xref: /openbmc/linux/crypto/skcipher.c (revision 0eb76ba2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Symmetric key cipher operations.
4  *
5  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
6  * multiple page boundaries by using temporary blocks.  In user context,
7  * the kernel is given a chance to schedule us once per page.
8  *
9  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
10  */
11 
12 #include <crypto/internal/aead.h>
13 #include <crypto/internal/cipher.h>
14 #include <crypto/internal/skcipher.h>
15 #include <crypto/scatterwalk.h>
16 #include <linux/bug.h>
17 #include <linux/cryptouser.h>
18 #include <linux/compiler.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/seq_file.h>
23 #include <net/netlink.h>
24 
25 #include "internal.h"
26 
27 enum {
28 	SKCIPHER_WALK_PHYS = 1 << 0,
29 	SKCIPHER_WALK_SLOW = 1 << 1,
30 	SKCIPHER_WALK_COPY = 1 << 2,
31 	SKCIPHER_WALK_DIFF = 1 << 3,
32 	SKCIPHER_WALK_SLEEP = 1 << 4,
33 };
34 
35 struct skcipher_walk_buffer {
36 	struct list_head entry;
37 	struct scatter_walk dst;
38 	unsigned int len;
39 	u8 *data;
40 	u8 buffer[];
41 };
42 
43 static int skcipher_walk_next(struct skcipher_walk *walk);
44 
45 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
46 {
47 	if (PageHighMem(scatterwalk_page(walk)))
48 		kunmap_atomic(vaddr);
49 }
50 
51 static inline void *skcipher_map(struct scatter_walk *walk)
52 {
53 	struct page *page = scatterwalk_page(walk);
54 
55 	return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
56 	       offset_in_page(walk->offset);
57 }
58 
59 static inline void skcipher_map_src(struct skcipher_walk *walk)
60 {
61 	walk->src.virt.addr = skcipher_map(&walk->in);
62 }
63 
64 static inline void skcipher_map_dst(struct skcipher_walk *walk)
65 {
66 	walk->dst.virt.addr = skcipher_map(&walk->out);
67 }
68 
69 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
70 {
71 	skcipher_unmap(&walk->in, walk->src.virt.addr);
72 }
73 
74 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
75 {
76 	skcipher_unmap(&walk->out, walk->dst.virt.addr);
77 }
78 
79 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
80 {
81 	return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
82 }
83 
84 /* Get a spot of the specified length that does not straddle a page.
85  * The caller needs to ensure that there is enough space for this operation.
86  */
87 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
88 {
89 	u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
90 
91 	return max(start, end_page);
92 }
93 
94 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
95 {
96 	u8 *addr;
97 
98 	addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
99 	addr = skcipher_get_spot(addr, bsize);
100 	scatterwalk_copychunks(addr, &walk->out, bsize,
101 			       (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
102 	return 0;
103 }
104 
105 int skcipher_walk_done(struct skcipher_walk *walk, int err)
106 {
107 	unsigned int n = walk->nbytes;
108 	unsigned int nbytes = 0;
109 
110 	if (!n)
111 		goto finish;
112 
113 	if (likely(err >= 0)) {
114 		n -= err;
115 		nbytes = walk->total - n;
116 	}
117 
118 	if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
119 				    SKCIPHER_WALK_SLOW |
120 				    SKCIPHER_WALK_COPY |
121 				    SKCIPHER_WALK_DIFF)))) {
122 unmap_src:
123 		skcipher_unmap_src(walk);
124 	} else if (walk->flags & SKCIPHER_WALK_DIFF) {
125 		skcipher_unmap_dst(walk);
126 		goto unmap_src;
127 	} else if (walk->flags & SKCIPHER_WALK_COPY) {
128 		skcipher_map_dst(walk);
129 		memcpy(walk->dst.virt.addr, walk->page, n);
130 		skcipher_unmap_dst(walk);
131 	} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
132 		if (err > 0) {
133 			/*
134 			 * Didn't process all bytes.  Either the algorithm is
135 			 * broken, or this was the last step and it turned out
136 			 * the message wasn't evenly divisible into blocks but
137 			 * the algorithm requires it.
