xref: /openbmc/linux/crypto/simd.c (revision 151f4e2b)
1 /*
2  * Shared crypto simd helpers
3  *
4  * Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
5  * Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
6  * Copyright (c) 2019 Google LLC
7  *
8  * Based on aesni-intel_glue.c by:
9  *  Copyright (C) 2008, Intel Corp.
10  *    Author: Huang Ying <ying.huang@intel.com>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
24  */
25 
26 /*
27  * Shared crypto SIMD helpers.  These functions dynamically create and register
28  * an skcipher or AEAD algorithm that wraps another, internal algorithm.  The
29  * wrapper ensures that the internal algorithm is only executed in a context
30  * where SIMD instructions are usable, i.e. where may_use_simd() returns true.
31  * If SIMD is already usable, the wrapper directly calls the internal algorithm.
32  * Otherwise it defers execution to a workqueue via cryptd.
33  *
34  * This is an alternative to the internal algorithm implementing a fallback for
35  * the !may_use_simd() case itself.
36  *
37  * Note that the wrapper algorithm is asynchronous, i.e. it has the
38  * CRYPTO_ALG_ASYNC flag set.  Therefore it won't be found by users who
39  * explicitly allocate a synchronous algorithm.
40  */
41 
42 #include <crypto/cryptd.h>
43 #include <crypto/internal/aead.h>
44 #include <crypto/internal/simd.h>
45 #include <crypto/internal/skcipher.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/preempt.h>
49 #include <asm/simd.h>
50 
51 /* skcipher support */
52 
53 struct simd_skcipher_alg {
54 	const char *ialg_name;
55 	struct skcipher_alg alg;
56 };
57 
58 struct simd_skcipher_ctx {
59 	struct cryptd_skcipher *cryptd_tfm;
60 };
61 
62 static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
63 				unsigned int key_len)
64 {
65 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
66 	struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
67 	int err;
68 
69 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
70 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
71 					 CRYPTO_TFM_REQ_MASK);
72 	err = crypto_skcipher_setkey(child, key, key_len);
73 	crypto_skcipher_set_flags(tfm, crypto_skcipher_get_flags(child) &
74 				       CRYPTO_TFM_RES_MASK);
75 	return err;
76 }
77 
78 static int simd_skcipher_encrypt(struct skcipher_request *req)
79 {
80 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
81 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
82 	struct skcipher_request *subreq;
83 	struct crypto_skcipher *child;
84 
85 	subreq = skcipher_request_ctx(req);
86 	*subreq = *req;
87 
88 	if (!crypto_simd_usable() ||
89 	    (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
90 		child = &ctx->cryptd_tfm->base;
91 	else
92 		child = cryptd_skcipher_child(ctx->cryptd_tfm);
93 
94 	skcipher_request_set_tfm(subreq, child);
95 
96 	return crypto_skcipher_encrypt(subreq);
97 }
98 
99 static int simd_skcipher_decrypt(struct skcipher_request *req)
100 {
101 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
102 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
103 	struct skcipher_request *subreq;
104 	struct crypto_skcipher *child;
105 
106 	subreq = skcipher_request_ctx(req);
107 	*subreq = *req;
108 
109 	if (!crypto_simd_usable() ||
110 	    (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
111 		child = &ctx->cryptd_tfm->base;
112 	else
113 		child = cryptd_skcipher_child(ctx->cryptd_tfm);
114 
115 	skcipher_request_set_tfm(subreq, child);
116 
117 	return crypto_skcipher_decrypt(subreq);
118 }
119 
120 static void simd_skcipher_exit(struct crypto_skcipher *tfm)
121 {
122 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
123 
124 	cryptd_free_skcipher(ctx->cryptd_tfm);
125 }
126 
127 static int simd_skcipher_init(struct crypto_skcipher *tfm)
128 {
129 	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
130 	struct cryptd_skcipher *cryptd_tfm;
131 	struct simd_skcipher_alg *salg;
