xref: /openbmc/linux/crypto/skcipher.c (revision 25cdda95)
1 /*
2  * Symmetric key cipher operations.
3  *
4  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
5  * multiple page boundaries by using temporary blocks.  In user context,
6  * the kernel is given a chance to schedule us once per page.
7  *
8  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; either version 2 of the License, or (at your option)
13  * any later version.
14  *
15  */
16 
17 #include <crypto/internal/aead.h>
18 #include <crypto/internal/skcipher.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/bug.h>
21 #include <linux/cryptouser.h>
22 #include <linux/compiler.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/rtnetlink.h>
26 #include <linux/seq_file.h>
27 #include <net/netlink.h>
28 
29 #include "internal.h"
30 
31 enum {
32 	SKCIPHER_WALK_PHYS = 1 << 0,
33 	SKCIPHER_WALK_SLOW = 1 << 1,
34 	SKCIPHER_WALK_COPY = 1 << 2,
35 	SKCIPHER_WALK_DIFF = 1 << 3,
36 	SKCIPHER_WALK_SLEEP = 1 << 4,
37 };
38 
39 struct skcipher_walk_buffer {
40 	struct list_head entry;
41 	struct scatter_walk dst;
42 	unsigned int len;
43 	u8 *data;
44 	u8 buffer[];
45 };
46 
47 static int skcipher_walk_next(struct skcipher_walk *walk);
48 
49 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
50 {
51 	if (PageHighMem(scatterwalk_page(walk)))
52 		kunmap_atomic(vaddr);
53 }
54 
55 static inline void *skcipher_map(struct scatter_walk *walk)
56 {
57 	struct page *page = scatterwalk_page(walk);
58 
59 	return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
60 	       offset_in_page(walk->offset);
61 }
62 
63 static inline void skcipher_map_src(struct skcipher_walk *walk)
64 {
65 	walk->src.virt.addr = skcipher_map(&walk->in);
66 }
67 
68 static inline void skcipher_map_dst(struct skcipher_walk *walk)
69 {
70 	walk->dst.virt.addr = skcipher_map(&walk->out);
71 }
72 
73 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
74 {
75 	skcipher_unmap(&walk->in, walk->src.virt.addr);
76 }
77 
78 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
79 {
80 	skcipher_unmap(&walk->out, walk->dst.virt.addr);
81 }
82 
83 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
84 {
85 	return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
86 }
87 
88 /* Get a spot of the specified length that does not straddle a page.
89  * The caller needs to ensure that there is enough space for this operation.
90  */
91 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
92 {
93 	u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
94 
95 	return max(start, end_page);
96 }
97 
98 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
99 {
100 	u8 *addr;
101 
102 	addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
103 	addr = skcipher_get_spot(addr, bsize);
104 	scatterwalk_copychunks(addr, &walk->out, bsize,
105 			       (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
106 	return 0;
107 }
108 
109 int skcipher_walk_done(struct skcipher_walk *walk, int err)
110 {
111 	unsigned int n = walk->nbytes - err;
112 	unsigned int nbytes;
113 
114 	nbytes = walk->total - n;
115 
116 	if (unlikely(err < 0)) {
117 		nbytes = 0;
118 		n = 0;
119 	} else if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
120 					   SKCIPHER_WALK_SLOW |
121 					   SKCIPHER_WALK_COPY |
122 					   SKCIPHER_WALK_DIFF)))) {
123 unmap_src:
124 		skcipher_unmap_src(walk);
125 	} else if (walk->flags & SKCIPHER_WALK_DIFF) {
126 		skcipher_unmap_dst(walk);
127 		goto unmap_src;
128 	} else if (walk->flags & SKCIPHER_WALK_COPY) {
129 		skcipher_map_dst(walk);
130 		memcpy(walk->dst.virt.addr, walk->page, n);
131 		skcipher_unmap_dst(walk);
132 	} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
133 		if (WARN_ON(err)) {
134 			err = -EINVAL;
135 			nbytes = 0;
136 		} else
137 			n = skcipher_done_slow(walk, n);
138 	}
139 
140 	if (err > 0)
141 		err = 0;
142 
143 	walk->total = nbytes;
144 	walk->nbytes = nbytes;
145 
146 	scatterwalk_advance(&walk->in, n);
147 	scatterwalk_advance(&walk->out, n);
148 	scatterwalk_done(&walk->in, 0, nbytes);