138 			 */
139 			err = -EINVAL;
140 			nbytes = 0;
141 		} else
142 			n = skcipher_done_slow(walk, n);
143 	}
144 
145 	if (err > 0)
146 		err = 0;
147 
148 	walk->total = nbytes;
149 	walk->nbytes = 0;
150 
151 	scatterwalk_advance(&walk->in, n);
152 	scatterwalk_advance(&walk->out, n);
153 	scatterwalk_done(&walk->in, 0, nbytes);
154 	scatterwalk_done(&walk->out, 1, nbytes);
155 
156 	if (nbytes) {
157 		crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
158 			     CRYPTO_TFM_REQ_MAY_SLEEP : 0);
159 		return skcipher_walk_next(walk);
160 	}
161 
162 finish:
163 	/* Short-circuit for the common/fast path. */
164 	if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
165 		goto out;
166 
167 	if (walk->flags & SKCIPHER_WALK_PHYS)
168 		goto out;
169 
170 	if (walk->iv != walk->oiv)
171 		memcpy(walk->oiv, walk->iv, walk->ivsize);
172 	if (walk->buffer != walk->page)
173 		kfree(walk->buffer);
174 	if (walk->page)
175 		free_page((unsigned long)walk->page);
176 
177 out:
178 	return err;
179 }
180 EXPORT_SYMBOL_GPL(skcipher_walk_done);
181 
182 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
183 {
184 	struct skcipher_walk_buffer *p, *tmp;
185 
186 	list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
187 		u8 *data;
188 
189 		if (err)
190 			goto done;
191 
192 		data = p->data;
193 		if (!data) {
194 			data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
195 			data = skcipher_get_spot(data, walk->stride);
196 		}
197 
198 		scatterwalk_copychunks(data, &p->dst, p->len, 1);
199 
200 		if (offset_in_page(p->data) + p->len + walk->stride >
201 		    PAGE_SIZE)
202 			free_page((unsigned long)p->data);
203 
204 done:
205 		list_del(&p->entry);
206 		kfree(p);
207 	}
208 
209 	if (!err && walk->iv != walk->oiv)
210 		memcpy(walk->oiv, walk->iv, walk->ivsize);
211 	if (walk->buffer != walk->page)
212 		kfree(walk->buffer);
213 	if (walk->page)
214 		free_page((unsigned long)walk->page);
215 }
216 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
217 
218 static void skcipher_queue_write(struct skcipher_walk *walk,
219 				 struct skcipher_walk_buffer *p)
220 {
221 	p->dst = walk->out;
222 	list_add_tail(&p->entry, &walk->buffers);
223 }
224 
225 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
226 {
227 	bool phys = walk->flags & SKCIPHER_WALK_PHYS;
228 	unsigned alignmask = walk->alignmask;
229 	struct skcipher_walk_buffer *p;
230 	unsigned a;
231 	unsigned n;
232 	u8 *buffer;
233 	void *v;
234 
235 	if (!phys) {
236 		if (!walk->buffer)
237 			walk->buffer = walk->page;
238 		buffer = walk->buffer;
239 		if (buffer)
240 			goto ok;
241 	}
242 
243 	/* Start with the minimum alignment of kmalloc. */
244 	a = crypto_tfm_ctx_alignment() - 1;
245 	n = bsize;
246 
247 	if (phys) {
248 		/* Calculate the minimum alignment of p->buffer. */
249 		a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
250 		n += sizeof(*p);
251 	}
252 
253 	/* Minimum size to align p->buffer by alignmask. */
254 	n += alignmask & ~a;
255 
256 	/* Minimum size to ensure p->buffer does not straddle a page. */
257 	n += (bsize - 1) & ~(alignmask | a);
258 
259 	v = kzalloc(n, skcipher_walk_gfp(walk));
260 	if (!v)
261 		return skcipher_walk_done(walk, -ENOMEM);
262 
263 	if (phys) {
264 		p = v;
265 		p->len = bsize;
266 		skcipher_queue_write(walk, p);
267 		buffer = p->buffer;
268 	} else {
269 		walk->buffer = v;
270 		buffer = v;
271 	}
272 
273 ok:
274 	walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
275 	walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
276 	walk->src.virt.addr = walk->dst.virt.addr;
277 
278 	scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
279 
280 	walk->nbytes = bsize;
281 	walk->flags |= SKCIPHER_WALK_SLOW;
282 
283 	return 0;
284 }
285 
286 static int skcipher_next_copy(struct skcipher_walk *walk)
287 {
288 	struct skcipher_walk_buffer *p;
289 	u8 *tmp = walk->page;
290 
291 	skcipher_map_src(walk);
292 	memcpy(tmp, walk->src.virt.addr, walk->nbytes);
293 	skcipher_unmap_src(walk);
294 
295 	walk->src.virt.addr = tmp;
296 	walk->dst.virt.addr = tmp;
297 
298 	if (!(walk->flags & SKCIPHER_WALK_PHYS))
