xref: /openbmc/linux/crypto/simd.c (revision a1b2f04ea527397fcacacd09e0d690927feef429)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Shared crypto simd helpers
4  *
5  * Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
6  * Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
7  * Copyright (c) 2019 Google LLC
8  *
9  * Based on aesni-intel_glue.c by:
10  *  Copyright (C) 2008, Intel Corp.
11  *    Author: Huang Ying <ying.huang@intel.com>
12  */
13 
14 /*
15  * Shared crypto SIMD helpers.  These functions dynamically create and register
16  * an skcipher or AEAD algorithm that wraps another, internal algorithm.  The
17  * wrapper ensures that the internal algorithm is only executed in a context
18  * where SIMD instructions are usable, i.e. where may_use_simd() returns true.
19  * If SIMD is already usable, the wrapper directly calls the internal algorithm.
20  * Otherwise it defers execution to a workqueue via cryptd.
21  *
22  * This is an alternative to the internal algorithm implementing a fallback for
23  * the !may_use_simd() case itself.
24  *
25  * Note that the wrapper algorithm is asynchronous, i.e. it has the
26  * CRYPTO_ALG_ASYNC flag set.  Therefore it won't be found by users who
27  * explicitly allocate a synchronous algorithm.
28  */
29 
30 #include <crypto/cryptd.h>
31 #include <crypto/internal/aead.h>
32 #include <crypto/internal/simd.h>
33 #include <crypto/internal/skcipher.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/preempt.h>
37 #include <asm/simd.h>
38 
39 /* skcipher support */
40 
41 struct simd_skcipher_alg {
42 	const char *ialg_name;
43 	struct skcipher_alg alg;
44 };
45 
46 struct simd_skcipher_ctx {
47 	struct cryptd_skcipher *cryptd_tfm;
48 };
49 
50 static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
51 				unsigned int key_len)
52 {
53 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
54 	struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
55 	int err;
56 
57 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
58 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
59 					 CRYPTO_TFM_REQ_MASK);
60 	err = crypto_skcipher_setkey(child, key, key_len);
61 	crypto_skcipher_set_flags(tfm, crypto_skcipher_get_flags(child) &
62 				       CRYPTO_TFM_RES_MASK);
63 	return err;
64 }
65 
66 static int simd_skcipher_encrypt(struct skcipher_request *req)
67 {
68 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
69 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
70 	struct skcipher_request *subreq;
71 	struct crypto_skcipher *child;
72 
73 	subreq = skcipher_request_ctx(req);
74 	*subreq = *req;
75 
76 	if (!crypto_simd_usable() ||
77 	    (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
78 		child = &ctx->cryptd_tfm->base;
79 	else
80 		child = cryptd_skcipher_child(ctx->cryptd_tfm);
81 
82 	skcipher_request_set_tfm(subreq, child);
83 
84 	return crypto_skcipher_encrypt(subreq);
85 }
86 
87 static int simd_skcipher_decrypt(struct skcipher_request *req)
88 {
89 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
90 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
91 	struct skcipher_request *subreq;
92 	struct crypto_skcipher *child;
93 
94 	subreq = skcipher_request_ctx(req);
95 	*subreq = *req;
96 
97 	if (!crypto_simd_usable() ||
98 	    (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
99 		child = &ctx->cryptd_tfm->base;
100 	else
101 		child = cryptd_skcipher_child(ctx->cryptd_tfm);
102 
103 	skcipher_request_set_tfm(subreq, child);
104 
105 	return crypto_skcipher_decrypt(subreq);
106 }
107 
108 static void simd_skcipher_exit(struct crypto_skcipher *tfm)
109 {
110 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
111 
112 	cryptd_free_skcipher(ctx->cryptd_tfm);
113 }
114 
115 static int simd_skcipher_init(struct crypto_skcipher *tfm)
116 {
117 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
118 	struct cryptd_skcipher *cryptd_tfm;
119 	struct simd_skcipher_alg *salg;