149 	scatterwalk_done(&walk->out, 1, nbytes);
150 
151 	if (nbytes) {
152 		crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
153 			     CRYPTO_TFM_REQ_MAY_SLEEP : 0);
154 		return skcipher_walk_next(walk);
155 	}
156 
157 	/* Short-circuit for the common/fast path. */
158 	if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
159 		goto out;
160 
161 	if (walk->flags & SKCIPHER_WALK_PHYS)
162 		goto out;
163 
164 	if (walk->iv != walk->oiv)
165 		memcpy(walk->oiv, walk->iv, walk->ivsize);
166 	if (walk->buffer != walk->page)
167 		kfree(walk->buffer);
168 	if (walk->page)
169 		free_page((unsigned long)walk->page);
170 
171 out:
172 	return err;
173 }
174 EXPORT_SYMBOL_GPL(skcipher_walk_done);
175 
176 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
177 {
178 	struct skcipher_walk_buffer *p, *tmp;
179 
180 	list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
181 		u8 *data;
182 
183 		if (err)
184 			goto done;
185 
186 		data = p->data;
187 		if (!data) {
188 			data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
189 			data = skcipher_get_spot(data, walk->stride);
190 		}
191 
192 		scatterwalk_copychunks(data, &p->dst, p->len, 1);
193 
194 		if (offset_in_page(p->data) + p->len + walk->stride >
195 		    PAGE_SIZE)
196 			free_page((unsigned long)p->data);
197 
198 done:
199 		list_del(&p->entry);
200 		kfree(p);
201 	}
202 
203 	if (!err && walk->iv != walk->oiv)
204 		memcpy(walk->oiv, walk->iv, walk->ivsize);
205 	if (walk->buffer != walk->page)
206 		kfree(walk->buffer);
207 	if (walk->page)
208 		free_page((unsigned long)walk->page);
209 }
210 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
211 
212 static void skcipher_queue_write(struct skcipher_walk *walk,
213 				 struct skcipher_walk_buffer *p)
214 {
215 	p->dst = walk->out;
216 	list_add_tail(&p->entry, &walk->buffers);
217 }
218 
219 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
220 {
221 	bool phys = walk->flags & SKCIPHER_WALK_PHYS;
222 	unsigned alignmask = walk->alignmask;
223 	struct skcipher_walk_buffer *p;
224 	unsigned a;
225 	unsigned n;
226 	u8 *buffer;
227 	void *v;
228 
229 	if (!phys) {
230 		if (!walk->buffer)
231 			walk->buffer = walk->page;
232 		buffer = walk->buffer;
233 		if (buffer)
234 			goto ok;
235 	}
236 
237 	/* Start with the minimum alignment of kmalloc. */
238 	a = crypto_tfm_ctx_alignment() - 1;
239 	n = bsize;
240 
241 	if (phys) {
242 		/* Calculate the minimum alignment of p->buffer. */
243 		a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
244 		n += sizeof(*p);
245 	}
246 
247 	/* Minimum size to align p->buffer by alignmask. */
248 	n += alignmask & ~a;
249 
250 	/* Minimum size to ensure p->buffer does not straddle a page. */
251 	n += (bsize - 1) & ~(alignmask | a);
252 
253 	v = kzalloc(n, skcipher_walk_gfp(walk));
254 	if (!v)
255 		return skcipher_walk_done(walk, -ENOMEM);
256 
257 	if (phys) {
258 		p = v;
259 		p->len = bsize;
260 		skcipher_queue_write(walk, p);
261 		buffer = p->buffer;
262 	} else {
263 		walk->buffer = v;
264 		buffer = v;
265 	}
266 
267 ok:
268 	walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
269 	walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
270 	walk->src.virt.addr = walk->dst.virt.addr;
271 
272 	scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
273 
274 	walk->nbytes = bsize;
275 	walk->flags |= SKCIPHER_WALK_SLOW;
276 
277 	return 0;
278 }
279 
280 static int skcipher_next_copy(struct skcipher_walk *walk)
281 {
282 	struct skcipher_walk_buffer *p;
283 	u8 *tmp = walk->page;
284 
285 	skcipher_map_src(walk);
286 	memcpy(tmp, walk->src.virt.addr, walk->nbytes);
287 	skcipher_unmap_src(walk);
288 
289 	walk->src.virt.addr = tmp;
290 	walk->dst.virt.addr = tmp;
291 
292 	if (!(walk->flags & SKCIPHER_WALK_PHYS))
293 		return 0;
294 
295 	p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
296 	if (!p)
297 		return -ENOMEM;
298 
299 	p->data = walk->page;
300 	p->len = walk->nbytes;
301 	skcipher_queue_write(walk, p);
302 
303 	if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
304 	    PAGE_SIZE)
