xref: /openbmc/linux/crypto/simd.c (revision a7f7f6248d9740d710fd6bd190293fe5e16410ac)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Shared crypto simd helpers
4   *
5   * Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
6   * Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
7   * Copyright (c) 2019 Google LLC
8   *
9   * Based on aesni-intel_glue.c by:
10   *  Copyright (C) 2008, Intel Corp.
11   *    Author: Huang Ying <ying.huang@intel.com>
12   */
13  
14  /*
15   * Shared crypto SIMD helpers.  These functions dynamically create and register
16   * an skcipher or AEAD algorithm that wraps another, internal algorithm.  The
17   * wrapper ensures that the internal algorithm is only executed in a context
18   * where SIMD instructions are usable, i.e. where may_use_simd() returns true.
19   * If SIMD is already usable, the wrapper directly calls the internal algorithm.
20   * Otherwise it defers execution to a workqueue via cryptd.
21   *
22   * This is an alternative to the internal algorithm implementing a fallback for
23   * the !may_use_simd() case itself.
24   *
25   * Note that the wrapper algorithm is asynchronous, i.e. it has the
26   * CRYPTO_ALG_ASYNC flag set.  Therefore it won't be found by users who
27   * explicitly allocate a synchronous algorithm.
28   */
29  
30  #include <crypto/cryptd.h>
31  #include <crypto/internal/aead.h>
32  #include <crypto/internal/simd.h>
33  #include <crypto/internal/skcipher.h>
34  #include <linux/kernel.h>
35  #include <linux/module.h>
36  #include <linux/preempt.h>
37  #include <asm/simd.h>
38  
39  /* skcipher support */
40  
41  struct simd_skcipher_alg {
42  	const char *ialg_name;
43  	struct skcipher_alg alg;
44  };
45  
46  struct simd_skcipher_ctx {
47  	struct cryptd_skcipher *cryptd_tfm;
48  };
49  
50  static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
51  				unsigned int key_len)
52  {
53  	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
54  	struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
55  
56  	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
57  	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
58  					 CRYPTO_TFM_REQ_MASK);
59  	return crypto_skcipher_setkey(child, key, key_len);
60  }
61  
62  static int simd_skcipher_encrypt(struct skcipher_request *req)
63  {
64  	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
65  	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
66  	struct skcipher_request *subreq;
67  	struct crypto_skcipher *child;
68  
69  	subreq = skcipher_request_ctx(req);
70  	*subreq = *req;
71  
72  	if (!crypto_simd_usable() ||
73  	    (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
74  		child = &ctx->cryptd_tfm->base;
75  	else
76  		child = cryptd_skcipher_child(ctx->cryptd_tfm);
77  
78  	skcipher_request_set_tfm(subreq, child);
79  
80  	return crypto_skcipher_encrypt(subreq);
81  }
82  
83  static int simd_skcipher_decrypt(struct skcipher_request *req)
84  {
85  	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
86  	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
87  	struct skcipher_request *subreq;
88  	struct crypto_skcipher *child;
89  
90  	subreq = skcipher_request_ctx(req);
91  	*subreq = *req;
92  
93  	if (!crypto_simd_usable() ||
94  	    (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
95  		child = &ctx->cryptd_tfm->base;
96  	else
97  		child = cryptd_skcipher_child(ctx->cryptd_tfm);
98  
99  	skcipher_request_set_tfm(subreq, child);
100  
101  	return crypto_skcipher_decrypt(subreq);
102  }
103  
104  static void simd_skcipher_exit(struct crypto_skcipher *tfm)
105  {
106  	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
107  
108  	cryptd_free_skcipher(ctx->cryptd_tfm);
109  }
110  
111  static int simd_skcipher_init(struct crypto_skcipher *tfm)
112  {
113  	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
114  	struct cryptd_skcipher *cryptd_tfm;
115  	struct simd_skcipher_alg *salg;
116  	struct skcipher_alg *alg;
117  	unsigned reqsize;
118  
