct crypto_blkcipher *blkcipher = *ctx;
604 	int err;
605 
606 	crypto_blkcipher_clear_flags(blkcipher, ~0);
607 	crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) &
608 					      CRYPTO_TFM_REQ_MASK);
609 	err = crypto_blkcipher_setkey(blkcipher, key, keylen);
610 	crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) &
611 				       CRYPTO_TFM_RES_MASK);
612 	if (unlikely(err)) {
613 		skcipher_set_needkey(tfm);
614 		return err;
615 	}
616 
617 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
618 	return 0;
619 }
620 
621 static int skcipher_crypt_blkcipher(struct skcipher_request *req,
622 				    int (*crypt)(struct blkcipher_desc *,
623 						 struct scatterlist *,
624 						 struct scatterlist *,
625 						 unsigned int))
626 {
627 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
628 	struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
629 	struct blkcipher_desc desc = {
630 		.tfm = *ctx,
631 		.info = req->iv,
632 		.flags = req->base.flags,
633 	};
634 
635 
636 	return crypt(&desc, req->dst, req->src, req->cryptlen);
637 }
638 
639 static int skcipher_encrypt_blkcipher(struct skcipher_request *req)
640 {
641 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
642 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
643 	struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
644 
645 	return skcipher_crypt_blkcipher(req, alg->encrypt);
646 }
647 
648 static int skcipher_decrypt_blkcipher(struct skcipher_request *req)
649 {
650 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
651 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
652 	struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
653 
654 	return skcipher_crypt_blkcipher(req, alg->decrypt);
655 }
656 
657 static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
658 {
659 	struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
660 
661 	crypto_free_blkcipher(*ctx);
662 }
663 
664 static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
665 {
666 	struct crypto_alg *calg = tfm->__crt_alg;
667 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
668 	struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
669 	struct crypto_blkcipher *blkcipher;
670 	struct crypto_tfm *btfm;
671 
672 	if (!crypto_mod_get(calg))
673 		return -EAGAIN;
674 
675 	btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER,
676 					CRYPTO_ALG_TYPE_MASK);
677 	if (IS_ERR(btfm)) {
678 		crypto_mod_put(calg);
679 		return PTR_ERR(btfm);
680 	}
681 
682 	blkcipher = __crypto_blkcipher_cast(btfm);
683 	*ctx = blkcipher;
684 	tfm->exit = crypto_exit_skcipher_ops_blkcipher;
685 
686 	skcipher->setkey = skcipher_setkey_blkcipher;
687 	skcipher->encrypt = skcipher_encrypt_blkcipher;
688 	skcipher->decrypt = skcipher_decrypt_blkcipher;
689 
690 	skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher);
691 	skcipher->keysize = calg->cra_blkcipher.max_keysize;
692 
693 	skcipher_set_needkey(skcipher);
694 
695 	return 0;
696 }
697 
698 static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm,
699 				      const u8 *key, unsigned int keylen)
700 {
701 	struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
702 	struct crypto_ablkcipher *ablkcipher = *ctx;
703 	int err;
704 
705 	crypto_ablkcipher_clear_flags(ablkcipher, ~0);
706 	crypto_ablkcipher_set_flags(ablkcipher,
707 				    crypto_skcipher_get_flags(tfm) &
708 				    CRYPTO_TFM_REQ_MASK);
709 	err = crypto_ablkcipher_setkey(ablkcipher, key, keylen);
710 	crypto_skcipher_set_flags(tfm,
711 				  crypto_ablkcipher_get_flags(ablkcipher) &
712 				  CRYPTO_TFM_RES_MASK);
713 	if (unlikely(err)) {
714 		skcipher_set_needkey(tfm);
715 		return err;
716 	}
717 
718 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
719 	return 0;
720 }
721 
722 static int skcipher_crypt_ablkcipher(struct skcipher_request *req,
723 				     int (*crypt)(struct ablkcipher_request *))
724 {
725 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
726 	struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
727 	struct ablkcipher_request *subreq = skcipher_request_ctx(req);
728 
729 	ablkcipher_request_set_tfm(subreq, *ctx);
730 	ablkcipher_request_set_callback(subreq, skcipher_request_flags(req),
731 					req->base.complete, req->base.data);
732 	ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
733 				     req->iv);
734 
735 	return crypt(subreq);
736 }
737 
738 static int skcipher_encrypt_ablkcipher(struct skcipher_request *req)
739 {
740 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
741 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
742 	struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
743 
744 	return skcipher_crypt_ablkcipher(req, alg->encrypt);
745 }
746 
747 static int skcipher_decrypt_ablkcipher(struct skcipher_request *req)
748 {
749 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