120 	struct skcipher_alg *alg;
121 	unsigned reqsize;
122 
123 	alg = crypto_skcipher_alg(tfm);
124 	salg = container_of(alg, struct simd_skcipher_alg, alg);
125 
126 	cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
127 					   CRYPTO_ALG_INTERNAL,
128 					   CRYPTO_ALG_INTERNAL);
129 	if (IS_ERR(cryptd_tfm))
130 		return PTR_ERR(cryptd_tfm);
131 
132 	ctx->cryptd_tfm = cryptd_tfm;
133 
134 	reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
135 	reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
136 	reqsize += sizeof(struct skcipher_request);
137 
138 	crypto_skcipher_set_reqsize(tfm, reqsize);
139 
140 	return 0;
141 }
142 
143 struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
144 						      const char *drvname,
145 						      const char *basename)
146 {
147 	struct simd_skcipher_alg *salg;
148 	struct crypto_skcipher *tfm;
149 	struct skcipher_alg *ialg;
150 	struct skcipher_alg *alg;
151 	int err;
152 
153 	tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
154 				    CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
155 	if (IS_ERR(tfm))
156 		return ERR_CAST(tfm);
157 
158 	ialg = crypto_skcipher_alg(tfm);
159 
160 	salg = kzalloc(sizeof(*salg), GFP_KERNEL);
161 	if (!salg) {
162 		salg = ERR_PTR(-ENOMEM);
163 		goto out_put_tfm;
164 	}
165 
166 	salg->ialg_name = basename;
167 	alg = &salg->alg;
168 
169 	err = -ENAMETOOLONG;
170 	if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
171 	    CRYPTO_MAX_ALG_NAME)
172 		goto out_free_salg;
173 
174 	if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
175 		     drvname) >= CRYPTO_MAX_ALG_NAME)
176 		goto out_free_salg;
177 
178 	alg->base.cra_flags = CRYPTO_ALG_ASYNC;
179 	alg->base.cra_priority = ialg->base.cra_priority;
180 	alg->base.cra_blocksize = ialg->base.cra_blocksize;
181 	alg->base.cra_alignmask = ialg->base.cra_alignmask;
182 	alg->base.cra_module = ialg->base.cra_module;
183 	alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
184 
185 	alg->ivsize = ialg->ivsize;
186 	alg->chunksize = ialg->chunksize;
187 	alg->min_keysize = ialg->min_keysize;
188 	alg->max_keysize = ialg->max_keysize;
189 
190 	alg->init = simd_skcipher_init;
191 	alg->exit = simd_skcipher_exit;
192 
193 	alg->setkey = simd_skcipher_setkey;
194 	alg->encrypt = simd_skcipher_encrypt;
195 	alg->decrypt = simd_skcipher_decrypt;
196 
197 	err = crypto_register_skcipher(alg);
198 	if (err)
199 		goto out_free_salg;
200 
201 out_put_tfm:
202 	crypto_free_skcipher(tfm);
203 	return salg;
204 
205 out_free_salg:
206 	kfree(salg);
207 	salg = ERR_PTR(err);
208 	goto out_put_tfm;
209 }
210 EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
211 
212 struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
213 					       const char *basename)
214 {
215 	char drvname[CRYPTO_MAX_ALG_NAME];
216 
217 	if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
218 	    CRYPTO_MAX_ALG_NAME)
219 		return ERR_PTR(-ENAMETOOLONG);
220 
221 	return simd_skcipher_create_compat(algname, drvname, basename);
222 }
223 EXPORT_SYMBOL_GPL(simd_skcipher_create);
224 
225 void simd_skcipher_free(struct simd_skcipher_alg *salg)
226 {
227 	crypto_unregister_skcipher(&salg->alg);
228 	kfree(salg);
229 }
230 EXPORT_SYMBOL_GPL(simd_skcipher_free);
231 
232 int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
233 				   struct simd_skcipher_alg **simd_algs)
234 {
235 	int err;
236 	int i;
237 	const char *algname;
238 	const char *drvname;
239 	const char *basename;
240 	struct simd_skcipher_alg *simd;
241 
242 	err = crypto_register_skciphers(algs, count);
243 	if (err)
244 		return err;
245 
246 	for (i = 0; i < count; i++) {
247 		WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
248 		WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
249 		algname = algs[i].base.cra_name + 2;
250 		drvname = algs[i].base.cra_driver_name + 2;
251 		basename = algs[i].base.cra_driver_name;
252 		simd = simd_skcipher_create_compat(algname, drvname, basename);