132 	struct skcipher_alg *alg;
133 	unsigned reqsize;
134 
135 	alg = crypto_skcipher_alg(tfm);
136 	salg = container_of(alg, struct simd_skcipher_alg, alg);
137 
138 	cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
139 					   CRYPTO_ALG_INTERNAL,
140 					   CRYPTO_ALG_INTERNAL);
141 	if (IS_ERR(cryptd_tfm))
142 		return PTR_ERR(cryptd_tfm);
143 
144 	ctx->cryptd_tfm = cryptd_tfm;
145 
146 	reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
147 	reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
148 	reqsize += sizeof(struct skcipher_request);
149 
150 	crypto_skcipher_set_reqsize(tfm, reqsize);
151 
152 	return 0;
153 }
154 
155 struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
156 						      const char *drvname,
157 						      const char *basename)
158 {
159 	struct simd_skcipher_alg *salg;
160 	struct crypto_skcipher *tfm;
161 	struct skcipher_alg *ialg;
162 	struct skcipher_alg *alg;
163 	int err;
164 
165 	tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
166 				    CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
167 	if (IS_ERR(tfm))
168 		return ERR_CAST(tfm);
169 
170 	ialg = crypto_skcipher_alg(tfm);
171 
172 	salg = kzalloc(sizeof(*salg), GFP_KERNEL);
173 	if (!salg) {
174 		salg = ERR_PTR(-ENOMEM);
175 		goto out_put_tfm;
176 	}
177 
178 	salg->ialg_name = basename;
179 	alg = &salg->alg;
180 
181 	err = -ENAMETOOLONG;
182 	if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
183 	    CRYPTO_MAX_ALG_NAME)
184 		goto out_free_salg;
185 
186 	if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
187 		     drvname) >= CRYPTO_MAX_ALG_NAME)
188 		goto out_free_salg;
189 
190 	alg->base.cra_flags = CRYPTO_ALG_ASYNC;
191 	alg->base.cra_priority = ialg->base.cra_priority;
192 	alg->base.cra_blocksize = ialg->base.cra_blocksize;
193 	alg->base.cra_alignmask = ialg->base.cra_alignmask;
194 	alg->base.cra_module = ialg->base.cra_module;
195 	alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
196 
197 	alg->ivsize = ialg->ivsize;
198 	alg->chunksize = ialg->chunksize;
199 	alg->min_keysize = ialg->min_keysize;
200 	alg->max_keysize = ialg->max_keysize;
201 
202 	alg->init = simd_skcipher_init;
203 	alg->exit = simd_skcipher_exit;
204 
205 	alg->setkey = simd_skcipher_setkey;
206 	alg->encrypt = simd_skcipher_encrypt;
207 	alg->decrypt = simd_skcipher_decrypt;
208 
209 	err = crypto_register_skcipher(alg);
210 	if (err)
211 		goto out_free_salg;
212 
213 out_put_tfm:
214 	crypto_free_skcipher(tfm);
215 	return salg;
216 
217 out_free_salg:
218 	kfree(salg);
219 	salg = ERR_PTR(err);
220 	goto out_put_tfm;
221 }
222 EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
223 
224 struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
225 					       const char *basename)
226 {
227 	char drvname[CRYPTO_MAX_ALG_NAME];
228 
229 	if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
230 	    CRYPTO_MAX_ALG_NAME)
231 		return ERR_PTR(-ENAMETOOLONG);
232 
233 	return simd_skcipher_create_compat(algname, drvname, basename);
234 }
235 EXPORT_SYMBOL_GPL(simd_skcipher_create);
236 
237 void simd_skcipher_free(struct simd_skcipher_alg *salg)
238 {
239 	crypto_unregister_skcipher(&salg->alg);
240 	kfree(salg);
241 }
242 EXPORT_SYMBOL_GPL(simd_skcipher_free);
243 
244 int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
245 				   struct simd_skcipher_alg **simd_algs)
246 {
247 	int err;
248 	int i;
249 	const char *algname;
250 	const char *drvname;
251 	const char *basename;
252 	struct simd_skcipher_alg *simd;
253 
254 	err = crypto_register_skciphers(algs, count);
255 	if (err)
256 		return err;
257 
258 	for (i = 0; i < count; i++) {
259 		WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
260 		WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
261 		algname = algs[i].base.cra_name + 2;
262 		drvname = algs[i].base.cra_driver_name + 2;
263 		basename = algs[i].base.cra_driver_name;
264 		simd = simd_skcipher_create_compat(algname, drvname, basename);