750 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
751 	struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
752 
753 	return skcipher_crypt_ablkcipher(req, alg->decrypt);
754 }
755 
756 static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
757 {
758 	struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
759 
760 	crypto_free_ablkcipher(*ctx);
761 }
762 
763 static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
764 {
765 	struct crypto_alg *calg = tfm->__crt_alg;
766 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
767 	struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
768 	struct crypto_ablkcipher *ablkcipher;
769 	struct crypto_tfm *abtfm;
770 
771 	if (!crypto_mod_get(calg))
772 		return -EAGAIN;
773 
774 	abtfm = __crypto_alloc_tfm(calg, 0, 0);
775 	if (IS_ERR(abtfm)) {
776 		crypto_mod_put(calg);
777 		return PTR_ERR(abtfm);
778 	}
779 
780 	ablkcipher = __crypto_ablkcipher_cast(abtfm);
781 	*ctx = ablkcipher;
782 	tfm->exit = crypto_exit_skcipher_ops_ablkcipher;
783 
784 	skcipher->setkey = skcipher_setkey_ablkcipher;
785 	skcipher->encrypt = skcipher_encrypt_ablkcipher;
786 	skcipher->decrypt = skcipher_decrypt_ablkcipher;
787 
788 	skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher);
789 	skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) +
790 			    sizeof(struct ablkcipher_request);
791 	skcipher->keysize = calg->cra_ablkcipher.max_keysize;
792 
793 	skcipher_set_needkey(skcipher);
794 
795 	return 0;
796 }
797 
798 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
799 				     const u8 *key, unsigned int keylen)
800 {
801 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
802 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
803 	u8 *buffer, *alignbuffer;
804 	unsigned long absize;
805 	int ret;
806 
807 	absize = keylen + alignmask;
808 	buffer = kmalloc(absize, GFP_ATOMIC);
809 	if (!buffer)
810 		return -ENOMEM;
811 
812 	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
813 	memcpy(alignbuffer, key, keylen);
814 	ret = cipher->setkey(tfm, alignbuffer, keylen);
815 	kzfree(buffer);
816 	return ret;
817 }
818 
819 static int skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
820 			   unsigned int keylen)
821 {
822 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
823 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
824 	int err;
825 
826 	if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) {
827 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
828 		return -EINVAL;
829 	}
830 
831 	if ((unsigned long)key & alignmask)
832 		err = skcipher_setkey_unaligned(tfm, key, keylen);
833 	else
834 		err = cipher->setkey(tfm, key, keylen);
835 
836 	if (unlikely(err)) {
837 		skcipher_set_needkey(tfm);
838 		return err;
839 	}
840 
841 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
842 	return 0;
843 }
844 
845 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
846 {
847 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
848 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
849 
850 	alg->exit(skcipher);
851 }
852 
853 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
854 {
855 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
856 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
857 
858 	if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type)
859 		return crypto_init_skcipher_ops_blkcipher(tfm);
860 
861 	if (tfm->__crt_alg->cra_type == &crypto_ablkcipher_type)
862 		return crypto_init_skcipher_ops_ablkcipher(tfm);
863 
864 	skcipher->setkey = skcipher_setkey;
865 	skcipher->encrypt = alg->encrypt;
866 	skcipher->decrypt = alg->decrypt;
867 	skcipher->ivsize = alg->ivsize;
868 	skcipher->keysize = alg->max_keysize;
869 
870 	skcipher_set_needkey(skcipher);
871 
872 	if (alg->exit)
873 		skcipher->base.exit = crypto_skcipher_exit_tfm;
874 
875 	if (alg->init)
876 		return alg->init(skcipher);
877 
878 	return 0;
879 }
880 
881 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
882 {
883 	struct skcipher_instance *skcipher =
884 		container_of(inst, struct skcipher_instance, s.base);
885 
886 	skcipher->free(skcipher);
887 }
888 
889 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
890 	__maybe_unused;
891 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
892 {
893 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
894 						     base);
895 
896 	seq_printf(m, "type         : skcipher\n");
897 	seq_printf(m, "async        : %s\n",
898 		   alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
899 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
900 	seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
901 	seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
902 	seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
903 	seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
904 	seq_printf(m, "walksize     : %u\n", skcipher->walksize);