299 		return 0;
300 
301 	p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
302 	if (!p)
303 		return -ENOMEM;
304 
305 	p->data = walk->page;
306 	p->len = walk->nbytes;
307 	skcipher_queue_write(walk, p);
308 
309 	if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
310 	    PAGE_SIZE)
311 		walk->page = NULL;
312 	else
313 		walk->page += walk->nbytes;
314 
315 	return 0;
316 }
317 
318 static int skcipher_next_fast(struct skcipher_walk *walk)
319 {
320 	unsigned long diff;
321 
322 	walk->src.phys.page = scatterwalk_page(&walk->in);
323 	walk->src.phys.offset = offset_in_page(walk->in.offset);
324 	walk->dst.phys.page = scatterwalk_page(&walk->out);
325 	walk->dst.phys.offset = offset_in_page(walk->out.offset);
326 
327 	if (walk->flags & SKCIPHER_WALK_PHYS)
328 		return 0;
329 
330 	diff = walk->src.phys.offset - walk->dst.phys.offset;
331 	diff |= walk->src.virt.page - walk->dst.virt.page;
332 
333 	skcipher_map_src(walk);
334 	walk->dst.virt.addr = walk->src.virt.addr;
335 
336 	if (diff) {
337 		walk->flags |= SKCIPHER_WALK_DIFF;
338 		skcipher_map_dst(walk);
339 	}
340 
341 	return 0;
342 }
343 
344 static int skcipher_walk_next(struct skcipher_walk *walk)
345 {
346 	unsigned int bsize;
347 	unsigned int n;
348 	int err;
349 
350 	walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
351 			 SKCIPHER_WALK_DIFF);
352 
353 	n = walk->total;
354 	bsize = min(walk->stride, max(n, walk->blocksize));
355 	n = scatterwalk_clamp(&walk->in, n);
356 	n = scatterwalk_clamp(&walk->out, n);
357 
358 	if (unlikely(n < bsize)) {
359 		if (unlikely(walk->total < walk->blocksize))
360 			return skcipher_walk_done(walk, -EINVAL);
361 
362 slow_path:
363 		err = skcipher_next_slow(walk, bsize);
364 		goto set_phys_lowmem;
365 	}
366 
367 	if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
368 		if (!walk->page) {
369 			gfp_t gfp = skcipher_walk_gfp(walk);
370 
371 			walk->page = (void *)__get_free_page(gfp);
372 			if (!walk->page)
373 				goto slow_path;
374 		}
375 
376 		walk->nbytes = min_t(unsigned, n,
377 				     PAGE_SIZE - offset_in_page(walk->page));
378 		walk->flags |= SKCIPHER_WALK_COPY;
379 		err = skcipher_next_copy(walk);
380 		goto set_phys_lowmem;
381 	}
382 
383 	walk->nbytes = n;
384 
385 	return skcipher_next_fast(walk);
386 
387 set_phys_lowmem:
388 	if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
389 		walk->src.phys.page = virt_to_page(walk->src.virt.addr);
390 		walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
391 		walk->src.phys.offset &= PAGE_SIZE - 1;
392 		walk->dst.phys.offset &= PAGE_SIZE - 1;
393 	}
394 	return err;
395 }
396 
397 static int skcipher_copy_iv(struct skcipher_walk *walk)
398 {
399 	unsigned a = crypto_tfm_ctx_alignment() - 1;
400 	unsigned alignmask = walk->alignmask;
401 	unsigned ivsize = walk->ivsize;
402 	unsigned bs = walk->stride;
403 	unsigned aligned_bs;
404 	unsigned size;
405 	u8 *iv;
406 
407 	aligned_bs = ALIGN(bs, alignmask + 1);
408 
409 	/* Minimum size to align buffer by alignmask. */
410 	size = alignmask & ~a;
411 
412 	if (walk->flags & SKCIPHER_WALK_PHYS)
413 		size += ivsize;
414 	else {
415 		size += aligned_bs + ivsize;
416 
417 		/* Minimum size to ensure buffer does not straddle a page. */
418 		size += (bs - 1) & ~(alignmask | a);
419 	}
420 
421 	walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
422 	if (!walk->buffer)
423 		return -ENOMEM;
424 
425 	iv = PTR_ALIGN(walk->buffer, alignmask + 1);
426 	iv = skcipher_get_spot(iv, bs) + aligned_bs;
427 
428 	walk->iv = memcpy(iv, walk->iv, walk->ivsize);
429 	return 0;
430 }
431 
432 static int skcipher_walk_first(struct skcipher_walk *walk)
433 {
434 	if (WARN_ON_ONCE(in_irq()))
435 		return -EDEADLK;
436 
437 	walk->buffer = NULL;
438 	if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
439 		int err = skcipher_copy_iv(walk);
440 		if (err)
441 			return err;
442 	}
443 
444 	walk->page = NULL;
445 
446 	return skcipher_walk_next(walk);
447 }
448 
449 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
450 				  struct skcipher_request *req)
451 {
452 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
453 