305 		walk->page = NULL;
306 	else
307 		walk->page += walk->nbytes;
308 
309 	return 0;
310 }
311 
312 static int skcipher_next_fast(struct skcipher_walk *walk)
313 {
314 	unsigned long diff;
315 
316 	walk->src.phys.page = scatterwalk_page(&walk->in);
317 	walk->src.phys.offset = offset_in_page(walk->in.offset);
318 	walk->dst.phys.page = scatterwalk_page(&walk->out);
319 	walk->dst.phys.offset = offset_in_page(walk->out.offset);
320 
321 	if (walk->flags & SKCIPHER_WALK_PHYS)
322 		return 0;
323 
324 	diff = walk->src.phys.offset - walk->dst.phys.offset;
325 	diff |= walk->src.virt.page - walk->dst.virt.page;
326 
327 	skcipher_map_src(walk);
328 	walk->dst.virt.addr = walk->src.virt.addr;
329 
330 	if (diff) {
331 		walk->flags |= SKCIPHER_WALK_DIFF;
332 		skcipher_map_dst(walk);
333 	}
334 
335 	return 0;
336 }
337 
338 static int skcipher_walk_next(struct skcipher_walk *walk)
339 {
340 	unsigned int bsize;
341 	unsigned int n;
342 	int err;
343 
344 	walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
345 			 SKCIPHER_WALK_DIFF);
346 
347 	n = walk->total;
348 	bsize = min(walk->stride, max(n, walk->blocksize));
349 	n = scatterwalk_clamp(&walk->in, n);
350 	n = scatterwalk_clamp(&walk->out, n);
351 
352 	if (unlikely(n < bsize)) {
353 		if (unlikely(walk->total < walk->blocksize))
354 			return skcipher_walk_done(walk, -EINVAL);
355 
356 slow_path:
357 		err = skcipher_next_slow(walk, bsize);
358 		goto set_phys_lowmem;
359 	}
360 
361 	if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
362 		if (!walk->page) {
363 			gfp_t gfp = skcipher_walk_gfp(walk);
364 
365 			walk->page = (void *)__get_free_page(gfp);
366 			if (!walk->page)
367 				goto slow_path;
368 		}
369 
370 		walk->nbytes = min_t(unsigned, n,
371 				     PAGE_SIZE - offset_in_page(walk->page));
372 		walk->flags |= SKCIPHER_WALK_COPY;
373 		err = skcipher_next_copy(walk);
374 		goto set_phys_lowmem;
375 	}
376 
377 	walk->nbytes = n;
378 
379 	return skcipher_next_fast(walk);
380 
381 set_phys_lowmem:
382 	if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
383 		walk->src.phys.page = virt_to_page(walk->src.virt.addr);
384 		walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
385 		walk->src.phys.offset &= PAGE_SIZE - 1;
386 		walk->dst.phys.offset &= PAGE_SIZE - 1;
387 	}
388 	return err;
389 }
390 EXPORT_SYMBOL_GPL(skcipher_walk_next);
391 
392 static int skcipher_copy_iv(struct skcipher_walk *walk)
393 {
394 	unsigned a = crypto_tfm_ctx_alignment() - 1;
395 	unsigned alignmask = walk->alignmask;
396 	unsigned ivsize = walk->ivsize;
397 	unsigned bs = walk->stride;
398 	unsigned aligned_bs;
399 	unsigned size;
400 	u8 *iv;
401 
402 	aligned_bs = ALIGN(bs, alignmask);
403 
404 	/* Minimum size to align buffer by alignmask. */
405 	size = alignmask & ~a;
406 
407 	if (walk->flags & SKCIPHER_WALK_PHYS)
408 		size += ivsize;
409 	else {
410 		size += aligned_bs + ivsize;
411 
412 		/* Minimum size to ensure buffer does not straddle a page. */
413 		size += (bs - 1) & ~(alignmask | a);
414 	}
415 
416 	walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
417 	if (!walk->buffer)
418 		return -ENOMEM;
419 
420 	iv = PTR_ALIGN(walk->buffer, alignmask + 1);
421 	iv = skcipher_get_spot(iv, bs) + aligned_bs;
422 
423 	walk->iv = memcpy(iv, walk->iv, walk->ivsize);
424 	return 0;
425 }
426 
427 static int skcipher_walk_first(struct skcipher_walk *walk)
428 {
429 	walk->nbytes = 0;
430 
431 	if (WARN_ON_ONCE(in_irq()))
432 		return -EDEADLK;
433 
434 	if (unlikely(!walk->total))
435 		return 0;
436 
437 	walk->buffer = NULL;
438 	if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
439 		int err = skcipher_copy_iv(walk);
440 		if (err)
441 			return err;
442 	}
443 
444 	walk->page = NULL;
445 	walk->nbytes = walk->total;
446 
447 	return skcipher_walk_next(walk);
448 }
449 
450 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
451 				  struct skcipher_request *req)
452 {
453 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
454 
455 	scatterwalk_start(&walk->in, req->src);
456 	scatterwalk_start(&walk->out, req->dst);