905 }
906 
907 #ifdef CONFIG_NET
908 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
909 {
910 	struct crypto_report_blkcipher rblkcipher;
911 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
912 						     base);
913 
914 	memset(&rblkcipher, 0, sizeof(rblkcipher));
915 
916 	strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
917 	strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
918 
919 	rblkcipher.blocksize = alg->cra_blocksize;
920 	rblkcipher.min_keysize = skcipher->min_keysize;
921 	rblkcipher.max_keysize = skcipher->max_keysize;
922 	rblkcipher.ivsize = skcipher->ivsize;
923 
924 	return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
925 		       sizeof(rblkcipher), &rblkcipher);
926 }
927 #else
928 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
929 {
930 	return -ENOSYS;
931 }
932 #endif
933 
934 static const struct crypto_type crypto_skcipher_type2 = {
935 	.extsize = crypto_skcipher_extsize,
936 	.init_tfm = crypto_skcipher_init_tfm,
937 	.free = crypto_skcipher_free_instance,
938 #ifdef CONFIG_PROC_FS
939 	.show = crypto_skcipher_show,
940 #endif
941 	.report = crypto_skcipher_report,
942 	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
943 	.maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
944 	.type = CRYPTO_ALG_TYPE_SKCIPHER,
945 	.tfmsize = offsetof(struct crypto_skcipher, base),
946 };
947 
948 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
949 			  const char *name, u32 type, u32 mask)
950 {
951 	spawn->base.frontend = &crypto_skcipher_type2;
952 	return crypto_grab_spawn(&spawn->base, name, type, mask);
953 }
954 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
955 
956 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
957 					      u32 type, u32 mask)
958 {
959 	return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
960 }
961 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
962 
963 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
964 				const char *alg_name, u32 type, u32 mask)
965 {
966 	struct crypto_skcipher *tfm;
967 
968 	/* Only sync algorithms allowed. */
969 	mask |= CRYPTO_ALG_ASYNC;
970 
971 	tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
972 
973 	/*
974 	 * Make sure we do not allocate something that might get used with
975 	 * an on-stack request: check the request size.
976 	 */
977 	if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
978 				    MAX_SYNC_SKCIPHER_REQSIZE)) {
979 		crypto_free_skcipher(tfm);
980 		return ERR_PTR(-EINVAL);
981 	}
982 
983 	return (struct crypto_sync_skcipher *)tfm;
984 }
985 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
986 
987 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask)
988 {
989 	return crypto_type_has_alg(alg_name, &crypto_skcipher_type2,
990 				   type, mask);
991 }
992 EXPORT_SYMBOL_GPL(crypto_has_skcipher2);
993 
994 static int skcipher_prepare_alg(struct skcipher_alg *alg)
995 {
996 	struct crypto_alg *base = &alg->base;
997 
998 	if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
999 	    alg->walksize > PAGE_SIZE / 8)
1000 		return -EINVAL;
1001 
1002 	if (!alg->chunksize)
1003 		alg->chunksize = base->cra_blocksize;
1004 	if (!alg->walksize)
1005 		alg->walksize = alg->chunksize;
1006 
1007 	base->cra_type = &crypto_skcipher_type2;
1008 	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
1009 	base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
1010 
1011 	return 0;
1012 }
1013 
1014 int crypto_register_skcipher(struct skcipher_alg *alg)
1015 {
1016 	struct crypto_alg *base = &alg->base;
1017 	int err;
1018 
1019 	err = skcipher_prepare_alg(alg);
1020 	if (err)
1021 		return err;
1022 
1023 	return crypto_register_alg(base);
1024 }
1025 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
1026 
1027 void crypto_unregister_skcipher(struct skcipher_alg *alg)
1028 {
1029 	crypto_unregister_alg(&alg->base);
1030 }
1031 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
1032 
1033 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
1034 {
1035 	int i, ret;
1036 
1037 	for (i = 0; i < count; i++) {
1038 		ret = crypto_register_skcipher(&algs[i]);
1039 		if (ret)
1040 			goto err;
1041 	}
1042 
1043 	return 0;
1044 
1045 err:
1046 	for (--i; i >= 0; --i)
1047 		crypto_unregister_skcipher(&algs[i]);
1048 
1049 	return ret;
1050 }
1051 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
1052 
1053 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
1054 {
1055 	int i;
1056 
1057 	for (i = count - 1; i >= 0; --i)
1058 		crypto_unregister_skcipher(&algs[i]);
1059 }
1060 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
1061 
1062 int skcipher_register_instance(struct crypto_template *tmpl,
1063 			   struct skcipher_instance *inst)
1064 {
1065 	int err;
1066 
1067 	err = skcipher_prepare_alg(&inst->alg);
1068 	if (err)
1069 		return err;
1070 