454 	walk->total = req->cryptlen;
455 	walk->nbytes = 0;
456 	walk->iv = req->iv;
457 	walk->oiv = req->iv;
458 
459 	if (unlikely(!walk->total))
460 		return 0;
461 
462 	scatterwalk_start(&walk->in, req->src);
463 	scatterwalk_start(&walk->out, req->dst);
464 
465 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
466 	walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
467 		       SKCIPHER_WALK_SLEEP : 0;
468 
469 	walk->blocksize = crypto_skcipher_blocksize(tfm);
470 	walk->stride = crypto_skcipher_walksize(tfm);
471 	walk->ivsize = crypto_skcipher_ivsize(tfm);
472 	walk->alignmask = crypto_skcipher_alignmask(tfm);
473 
474 	return skcipher_walk_first(walk);
475 }
476 
477 int skcipher_walk_virt(struct skcipher_walk *walk,
478 		       struct skcipher_request *req, bool atomic)
479 {
480 	int err;
481 
482 	might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
483 
484 	walk->flags &= ~SKCIPHER_WALK_PHYS;
485 
486 	err = skcipher_walk_skcipher(walk, req);
487 
488 	walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
489 
490 	return err;
491 }
492 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
493 
494 void skcipher_walk_atomise(struct skcipher_walk *walk)
495 {
496 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
497 }
498 EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
499 
500 int skcipher_walk_async(struct skcipher_walk *walk,
501 			struct skcipher_request *req)
502 {
503 	walk->flags |= SKCIPHER_WALK_PHYS;
504 
505 	INIT_LIST_HEAD(&walk->buffers);
506 
507 	return skcipher_walk_skcipher(walk, req);
508 }
509 EXPORT_SYMBOL_GPL(skcipher_walk_async);
510 
511 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
512 				     struct aead_request *req, bool atomic)
513 {
514 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
515 	int err;
516 
517 	walk->nbytes = 0;
518 	walk->iv = req->iv;
519 	walk->oiv = req->iv;
520 
521 	if (unlikely(!walk->total))
522 		return 0;
523 
524 	walk->flags &= ~SKCIPHER_WALK_PHYS;
525 
526 	scatterwalk_start(&walk->in, req->src);
527 	scatterwalk_start(&walk->out, req->dst);
528 
529 	scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
530 	scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
531 
532 	scatterwalk_done(&walk->in, 0, walk->total);
533 	scatterwalk_done(&walk->out, 0, walk->total);
534 
535 	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
536 		walk->flags |= SKCIPHER_WALK_SLEEP;
537 	else
538 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
539 
540 	walk->blocksize = crypto_aead_blocksize(tfm);
541 	walk->stride = crypto_aead_chunksize(tfm);
542 	walk->ivsize = crypto_aead_ivsize(tfm);
543 	walk->alignmask = crypto_aead_alignmask(tfm);
544 
545 	err = skcipher_walk_first(walk);
546 
547 	if (atomic)
548 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
549 
550 	return err;
551 }
552 
553 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
554 			       struct aead_request *req, bool atomic)
555 {
556 	walk->total = req->cryptlen;
557 
558 	return skcipher_walk_aead_common(walk, req, atomic);
559 }
560 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
561 
562 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
563 			       struct aead_request *req, bool atomic)
564 {
565 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
566 
567 	walk->total = req->cryptlen - crypto_aead_authsize(tfm);
568 
569 	return skcipher_walk_aead_common(walk, req, atomic);
570 }
571 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
572 
573 static void skcipher_set_needkey(struct crypto_skcipher *tfm)
574 {
575 	if (crypto_skcipher_max_keysize(tfm) != 0)
576 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
577 }
578 
579 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
580 				     const u8 *key, unsigned int keylen)
581 {
582 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
583 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
584 	u8 *buffer, *alignbuffer;
585 	unsigned long absize;
586 	int ret;
587 
588 	absize = keylen + alignmask;
589 	buffer = kmalloc(absize, GFP_ATOMIC);
590 	if (!buffer)
591 		return -ENOMEM;
592 