265 		err = PTR_ERR(simd);
266 		if (IS_ERR(simd))
267 			goto err_unregister;
268 		simd_algs[i] = simd;
269 	}
270 	return 0;
271 
272 err_unregister:
273 	simd_unregister_skciphers(algs, count, simd_algs);
274 	return err;
275 }
276 EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
277 
278 void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
279 			       struct simd_skcipher_alg **simd_algs)
280 {
281 	int i;
282 
283 	crypto_unregister_skciphers(algs, count);
284 
285 	for (i = 0; i < count; i++) {
286 		if (simd_algs[i]) {
287 			simd_skcipher_free(simd_algs[i]);
288 			simd_algs[i] = NULL;
289 		}
290 	}
291 }
292 EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
293 
294 /* AEAD support */
295 
296 struct simd_aead_alg {
297 	const char *ialg_name;
298 	struct aead_alg alg;
299 };
300 
301 struct simd_aead_ctx {
302 	struct cryptd_aead *cryptd_tfm;
303 };
304 
305 static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
306 				unsigned int key_len)
307 {
308 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
309 	struct crypto_aead *child = &ctx->cryptd_tfm->base;
310 	int err;
311 
312 	crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
313 	crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
314 				     CRYPTO_TFM_REQ_MASK);
315 	err = crypto_aead_setkey(child, key, key_len);
316 	crypto_aead_set_flags(tfm, crypto_aead_get_flags(child) &
317 				   CRYPTO_TFM_RES_MASK);
318 	return err;
319 }
320 
321 static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
322 {
323 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
324 	struct crypto_aead *child = &ctx->cryptd_tfm->base;
325 
326 	return crypto_aead_setauthsize(child, authsize);
327 }
328 
329 static int simd_aead_encrypt(struct aead_request *req)
330 {
331 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
332 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
333 	struct aead_request *subreq;
334 	struct crypto_aead *child;
335 
336 	subreq = aead_request_ctx(req);
337 	*subreq = *req;
338 
339 	if (!crypto_simd_usable() ||
340 	    (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
341 		child = &ctx->cryptd_tfm->base;
342 	else
343 		child = cryptd_aead_child(ctx->cryptd_tfm);
344 
345 	aead_request_set_tfm(subreq, child);
346 
347 	return crypto_aead_encrypt(subreq);
348 }
349 
350 static int simd_aead_decrypt(struct aead_request *req)
351 {
352 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
353 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
354 	struct aead_request *subreq;
355 	struct crypto_aead *child;
356 
357 	subreq = aead_request_ctx(req);
358 	*subreq = *req;
359 
360 	if (!crypto_simd_usable() ||
361 	    (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
362 		child = &ctx->cryptd_tfm->base;
363 	else
364 		child = cryptd_aead_child(ctx->cryptd_tfm);
365 
366 	aead_request_set_tfm(subreq, child);
367 
368 	return crypto_aead_decrypt(subreq);
369 }
370 
371 static void simd_aead_exit(struct crypto_aead *tfm)
372 {
373 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
374 
375 	cryptd_free_aead(ctx->cryptd_tfm);
376 }
377 
378 static int simd_aead_init(struct crypto_aead *tfm)
379 {
380 	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
381 	struct cryptd_aead *cryptd_tfm;
382 	struct simd_aead_alg *salg;
383 	struct aead_alg *alg;
384 	unsigned reqsize;
385 
386 	alg = crypto_aead_alg(tfm);
387 	salg = container_of(alg, struct simd_aead_alg, alg);
388 
389 	cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
390 				       CRYPTO_ALG_INTERNAL);
391 	if (IS_ERR(cryptd_tfm))
392 		return PTR_ERR(cryptd_tfm);
393 
394 	ctx->cryptd_tfm = cryptd_tfm;
395 
396 	reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
397 	reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
398 	reqsize += sizeof(struct aead_request);
399 
400 	crypto_aead_set_reqsize(tfm, reqsize);
401 
402 	return 0;
403 }
404 