119  	alg = crypto_skcipher_alg(tfm);
120  	salg = container_of(alg, struct simd_skcipher_alg, alg);
121  
122  	cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
123  					   CRYPTO_ALG_INTERNAL,
124  					   CRYPTO_ALG_INTERNAL);
125  	if (IS_ERR(cryptd_tfm))
126  		return PTR_ERR(cryptd_tfm);
127  
128  	ctx->cryptd_tfm = cryptd_tfm;
129  
130  	reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
131  	reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
132  	reqsize += sizeof(struct skcipher_request);
133  
134  	crypto_skcipher_set_reqsize(tfm, reqsize);
135  
136  	return 0;
137  }
138  
139  struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
140  						      const char *drvname,
141  						      const char *basename)
142  {
143  	struct simd_skcipher_alg *salg;
144  	struct crypto_skcipher *tfm;
145  	struct skcipher_alg *ialg;
146  	struct skcipher_alg *alg;
147  	int err;
148  
149  	tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
150  				    CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
151  	if (IS_ERR(tfm))
152  		return ERR_CAST(tfm);
153  
154  	ialg = crypto_skcipher_alg(tfm);
155  
156  	salg = kzalloc(sizeof(*salg), GFP_KERNEL);
157  	if (!salg) {
158  		salg = ERR_PTR(-ENOMEM);
159  		goto out_put_tfm;
160  	}
161  
162  	salg->ialg_name = basename;
163  	alg = &salg->alg;
164  
165  	err = -ENAMETOOLONG;
166  	if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
167  	    CRYPTO_MAX_ALG_NAME)
168  		goto out_free_salg;
169  
170  	if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
171  		     drvname) >= CRYPTO_MAX_ALG_NAME)
172  		goto out_free_salg;
173  
174  	alg->base.cra_flags = CRYPTO_ALG_ASYNC;
175  	alg->base.cra_priority = ialg->base.cra_priority;
176  	alg->base.cra_blocksize = ialg->base.cra_blocksize;
177  	alg->base.cra_alignmask = ialg->base.cra_alignmask;
178  	alg->base.cra_module = ialg->base.cra_module;
179  	alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
180  
181  	alg->ivsize = ialg->ivsize;
182  	alg->chunksize = ialg->chunksize;
183  	alg->min_keysize = ialg->min_keysize;
184  	alg->max_keysize = ialg->max_keysize;
185  
186  	alg->init = simd_skcipher_init;
187  	alg->exit = simd_skcipher_exit;
188  
189  	alg->setkey = simd_skcipher_setkey;
190  	alg->encrypt = simd_skcipher_encrypt;
191  	alg->decrypt = simd_skcipher_decrypt;
192  
193  	err = crypto_register_skcipher(alg);
194  	if (err)
195  		goto out_free_salg;
196  
197  out_put_tfm:
198  	crypto_free_skcipher(tfm);
199  	return salg;
200  
201  out_free_salg:
202  	kfree(salg);
203  	salg = ERR_PTR(err);
204  	goto out_put_tfm;
205  }
206  EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
207  
208  struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
209  					       const char *basename)
210  {
211  	char drvname[CRYPTO_MAX_ALG_NAME];
212  
213  	if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
214  	    CRYPTO_MAX_ALG_NAME)
215  		return ERR_PTR(-ENAMETOOLONG);
216  
217  	return simd_skcipher_create_compat(algname, drvname, basename);
218  }
219  EXPORT_SYMBOL_GPL(simd_skcipher_create);
220  
221  void simd_skcipher_free(struct simd_skcipher_alg *salg)
222  {
223  	crypto_unregister_skcipher(&salg->alg);
224  	kfree(salg);
225  }
226  EXPORT_SYMBOL_GPL(simd_skcipher_free);
227  
228  int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
229  				   struct simd_skcipher_alg **simd_algs)
230  {
231  	int err;
232  	int i;
233  	const char *algname;
234  	const char *drvname;
235  	const char *basename;
236  	struct simd_skcipher_alg *simd;
237  
238  	err = crypto_register_skciphers(algs, count);
239  	if (err)
240  		return err;
241  
242  	for (i = 0; i < count; i++) {
243  		WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
244  		WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
245  		algname = algs[i].base.cra_name + 2;
246  		drvname = algs[i].base.cra_driver_name + 2;
247  		basename = algs[i].base.cra_driver_name;
248  		simd = simd_skcipher_create_compat(algname, drvname, basename);