593 	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
594 	memcpy(alignbuffer, key, keylen);
595 	ret = cipher->setkey(tfm, alignbuffer, keylen);
596 	kfree_sensitive(buffer);
597 	return ret;
598 }
599 
600 int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
601 			   unsigned int keylen)
602 {
603 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
604 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
605 	int err;
606 
607 	if (keylen < cipher->min_keysize || keylen > cipher->max_keysize)
608 		return -EINVAL;
609 
610 	if ((unsigned long)key & alignmask)
611 		err = skcipher_setkey_unaligned(tfm, key, keylen);
612 	else
613 		err = cipher->setkey(tfm, key, keylen);
614 
615 	if (unlikely(err)) {
616 		skcipher_set_needkey(tfm);
617 		return err;
618 	}
619 
620 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
621 	return 0;
622 }
623 EXPORT_SYMBOL_GPL(crypto_skcipher_setkey);
624 
625 int crypto_skcipher_encrypt(struct skcipher_request *req)
626 {
627 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
628 	struct crypto_alg *alg = tfm->base.__crt_alg;
629 	unsigned int cryptlen = req->cryptlen;
630 	int ret;
631 
632 	crypto_stats_get(alg);
633 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
634 		ret = -ENOKEY;
635 	else
636 		ret = crypto_skcipher_alg(tfm)->encrypt(req);
637 	crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
638 	return ret;
639 }
640 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
641 
642 int crypto_skcipher_decrypt(struct skcipher_request *req)
643 {
644 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
645 	struct crypto_alg *alg = tfm->base.__crt_alg;
646 	unsigned int cryptlen = req->cryptlen;
647 	int ret;
648 
649 	crypto_stats_get(alg);
650 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
651 		ret = -ENOKEY;
652 	else
653 		ret = crypto_skcipher_alg(tfm)->decrypt(req);
654 	crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
655 	return ret;
656 }
657 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
658 
659 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
660 {
661 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
662 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
663 
664 	alg->exit(skcipher);
665 }
666 
667 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
668 {
669 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
670 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
671 
672 	skcipher_set_needkey(skcipher);
673 
674 	if (alg->exit)
675 		skcipher->base.exit = crypto_skcipher_exit_tfm;
676 
677 	if (alg->init)
678 		return alg->init(skcipher);
679 
680 	return 0;
681 }
682 
683 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
684 {
685 	struct skcipher_instance *skcipher =
686 		container_of(inst, struct skcipher_instance, s.base);
687 
688 	skcipher->free(skcipher);
689 }
690 
691 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
692 	__maybe_unused;
693 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
694 {
695 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
696 						     base);
697 
698 	seq_printf(m, "type         : skcipher\n");
699 	seq_printf(m, "async        : %s\n",
700 		   alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
701 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
702 	seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
703 	seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
704 	seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
705 	seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
706 	seq_printf(m, "walksize     : %u\n", skcipher->walksize);
707 }
708 
709 #ifdef CONFIG_NET
710 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
711 {
712 	struct crypto_report_blkcipher rblkcipher;
713 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
714 						     base);
715 
716 	memset(&rblkcipher, 0, sizeof(rblkcipher));
717 
718 	strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
719 	strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
720 
721 	rblkcipher.blocksize = alg->cra_blocksize;
722 	rblkcipher.min_keysize = skcipher->min_keysize;
723 	rblkcipher.max_keysize = skcipher->max_keysize;