457 
458 	walk->total = req->cryptlen;
459 	walk->iv = req->iv;
460 	walk->oiv = req->iv;
461 
462 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
463 	walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
464 		       SKCIPHER_WALK_SLEEP : 0;
465 
466 	walk->blocksize = crypto_skcipher_blocksize(tfm);
467 	walk->stride = crypto_skcipher_walksize(tfm);
468 	walk->ivsize = crypto_skcipher_ivsize(tfm);
469 	walk->alignmask = crypto_skcipher_alignmask(tfm);
470 
471 	return skcipher_walk_first(walk);
472 }
473 
474 int skcipher_walk_virt(struct skcipher_walk *walk,
475 		       struct skcipher_request *req, bool atomic)
476 {
477 	int err;
478 
479 	walk->flags &= ~SKCIPHER_WALK_PHYS;
480 
481 	err = skcipher_walk_skcipher(walk, req);
482 
483 	walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
484 
485 	return err;
486 }
487 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
488 
489 void skcipher_walk_atomise(struct skcipher_walk *walk)
490 {
491 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
492 }
493 EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
494 
495 int skcipher_walk_async(struct skcipher_walk *walk,
496 			struct skcipher_request *req)
497 {
498 	walk->flags |= SKCIPHER_WALK_PHYS;
499 
500 	INIT_LIST_HEAD(&walk->buffers);
501 
502 	return skcipher_walk_skcipher(walk, req);
503 }
504 EXPORT_SYMBOL_GPL(skcipher_walk_async);
505 
506 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
507 				     struct aead_request *req, bool atomic)
508 {
509 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
510 	int err;
511 
512 	walk->flags &= ~SKCIPHER_WALK_PHYS;
513 
514 	scatterwalk_start(&walk->in, req->src);
515 	scatterwalk_start(&walk->out, req->dst);
516 
517 	scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
518 	scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
519 
520 	walk->iv = req->iv;
521 	walk->oiv = req->iv;
522 
523 	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
524 		walk->flags |= SKCIPHER_WALK_SLEEP;
525 	else
526 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
527 
528 	walk->blocksize = crypto_aead_blocksize(tfm);
529 	walk->stride = crypto_aead_chunksize(tfm);
530 	walk->ivsize = crypto_aead_ivsize(tfm);
531 	walk->alignmask = crypto_aead_alignmask(tfm);
532 
533 	err = skcipher_walk_first(walk);
534 
535 	if (atomic)
536 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
537 
538 	return err;
539 }
540 
541 int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req,
542 		       bool atomic)
543 {
544 	walk->total = req->cryptlen;
545 
546 	return skcipher_walk_aead_common(walk, req, atomic);
547 }
548 EXPORT_SYMBOL_GPL(skcipher_walk_aead);
549 
550 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
551 			       struct aead_request *req, bool atomic)
552 {
553 	walk->total = req->cryptlen;
554 
555 	return skcipher_walk_aead_common(walk, req, atomic);
556 }
557 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
558 
559 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
560 			       struct aead_request *req, bool atomic)
561 {
562 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
563 
564 	walk->total = req->cryptlen - crypto_aead_authsize(tfm);
565 
566 	return skcipher_walk_aead_common(walk, req, atomic);
567 }
568 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
569 
570 static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
571 {
572 	if (alg->cra_type == &crypto_blkcipher_type)
573 		return sizeof(struct crypto_blkcipher *);
574 
575 	if (alg->cra_type == &crypto_ablkcipher_type ||
576 	    alg->cra_type == &crypto_givcipher_type)
577 		return sizeof(struct crypto_ablkcipher *);
578 
579 	return crypto_alg_extsize(alg);
580 }
581 
582 static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm,
583 				     const u8 *key, unsigned int keylen)
584 {
585 	struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
586 	struct crypto_blkcipher *blkcipher = *ctx;
587 	int err;
588 
589 	crypto_blkcipher_clear_flags(blkcipher, ~0);