253 		err = PTR_ERR(simd);
254 		if (IS_ERR(simd))
255 			goto err_unregister;
256 		simd_algs[i] = simd;
257 	}
258 	return 0;
259 
260 err_unregister:
261 	simd_unregister_skciphers(algs, count, simd_algs);
262 	return err;
263 }
264 EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
265 
266 void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
267 			       struct simd_skcipher_alg **simd_algs)
268 {
269 	int i;
270 
271 	crypto_unregister_skciphers(algs, count);
272 
273 	for (i = 0; i < count; i++) {
274 		if (simd_algs[i]) {
275 			simd_skcipher_free(simd_algs[i]);
276 			simd_algs[i] = NULL;
277 		}
278 	}
279 }
280 EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
281 
282 /* AEAD support */
283 
284 struct simd_aead_alg {
285 	const char *ialg_name;
286 	struct aead_alg alg;
287 };
288 
289 struct simd_aead_ctx {
290 	struct cryptd_aead *cryptd_tfm;
291 };
292 
293 static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
294 				unsigned int key_len)
295 {
296 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
297 	struct crypto_aead *child = &ctx->cryptd_tfm->base;
298 	int err;
299 
300 	crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
301 	crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
302 				     CRYPTO_TFM_REQ_MASK);
303 	err = crypto_aead_setkey(child, key, key_len);
304 	crypto_aead_set_flags(tfm, crypto_aead_get_flags(child) &
305 				   CRYPTO_TFM_RES_MASK);
306 	return err;
307 }
308 
309 static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
310 {
311 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
312 	struct crypto_aead *child = &ctx->cryptd_tfm->base;
313 
314 	return crypto_aead_setauthsize(child, authsize);
315 }
316 
317 static int simd_aead_encrypt(struct aead_request *req)
318 {
319 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
320 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
321 	struct aead_request *subreq;
322 	struct crypto_aead *child;
323 
324 	subreq = aead_request_ctx(req);
325 	*subreq = *req;
326 
327 	if (!crypto_simd_usable() ||
328 	    (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
329 		child = &ctx->cryptd_tfm->base;
330 	else
331 		child = cryptd_aead_child(ctx->cryptd_tfm);
332 
333 	aead_request_set_tfm(subreq, child);
334 
335 	return crypto_aead_encrypt(subreq);
336 }
337 
338 static int simd_aead_decrypt(struct aead_request *req)
339 {
340 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
341 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
342 	struct aead_request *subreq;
343 	struct crypto_aead *child;
344 
345 	subreq = aead_request_ctx(req);
346 	*subreq = *req;
347 
348 	if (!crypto_simd_usable() ||
349 	    (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
350 		child = &ctx->cryptd_tfm->base;
351 	else
352 		child = cryptd_aead_child(ctx->cryptd_tfm);
353 
354 	aead_request_set_tfm(subreq, child);
355 
356 	return crypto_aead_decrypt(subreq);
357 }
358 
359 static void simd_aead_exit(struct crypto_aead *tfm)
360 {
361 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
362 
363 	cryptd_free_aead(ctx->cryptd_tfm);
364 }
365 
366 static int simd_aead_init(struct crypto_aead *tfm)
367 {
368 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
369 	struct cryptd_aead *cryptd_tfm;
370 	struct simd_aead_alg *salg;
371 	struct aead_alg *alg;
372 	unsigned reqsize;
373 
374 	alg = crypto_aead_alg(tfm);
375 	salg = container_of(alg, struct simd_aead_alg, alg);
376 
377 	cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
378 				       CRYPTO_ALG_INTERNAL);
379 	if (IS_ERR(cryptd_tfm))
380 		return PTR_ERR(cryptd_tfm);
381 
382 	ctx->cryptd_tfm = cryptd_tfm;
383 
384 	reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
385 	reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
386 	reqsize += sizeof(struct aead_request);
387 
388 	crypto_aead_set_reqsize(tfm, reqsize);
389 
390 	return 0;
391 }
392 