724 	rblkcipher.ivsize = skcipher->ivsize;
725 
726 	return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
727 		       sizeof(rblkcipher), &rblkcipher);
728 }
729 #else
730 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
731 {
732 	return -ENOSYS;
733 }
734 #endif
735 
736 static const struct crypto_type crypto_skcipher_type = {
737 	.extsize = crypto_alg_extsize,
738 	.init_tfm = crypto_skcipher_init_tfm,
739 	.free = crypto_skcipher_free_instance,
740 #ifdef CONFIG_PROC_FS
741 	.show = crypto_skcipher_show,
742 #endif
743 	.report = crypto_skcipher_report,
744 	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
745 	.maskset = CRYPTO_ALG_TYPE_MASK,
746 	.type = CRYPTO_ALG_TYPE_SKCIPHER,
747 	.tfmsize = offsetof(struct crypto_skcipher, base),
748 };
749 
750 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
751 			 struct crypto_instance *inst,
752 			 const char *name, u32 type, u32 mask)
753 {
754 	spawn->base.frontend = &crypto_skcipher_type;
755 	return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
756 }
757 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
758 
759 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
760 					      u32 type, u32 mask)
761 {
762 	return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
763 }
764 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
765 
766 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
767 				const char *alg_name, u32 type, u32 mask)
768 {
769 	struct crypto_skcipher *tfm;
770 
771 	/* Only sync algorithms allowed. */
772 	mask |= CRYPTO_ALG_ASYNC;
773 
774 	tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
775 
776 	/*
777 	 * Make sure we do not allocate something that might get used with
778 	 * an on-stack request: check the request size.
779 	 */
780 	if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
781 				    MAX_SYNC_SKCIPHER_REQSIZE)) {
782 		crypto_free_skcipher(tfm);
783 		return ERR_PTR(-EINVAL);
784 	}
785 
786 	return (struct crypto_sync_skcipher *)tfm;
787 }
788 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
789 
790 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
791 {
792 	return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask);
793 }
794 EXPORT_SYMBOL_GPL(crypto_has_skcipher);
795 
796 static int skcipher_prepare_alg(struct skcipher_alg *alg)
797 {
798 	struct crypto_alg *base = &alg->base;
799 
800 	if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
801 	    alg->walksize > PAGE_SIZE / 8)
802 		return -EINVAL;
803 
804 	if (!alg->chunksize)
805 		alg->chunksize = base->cra_blocksize;
806 	if (!alg->walksize)
807 		alg->walksize = alg->chunksize;
808 
809 	base->cra_type = &crypto_skcipher_type;
810 	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
811 	base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
812 
813 	return 0;
814 }
815 
816 int crypto_register_skcipher(struct skcipher_alg *alg)
817 {
818 	struct crypto_alg *base = &alg->base;
819 	int err;
820 
821 	err = skcipher_prepare_alg(alg);
822 	if (err)
823 		return err;
824 
825 	return crypto_register_alg(base);
826 }
827 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
828 
829 void crypto_unregister_skcipher(struct skcipher_alg *alg)
830 {
831 	crypto_unregister_alg(&alg->base);
832 }
833 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
834 
835 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
836 {
837 	int i, ret;
838 
839 	for (i = 0; i < count; i++) {
840 		ret = crypto_register_skcipher(&algs[i]);
841 		if (ret)
842 			goto err;
843 	}
844 
845 	return 0;
846 
847 err:
848 	for (--i; i >= 0; --i)
849 		crypto_unregister_skcipher(&algs[i]);
850 
851 	return ret;
852 }
853 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
854 
855 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
856 {
857 	int i;
858 
859 	for (i = count - 1; i >= 0; --i)
860 		crypto_unregister_skcipher(&algs[i]);
861 }
862 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
863 
864 int skcipher_register_instance(struct crypto_template *tmpl,
865 			   struct skcipher_instance *inst)
866 {
867 	int err;
868 