1071 	return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
1072 }
1073 EXPORT_SYMBOL_GPL(skcipher_register_instance);
1074 
1075 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
1076 				  unsigned int keylen)
1077 {
1078 	struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
1079 	int err;
1080 
1081 	crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
1082 	crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
1083 				CRYPTO_TFM_REQ_MASK);
1084 	err = crypto_cipher_setkey(cipher, key, keylen);
1085 	crypto_skcipher_set_flags(tfm, crypto_cipher_get_flags(cipher) &
1086 				  CRYPTO_TFM_RES_MASK);
1087 	return err;
1088 }
1089 
1090 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
1091 {
1092 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
1093 	struct crypto_spawn *spawn = skcipher_instance_ctx(inst);
1094 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
1095 	struct crypto_cipher *cipher;
1096 
1097 	cipher = crypto_spawn_cipher(spawn);
1098 	if (IS_ERR(cipher))
1099 		return PTR_ERR(cipher);
1100 
1101 	ctx->cipher = cipher;
1102 	return 0;
1103 }
1104 
1105 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
1106 {
1107 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
1108 
1109 	crypto_free_cipher(ctx->cipher);
1110 }
1111 
1112 static void skcipher_free_instance_simple(struct skcipher_instance *inst)
1113 {
1114 	crypto_drop_spawn(skcipher_instance_ctx(inst));
1115 	kfree(inst);
1116 }
1117 
1118 /**
1119  * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
1120  *
1121  * Allocate an skcipher_instance for a simple block cipher mode of operation,
1122  * e.g. cbc or ecb.  The instance context will have just a single crypto_spawn,
1123  * that for the underlying cipher.  The {min,max}_keysize, ivsize, blocksize,
1124  * alignmask, and priority are set from the underlying cipher but can be
1125  * overridden if needed.  The tfm context defaults to skcipher_ctx_simple, and
1126  * default ->setkey(), ->init(), and ->exit() methods are installed.
1127  *
1128  * @tmpl: the template being instantiated
1129  * @tb: the template parameters
1130  * @cipher_alg_ret: on success, a pointer to the underlying cipher algorithm is
1131  *		    returned here.  It must be dropped with crypto_mod_put().
1132  *
1133  * Return: a pointer to the new instance, or an ERR_PTR().  The caller still
1134  *	   needs to register the instance.
1135  */
1136 struct skcipher_instance *
1137 skcipher_alloc_instance_simple(struct crypto_template *tmpl, struct rtattr **tb,
1138 			       struct crypto_alg **cipher_alg_ret)
1139 {
1140 	struct crypto_attr_type *algt;
1141 	struct crypto_alg *cipher_alg;
1142 	struct skcipher_instance *inst;
1143 	struct crypto_spawn *spawn;
1144 	u32 mask;
1145 	int err;
1146 
1147 	algt = crypto_get_attr_type(tb);
1148 	if (IS_ERR(algt))
1149 		return ERR_CAST(algt);
1150 
1151 	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
1152 		return ERR_PTR(-EINVAL);
1153 
1154 	mask = CRYPTO_ALG_TYPE_MASK |
1155 		crypto_requires_off(algt->type, algt->mask,
1156 				    CRYPTO_ALG_NEED_FALLBACK);
1157 
1158 	cipher_alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, mask);
1159 	if (IS_ERR(cipher_alg))
1160 		return ERR_CAST(cipher_alg);
1161 
1162 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
1163 	if (!inst) {
1164 		err = -ENOMEM;
1165 		goto err_put_cipher_alg;
1166 	}
1167 	spawn = skcipher_instance_ctx(inst);
1168 
1169 	err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
1170 				  cipher_alg);
1171 	if (err)
1172 		goto err_free_inst;
1173 
1174 	err = crypto_init_spawn(spawn, cipher_alg,
1175 				skcipher_crypto_instance(inst),
1176 				CRYPTO_ALG_TYPE_MASK);
1177 	if (err)
1178 		goto err_free_inst;
1179 	inst->free = skcipher_free_instance_simple;
1180 
1181 	/* Default algorithm properties, can be overridden */
1182 	inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
1183 	inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
1184 	inst->alg.base.cra_priority = cipher_alg->cra_priority;
1185 	inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
1186 	inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
1187 	inst->alg.ivsize = cipher_alg->cra_blocksize;
1188 
1189 	/* Use skcipher_ctx_simple by default, can be overridden */
1190 	inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
1191 	inst->alg.setkey = skcipher_setkey_simple;
1192 	inst->alg.init = skcipher_init_tfm_simple;
1193 	inst->alg.exit = skcipher_exit_tfm_simple;
1194 
1195 	*cipher_alg_ret = cipher_alg;
1196 	return inst;
1197 
1198 err_free_inst:
1199 	kfree(inst);
1200 err_put_cipher_alg:
1201 	crypto_mod_put(cipher_alg);
1202 	return ERR_PTR(err);
1203 }
1204 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
1205 
1206 MODULE_LICENSE("GPL");
1207 MODULE_DESCRIPTION("Symmetric key cipher type");
1208