590 	crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) &
591 					      CRYPTO_TFM_REQ_MASK);
592 	err = crypto_blkcipher_setkey(blkcipher, key, keylen);
593 	crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) &
594 				       CRYPTO_TFM_RES_MASK);
595 
596 	return err;
597 }
598 
599 static int skcipher_crypt_blkcipher(struct skcipher_request *req,
600 				    int (*crypt)(struct blkcipher_desc *,
601 						 struct scatterlist *,
602 						 struct scatterlist *,
603 						 unsigned int))
604 {
605 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
606 	struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
607 	struct blkcipher_desc desc = {
608 		.tfm = *ctx,
609 		.info = req->iv,
610 		.flags = req->base.flags,
611 	};
612 
613 
614 	return crypt(&desc, req->dst, req->src, req->cryptlen);
615 }
616 
617 static int skcipher_encrypt_blkcipher(struct skcipher_request *req)
618 {
619 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
620 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
621 	struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
622 
623 	return skcipher_crypt_blkcipher(req, alg->encrypt);
624 }
625 
626 static int skcipher_decrypt_blkcipher(struct skcipher_request *req)
627 {
628 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
629 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
630 	struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
631 
632 	return skcipher_crypt_blkcipher(req, alg->decrypt);
633 }
634 
635 static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
636 {
637 	struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
638 
639 	crypto_free_blkcipher(*ctx);
640 }
641 
642 static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
643 {
644 	struct crypto_alg *calg = tfm->__crt_alg;
645 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
646 	struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
647 	struct crypto_blkcipher *blkcipher;
648 	struct crypto_tfm *btfm;
649 
650 	if (!crypto_mod_get(calg))
651 		return -EAGAIN;
652 
653 	btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER,
654 					CRYPTO_ALG_TYPE_MASK);
655 	if (IS_ERR(btfm)) {
656 		crypto_mod_put(calg);
657 		return PTR_ERR(btfm);
658 	}
659 
660 	blkcipher = __crypto_blkcipher_cast(btfm);
661 	*ctx = blkcipher;
662 	tfm->exit = crypto_exit_skcipher_ops_blkcipher;
663 
664 	skcipher->setkey = skcipher_setkey_blkcipher;
665 	skcipher->encrypt = skcipher_encrypt_blkcipher;
666 	skcipher->decrypt = skcipher_decrypt_blkcipher;
667 
668 	skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher);
669 	skcipher->keysize = calg->cra_blkcipher.max_keysize;
670 
671 	return 0;
672 }
673 
674 static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm,
675 				      const u8 *key, unsigned int keylen)
676 {
677 	struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
678 	struct crypto_ablkcipher *ablkcipher = *ctx;
679 	int err;
680 
681 	crypto_ablkcipher_clear_flags(ablkcipher, ~0);
682 	crypto_ablkcipher_set_flags(ablkcipher,
683 				    crypto_skcipher_get_flags(tfm) &
684 				    CRYPTO_TFM_REQ_MASK);
685 	err = crypto_ablkcipher_setkey(ablkcipher, key, keylen);
686 	crypto_skcipher_set_flags(tfm,
687 				  crypto_ablkcipher_get_flags(ablkcipher) &
688 				  CRYPTO_TFM_RES_MASK);
689 
690 	return err;
691 }
692 
693 static int skcipher_crypt_ablkcipher(struct skcipher_request *req,
694 				     int (*crypt)(struct ablkcipher_request *))
695 {
696 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
697 	struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
698 	struct ablkcipher_request *subreq = skcipher_request_ctx(req);
699 
700 	ablkcipher_request_set_tfm(subreq, *ctx);
701 	ablkcipher_request_set_callback(subreq, skcipher_request_flags(req),
702 					req->base.complete, req->base.data);
703 	ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
704 				     req->iv);
705 
706 	return crypt(subreq);
707 }
708 
709 static int skcipher_encrypt_ablkcipher(struct skcipher_request *req)
710 {
711 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