869 	if (WARN_ON(!inst->free))
870 		return -EINVAL;
871 
872 	err = skcipher_prepare_alg(&inst->alg);
873 	if (err)
874 		return err;
875 
876 	return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
877 }
878 EXPORT_SYMBOL_GPL(skcipher_register_instance);
879 
880 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
881 				  unsigned int keylen)
882 {
883 	struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
884 
885 	crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
886 	crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
887 				CRYPTO_TFM_REQ_MASK);
888 	return crypto_cipher_setkey(cipher, key, keylen);
889 }
890 
891 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
892 {
893 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
894 	struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst);
895 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
896 	struct crypto_cipher *cipher;
897 
898 	cipher = crypto_spawn_cipher(spawn);
899 	if (IS_ERR(cipher))
900 		return PTR_ERR(cipher);
901 
902 	ctx->cipher = cipher;
903 	return 0;
904 }
905 
906 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
907 {
908 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
909 
910 	crypto_free_cipher(ctx->cipher);
911 }
912 
913 static void skcipher_free_instance_simple(struct skcipher_instance *inst)
914 {
915 	crypto_drop_cipher(skcipher_instance_ctx(inst));
916 	kfree(inst);
917 }
918 
919 /**
920  * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
921  *
922  * Allocate an skcipher_instance for a simple block cipher mode of operation,
923  * e.g. cbc or ecb.  The instance context will have just a single crypto_spawn,
924  * that for the underlying cipher.  The {min,max}_keysize, ivsize, blocksize,
925  * alignmask, and priority are set from the underlying cipher but can be
926  * overridden if needed.  The tfm context defaults to skcipher_ctx_simple, and
927  * default ->setkey(), ->init(), and ->exit() methods are installed.
928  *
929  * @tmpl: the template being instantiated
930  * @tb: the template parameters
931  *
932  * Return: a pointer to the new instance, or an ERR_PTR().  The caller still
933  *	   needs to register the instance.
934  */
935 struct skcipher_instance *skcipher_alloc_instance_simple(
936 	struct crypto_template *tmpl, struct rtattr **tb)
937 {
938 	u32 mask;
939 	struct skcipher_instance *inst;
940 	struct crypto_cipher_spawn *spawn;
941 	struct crypto_alg *cipher_alg;
942 	int err;
943 
944 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
945 	if (err)
946 		return ERR_PTR(err);
947 
948 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
949 	if (!inst)
950 		return ERR_PTR(-ENOMEM);
951 	spawn = skcipher_instance_ctx(inst);
952 
953 	err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst),
954 				 crypto_attr_alg_name(tb[1]), 0, mask);
955 	if (err)
956 		goto err_free_inst;
957 	cipher_alg = crypto_spawn_cipher_alg(spawn);
958 
959 	err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
960 				  cipher_alg);
961 	if (err)
962 		goto err_free_inst;
963 
964 	inst->free = skcipher_free_instance_simple;
965 
966 	/* Default algorithm properties, can be overridden */
967 	inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
968 	inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
969 	inst->alg.base.cra_priority = cipher_alg->cra_priority;
970 	inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
971 	inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
972 	inst->alg.ivsize = cipher_alg->cra_blocksize;
973 
974 	/* Use skcipher_ctx_simple by default, can be overridden */
975 	inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
976 	inst->alg.setkey = skcipher_setkey_simple;
977 	inst->alg.init = skcipher_init_tfm_simple;
978 	inst->alg.exit = skcipher_exit_tfm_simple;
979 
980 	return inst;
981 
982 err_free_inst:
983 	skcipher_free_instance_simple(inst);
984 	return ERR_PTR(err);
985 }
986 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
987 
988 MODULE_LICENSE("GPL");
989 MODULE_DESCRIPTION("Symmetric key cipher type");
990 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
991