405 struct simd_aead_alg *simd_aead_create_compat(const char *algname,
406 					      const char *drvname,
407 					      const char *basename)
408 {
409 	struct simd_aead_alg *salg;
410 	struct crypto_aead *tfm;
411 	struct aead_alg *ialg;
412 	struct aead_alg *alg;
413 	int err;
414 
415 	tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL,
416 				CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
417 	if (IS_ERR(tfm))
418 		return ERR_CAST(tfm);
419 
420 	ialg = crypto_aead_alg(tfm);
421 
422 	salg = kzalloc(sizeof(*salg), GFP_KERNEL);
423 	if (!salg) {
424 		salg = ERR_PTR(-ENOMEM);
425 		goto out_put_tfm;
426 	}
427 
428 	salg->ialg_name = basename;
429 	alg = &salg->alg;
430 
431 	err = -ENAMETOOLONG;
432 	if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
433 	    CRYPTO_MAX_ALG_NAME)
434 		goto out_free_salg;
435 
436 	if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
437 		     drvname) >= CRYPTO_MAX_ALG_NAME)
438 		goto out_free_salg;
439 
440 	alg->base.cra_flags = CRYPTO_ALG_ASYNC;
441 	alg->base.cra_priority = ialg->base.cra_priority;
442 	alg->base.cra_blocksize = ialg->base.cra_blocksize;
443 	alg->base.cra_alignmask = ialg->base.cra_alignmask;
444 	alg->base.cra_module = ialg->base.cra_module;
445 	alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
446 
447 	alg->ivsize = ialg->ivsize;
448 	alg->maxauthsize = ialg->maxauthsize;
449 	alg->chunksize = ialg->chunksize;
450 
451 	alg->init = simd_aead_init;
452 	alg->exit = simd_aead_exit;
453 
454 	alg->setkey = simd_aead_setkey;
455 	alg->setauthsize = simd_aead_setauthsize;
456 	alg->encrypt = simd_aead_encrypt;
457 	alg->decrypt = simd_aead_decrypt;
458 
459 	err = crypto_register_aead(alg);
460 	if (err)
461 		goto out_free_salg;
462 
463 out_put_tfm:
464 	crypto_free_aead(tfm);
465 	return salg;
466 
467 out_free_salg:
468 	kfree(salg);
469 	salg = ERR_PTR(err);
470 	goto out_put_tfm;
471 }
472 EXPORT_SYMBOL_GPL(simd_aead_create_compat);
473 
474 struct simd_aead_alg *simd_aead_create(const char *algname,
475 				       const char *basename)
476 {
477 	char drvname[CRYPTO_MAX_ALG_NAME];
478 
479 	if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
480 	    CRYPTO_MAX_ALG_NAME)
481 		return ERR_PTR(-ENAMETOOLONG);
482 
483 	return simd_aead_create_compat(algname, drvname, basename);
484 }
485 EXPORT_SYMBOL_GPL(simd_aead_create);
486 
487 void simd_aead_free(struct simd_aead_alg *salg)
488 {
489 	crypto_unregister_aead(&salg->alg);
490 	kfree(salg);
491 }
492 EXPORT_SYMBOL_GPL(simd_aead_free);
493 
494 int simd_register_aeads_compat(struct aead_alg *algs, int count,
495 			       struct simd_aead_alg **simd_algs)
496 {
497 	int err;
498 	int i;
499 	const char *algname;
500 	const char *drvname;
501 	const char *basename;
502 	struct simd_aead_alg *simd;
503 
504 	err = crypto_register_aeads(algs, count);
505 	if (err)
506 		return err;
507 
508 	for (i = 0; i < count; i++) {
509 		WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
510 		WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
511 		algname = algs[i].base.cra_name + 2;
512 		drvname = algs[i].base.cra_driver_name + 2;
513 		basename = algs[i].base.cra_driver_name;
514 		simd = simd_aead_create_compat(algname, drvname, basename);
515 		err = PTR_ERR(simd);
516 		if (IS_ERR(simd))
517 			goto err_unregister;
518 		simd_algs[i] = simd;
519 	}
520 	return 0;
521 
522 err_unregister:
523 	simd_unregister_aeads(algs, count, simd_algs);
524 	return err;
525 }
526 EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
527 
528 void simd_unregister_aeads(struct aead_alg *algs, int count,
529 			   struct simd_aead_alg **simd_algs)
530 {
531 	int i;
532 
533 	crypto_unregister_aeads(algs, count);
534 
535 	for (i = 0; i < count; i++) {
536 		if (simd_algs[i]) {
537 			simd_aead_free(simd_algs[i]);
538 			simd_algs[i] = NULL;
539 		}
540 	}
541 }
542 EXPORT_SYMBOL_GPL(simd_unregister_aeads);
543 
544 MODULE_LICENSE("GPL");
545