712 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
713 	struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
714 
715 	return skcipher_crypt_ablkcipher(req, alg->encrypt);
716 }
717 
718 static int skcipher_decrypt_ablkcipher(struct skcipher_request *req)
719 {
720 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
721 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
722 	struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
723 
724 	return skcipher_crypt_ablkcipher(req, alg->decrypt);
725 }
726 
727 static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
728 {
729 	struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
730 
731 	crypto_free_ablkcipher(*ctx);
732 }
733 
734 static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
735 {
736 	struct crypto_alg *calg = tfm->__crt_alg;
737 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
738 	struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
739 	struct crypto_ablkcipher *ablkcipher;
740 	struct crypto_tfm *abtfm;
741 
742 	if (!crypto_mod_get(calg))
743 		return -EAGAIN;
744 
745 	abtfm = __crypto_alloc_tfm(calg, 0, 0);
746 	if (IS_ERR(abtfm)) {
747 		crypto_mod_put(calg);
748 		return PTR_ERR(abtfm);
749 	}
750 
751 	ablkcipher = __crypto_ablkcipher_cast(abtfm);
752 	*ctx = ablkcipher;
753 	tfm->exit = crypto_exit_skcipher_ops_ablkcipher;
754 
755 	skcipher->setkey = skcipher_setkey_ablkcipher;
756 	skcipher->encrypt = skcipher_encrypt_ablkcipher;
757 	skcipher->decrypt = skcipher_decrypt_ablkcipher;
758 
759 	skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher);
760 	skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) +
761 			    sizeof(struct ablkcipher_request);
762 	skcipher->keysize = calg->cra_ablkcipher.max_keysize;
763 
764 	return 0;
765 }
766 
767 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
768 {
769 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
770 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
771 
772 	alg->exit(skcipher);
773 }
774 
775 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
776 {
777 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
778 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
779 
780 	if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type)
781 		return crypto_init_skcipher_ops_blkcipher(tfm);
782 
783 	if (tfm->__crt_alg->cra_type == &crypto_ablkcipher_type ||
784 	    tfm->__crt_alg->cra_type == &crypto_givcipher_type)
785 		return crypto_init_skcipher_ops_ablkcipher(tfm);
786 
787 	skcipher->setkey = alg->setkey;
788 	skcipher->encrypt = alg->encrypt;
789 	skcipher->decrypt = alg->decrypt;
790 	skcipher->ivsize = alg->ivsize;
791 	skcipher->keysize = alg->max_keysize;
792 
793 	if (alg->exit)
794 		skcipher->base.exit = crypto_skcipher_exit_tfm;
795 
796 	if (alg->init)
797 		return alg->init(skcipher);
798 
799 	return 0;
800 }
801 
802 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
803 {
804 	struct skcipher_instance *skcipher =
805 		container_of(inst, struct skcipher_instance, s.base);
806 
807 	skcipher->free(skcipher);
808 }
809 
810 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
811 	__maybe_unused;
812 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
813 {
814 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
815 						     base);
816 
817 	seq_printf(m, "type         : skcipher\n");
818 	seq_printf(m, "async        : %s\n",
819 		   alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
820 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
821 	seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
822 	seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
823 	seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
824 	seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
825 	seq_printf(m, "walksize     : %u\n", skcipher->walksize);
826 }
827 
828 #ifdef CONFIG_NET
829 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
830 {
831 	struct crypto_report_blkcipher rblkcipher;
832 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
833 						     base);
834 