249  		err = PTR_ERR(simd);
250  		if (IS_ERR(simd))
251  			goto err_unregister;
252  		simd_algs[i] = simd;
253  	}
254  	return 0;
255  
256  err_unregister:
257  	simd_unregister_skciphers(algs, count, simd_algs);
258  	return err;
259  }
260  EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
261  
262  void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
263  			       struct simd_skcipher_alg **simd_algs)
264  {
265  	int i;
266  
267  	crypto_unregister_skciphers(algs, count);
268  
269  	for (i = 0; i < count; i++) {
270  		if (simd_algs[i]) {
271  			simd_skcipher_free(simd_algs[i]);
272  			simd_algs[i] = NULL;
273  		}
274  	}
275  }
276  EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
277  
278  /* AEAD support */
279  
280  struct simd_aead_alg {
281  	const char *ialg_name;
282  	struct aead_alg alg;
283  };
284  
285  struct simd_aead_ctx {
286  	struct cryptd_aead *cryptd_tfm;
287  };
288  
289  static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
290  				unsigned int key_len)
291  {
292  	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
293  	struct crypto_aead *child = &ctx->cryptd_tfm->base;
294  
295  	crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
296  	crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
297  				     CRYPTO_TFM_REQ_MASK);
298  	return crypto_aead_setkey(child, key, key_len);
299  }
300  
301  static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
302  {
303  	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
304  	struct crypto_aead *child = &ctx->cryptd_tfm->base;
305  
306  	return crypto_aead_setauthsize(child, authsize);
307  }
308  
309  static int simd_aead_encrypt(struct aead_request *req)
310  {
311  	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
312  	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
313  	struct aead_request *subreq;
314  	struct crypto_aead *child;
315  
316  	subreq = aead_request_ctx(req);
317  	*subreq = *req;
318  
319  	if (!crypto_simd_usable() ||
320  	    (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
321  		child = &ctx->cryptd_tfm->base;
322  	else
323  		child = cryptd_aead_child(ctx->cryptd_tfm);
324  
325  	aead_request_set_tfm(subreq, child);
326  
327  	return crypto_aead_encrypt(subreq);
328  }
329  
330  static int simd_aead_decrypt(struct aead_request *req)
331  {
332  	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
333  	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
334  	struct aead_request *subreq;
335  	struct crypto_aead *child;
336  
337  	subreq = aead_request_ctx(req);
338  	*subreq = *req;
339  
340  	if (!crypto_simd_usable() ||
341  	    (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
342  		child = &ctx->cryptd_tfm->base;
343  	else
344  		child = cryptd_aead_child(ctx->cryptd_tfm);
345  
346  	aead_request_set_tfm(subreq, child);
347  
348  	return crypto_aead_decrypt(subreq);
349  }
350  
351  static void simd_aead_exit(struct crypto_aead *tfm)
352  {
353  	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
354  
355  	cryptd_free_aead(ctx->cryptd_tfm);
356  }
357  
358  static int simd_aead_init(struct crypto_aead *tfm)
359  {
360  	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
361  	struct cryptd_aead *cryptd_tfm;
362  	struct simd_aead_alg *salg;
363  	struct aead_alg *alg;
364  	unsigned reqsize;
365  
366  	alg = crypto_aead_alg(tfm);
367  	salg = container_of(alg, struct simd_aead_alg, alg);
368  
369  	cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
370  				       CRYPTO_ALG_INTERNAL);
371  	if (IS_ERR(cryptd_tfm))
372  		return PTR_ERR(cryptd_tfm);
373  
374  	ctx->cryptd_tfm = cryptd_tfm;
375  
376  	reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
377  	reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
378  	reqsize += sizeof(struct aead_request);
379  
380  	crypto_aead_set_reqsize(tfm, reqsize);
381  
382  	return 0;
383  }
384  
385  struct simd_aead_alg *simd_aead_create_compat(const char *algname,