393 struct simd_aead_alg *simd_aead_create_compat(const char *algname,
394 					      const char *drvname,
395 					      const char *basename)
396 {
397 	struct simd_aead_alg *salg;
398 	struct crypto_aead *tfm;
399 	struct aead_alg *ialg;
400 	struct aead_alg *alg;
401 	int err;
402 
403 	tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL,
404 				CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
405 	if (IS_ERR(tfm))
406 		return ERR_CAST(tfm);
407 
408 	ialg = crypto_aead_alg(tfm);
409 
410 	salg = kzalloc(sizeof(*salg), GFP_KERNEL);
411 	if (!salg) {
412 		salg = ERR_PTR(-ENOMEM);
413 		goto out_put_tfm;
414 	}
415 
416 	salg->ialg_name = basename;
417 	alg = &salg->alg;
418 
419 	err = -ENAMETOOLONG;
420 	if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
421 	    CRYPTO_MAX_ALG_NAME)
422 		goto out_free_salg;
423 
424 	if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
425 		     drvname) >= CRYPTO_MAX_ALG_NAME)
426 		goto out_free_salg;
427 
428 	alg->base.cra_flags = CRYPTO_ALG_ASYNC;
429 	alg->base.cra_priority = ialg->base.cra_priority;
430 	alg->base.cra_blocksize = ialg->base.cra_blocksize;
431 	alg->base.cra_alignmask = ialg->base.cra_alignmask;
432 	alg->base.cra_module = ialg->base.cra_module;
433 	alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
434 
435 	alg->ivsize = ialg->ivsize;
436 	alg->maxauthsize = ialg->maxauthsize;
437 	alg->chunksize = ialg->chunksize;
438 
439 	alg->init = simd_aead_init;
440 	alg->exit = simd_aead_exit;
441 
442 	alg->setkey = simd_aead_setkey;
443 	alg->setauthsize = simd_aead_setauthsize;
444 	alg->encrypt = simd_aead_encrypt;
445 	alg->decrypt = simd_aead_decrypt;
446 
447 	err = crypto_register_aead(alg);
448 	if (err)
449 		goto out_free_salg;
450 
451 out_put_tfm:
452 	crypto_free_aead(tfm);
453 	return salg;
454 
455 out_free_salg:
456 	kfree(salg);
457 	salg = ERR_PTR(err);
458 	goto out_put_tfm;
459 }
460 EXPORT_SYMBOL_GPL(simd_aead_create_compat);
461 
462 struct simd_aead_alg *simd_aead_create(const char *algname,
463 				       const char *basename)
464 {
465 	char drvname[CRYPTO_MAX_ALG_NAME];
466 
467 	if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
468 	    CRYPTO_MAX_ALG_NAME)
469 		return ERR_PTR(-ENAMETOOLONG);
470 
471 	return simd_aead_create_compat(algname, drvname, basename);
472 }
473 EXPORT_SYMBOL_GPL(simd_aead_create);
474 
475 void simd_aead_free(struct simd_aead_alg *salg)
476 {
477 	crypto_unregister_aead(&salg->alg);
478 	kfree(salg);
479 }
480 EXPORT_SYMBOL_GPL(simd_aead_free);
481 
482 int simd_register_aeads_compat(struct aead_alg *algs, int count,
483 			       struct simd_aead_alg **simd_algs)
484 {
485 	int err;
486 	int i;
487 	const char *algname;
488 	const char *drvname;
489 	const char *basename;
490 	struct simd_aead_alg *simd;
491 
492 	err = crypto_register_aeads(algs, count);
493 	if (err)
494 		return err;
495 
496 	for (i = 0; i < count; i++) {
497 		WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
498 		WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
499 		algname = algs[i].base.cra_name + 2;
500 		drvname = algs[i].base.cra_driver_name + 2;
501 		basename = algs[i].base.cra_driver_name;
502 		simd = simd_aead_create_compat(algname, drvname, basename);
503 		err = PTR_ERR(simd);
504 		if (IS_ERR(simd))
505 			goto err_unregister;
506 		simd_algs[i] = simd;
507 	}
508 	return 0;
509 
510 err_unregister:
511 	simd_unregister_aeads(algs, count, simd_algs);
512 	return err;
513 }
514 EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
515 
516 void simd_unregister_aeads(struct aead_alg *algs, int count,
517 			   struct simd_aead_alg **simd_algs)
518 {
519 	int i;
520 
521 	crypto_unregister_aeads(algs, count);
522 
523 	for (i = 0; i < count; i++) {
524 		if (simd_algs[i]) {
525 			simd_aead_free(simd_algs[i]);
526 			simd_algs[i] = NULL;
527 		}
528 	}
529 }
530 EXPORT_SYMBOL_GPL(simd_unregister_aeads);
531 
532 MODULE_LICENSE("GPL");
533