835 	strncpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
836 	strncpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
837 
838 	rblkcipher.blocksize = alg->cra_blocksize;
839 	rblkcipher.min_keysize = skcipher->min_keysize;
840 	rblkcipher.max_keysize = skcipher->max_keysize;
841 	rblkcipher.ivsize = skcipher->ivsize;
842 
843 	if (nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
844 		    sizeof(struct crypto_report_blkcipher), &rblkcipher))
845 		goto nla_put_failure;
846 	return 0;
847 
848 nla_put_failure:
849 	return -EMSGSIZE;
850 }
851 #else
852 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
853 {
854 	return -ENOSYS;
855 }
856 #endif
857 
858 static const struct crypto_type crypto_skcipher_type2 = {
859 	.extsize = crypto_skcipher_extsize,
860 	.init_tfm = crypto_skcipher_init_tfm,
861 	.free = crypto_skcipher_free_instance,
862 #ifdef CONFIG_PROC_FS
863 	.show = crypto_skcipher_show,
864 #endif
865 	.report = crypto_skcipher_report,
866 	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
867 	.maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
868 	.type = CRYPTO_ALG_TYPE_SKCIPHER,
869 	.tfmsize = offsetof(struct crypto_skcipher, base),
870 };
871 
872 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
873 			  const char *name, u32 type, u32 mask)
874 {
875 	spawn->base.frontend = &crypto_skcipher_type2;
876 	return crypto_grab_spawn(&spawn->base, name, type, mask);
877 }
878 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
879 
880 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
881 					      u32 type, u32 mask)
882 {
883 	return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
884 }
885 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
886 
887 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask)
888 {
889 	return crypto_type_has_alg(alg_name, &crypto_skcipher_type2,
890 				   type, mask);
891 }
892 EXPORT_SYMBOL_GPL(crypto_has_skcipher2);
893 
894 static int skcipher_prepare_alg(struct skcipher_alg *alg)
895 {
896 	struct crypto_alg *base = &alg->base;
897 
898 	if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
899 	    alg->walksize > PAGE_SIZE / 8)
900 		return -EINVAL;
901 
902 	if (!alg->chunksize)
903 		alg->chunksize = base->cra_blocksize;
904 	if (!alg->walksize)
905 		alg->walksize = alg->chunksize;
906 
907 	base->cra_type = &crypto_skcipher_type2;
908 	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
909 	base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
910 
911 	return 0;
912 }
913 
914 int crypto_register_skcipher(struct skcipher_alg *alg)
915 {
916 	struct crypto_alg *base = &alg->base;
917 	int err;
918 
919 	err = skcipher_prepare_alg(alg);
920 	if (err)
921 		return err;
922 
923 	return crypto_register_alg(base);
924 }
925 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
926 
927 void crypto_unregister_skcipher(struct skcipher_alg *alg)
928 {
929 	crypto_unregister_alg(&alg->base);
930 }
931 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
932 
933 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
934 {
935 	int i, ret;
936 
937 	for (i = 0; i < count; i++) {
938 		ret = crypto_register_skcipher(&algs[i]);
939 		if (ret)
940 			goto err;
941 	}
942 
943 	return 0;
944 
945 err:
946 	for (--i; i >= 0; --i)
947 		crypto_unregister_skcipher(&algs[i]);
948 
949 	return ret;
950 }
951 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
952 
953 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
954 {
955 	int i;
956 
957 	for (i = count - 1; i >= 0; --i)
958 		crypto_unregister_skcipher(&algs[i]);
959 }
960 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
961 
962 int skcipher_register_instance(struct crypto_template *tmpl,
963 			   struct skcipher_instance *inst)
964 {
965 	int err;
966 
967 	err = skcipher_prepare_alg(&inst->alg);
968 	if (err)
969 		return err;
970 
971 	return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
972 }
973 EXPORT_SYMBOL_GPL(skcipher_register_instance);
974 
975 MODULE_LICENSE("GPL");
976 MODULE_DESCRIPTION("Symmetric key cipher type");
977