386  					      const char *drvname,
387  					      const char *basename)
388  {
389  	struct simd_aead_alg *salg;
390  	struct crypto_aead *tfm;
391  	struct aead_alg *ialg;
392  	struct aead_alg *alg;
393  	int err;
394  
395  	tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL,
396  				CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
397  	if (IS_ERR(tfm))
398  		return ERR_CAST(tfm);
399  
400  	ialg = crypto_aead_alg(tfm);
401  
402  	salg = kzalloc(sizeof(*salg), GFP_KERNEL);
403  	if (!salg) {
404  		salg = ERR_PTR(-ENOMEM);
405  		goto out_put_tfm;
406  	}
407  
408  	salg->ialg_name = basename;
409  	alg = &salg->alg;
410  
411  	err = -ENAMETOOLONG;
412  	if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
413  	    CRYPTO_MAX_ALG_NAME)
414  		goto out_free_salg;
415  
416  	if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
417  		     drvname) >= CRYPTO_MAX_ALG_NAME)
418  		goto out_free_salg;
419  
420  	alg->base.cra_flags = CRYPTO_ALG_ASYNC;
421  	alg->base.cra_priority = ialg->base.cra_priority;
422  	alg->base.cra_blocksize = ialg->base.cra_blocksize;
423  	alg->base.cra_alignmask = ialg->base.cra_alignmask;
424  	alg->base.cra_module = ialg->base.cra_module;
425  	alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
426  
427  	alg->ivsize = ialg->ivsize;
428  	alg->maxauthsize = ialg->maxauthsize;
429  	alg->chunksize = ialg->chunksize;
430  
431  	alg->init = simd_aead_init;
432  	alg->exit = simd_aead_exit;
433  
434  	alg->setkey = simd_aead_setkey;
435  	alg->setauthsize = simd_aead_setauthsize;
436  	alg->encrypt = simd_aead_encrypt;
437  	alg->decrypt = simd_aead_decrypt;
438  
439  	err = crypto_register_aead(alg);
440  	if (err)
441  		goto out_free_salg;
442  
443  out_put_tfm:
444  	crypto_free_aead(tfm);
445  	return salg;
446  
447  out_free_salg:
448  	kfree(salg);
449  	salg = ERR_PTR(err);
450  	goto out_put_tfm;
451  }
452  EXPORT_SYMBOL_GPL(simd_aead_create_compat);
453  
454  struct simd_aead_alg *simd_aead_create(const char *algname,
455  				       const char *basename)
456  {
457  	char drvname[CRYPTO_MAX_ALG_NAME];
458  
459  	if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
460  	    CRYPTO_MAX_ALG_NAME)
461  		return ERR_PTR(-ENAMETOOLONG);
462  
463  	return simd_aead_create_compat(algname, drvname, basename);
464  }
465  EXPORT_SYMBOL_GPL(simd_aead_create);
466  
467  void simd_aead_free(struct simd_aead_alg *salg)
468  {
469  	crypto_unregister_aead(&salg->alg);
470  	kfree(salg);
471  }
472  EXPORT_SYMBOL_GPL(simd_aead_free);
473  
474  int simd_register_aeads_compat(struct aead_alg *algs, int count,
475  			       struct simd_aead_alg **simd_algs)
476  {
477  	int err;
478  	int i;
479  	const char *algname;
480  	const char *drvname;
481  	const char *basename;
482  	struct simd_aead_alg *simd;
483  
484  	err = crypto_register_aeads(algs, count);
485  	if (err)
486  		return err;
487  
488  	for (i = 0; i < count; i++) {
489  		WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
490  		WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
491  		algname = algs[i].base.cra_name + 2;
492  		drvname = algs[i].base.cra_driver_name + 2;
493  		basename = algs[i].base.cra_driver_name;
494  		simd = simd_aead_create_compat(algname, drvname, basename);
495  		err = PTR_ERR(simd);
496  		if (IS_ERR(simd))
497  			goto err_unregister;
498  		simd_algs[i] = simd;
499  	}
500  	return 0;
501  
502  err_unregister:
503  	simd_unregister_aeads(algs, count, simd_algs);
504  	return err;
505  }
506  EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
507  
508  void simd_unregister_aeads(struct aead_alg *algs, int count,
509  			   struct simd_aead_alg **simd_algs)
510  {
511  	int i;
512  
513  	crypto_unregister_aeads(algs, count);
514  
515  	for (i = 0; i < count; i++) {
516  		if (simd_algs[i]) {
517  			simd_aead_free(simd_algs[i]);
518  			simd_algs[i] = NULL;
519  		}
520  	}
521  }
522  EXPORT_SYMBOL_GPL(simd_unregister_aeads);
523  
524  MODULE_LICENSE("GPL");
525