1 /* 2 * Cryptographic API. 3 * 4 * SHA-3, as specified in 5 * http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf 6 * 7 * SHA-3 code by Jeff Garzik <jeff@garzik.org> 8 * Ard Biesheuvel <ard.biesheuvel@linaro.org> 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the Free 12 * Software Foundation; either version 2 of the License, or (at your option)• 13 * any later version. 14 * 15 */ 16 #include <crypto/internal/hash.h> 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/types.h> 20 #include <crypto/sha3.h> 21 #include <asm/unaligned.h> 22 23 /* 24 * On some 32-bit architectures (h8300), GCC ends up using 25 * over 1 KB of stack if we inline the round calculation into the loop 26 * in keccakf(). On the other hand, on 64-bit architectures with plenty 27 * of [64-bit wide] general purpose registers, not inlining it severely 28 * hurts performance. So let's use 64-bitness as a heuristic to decide 29 * whether to inline or not. 30 */ 31 #ifdef CONFIG_64BIT 32 #define SHA3_INLINE inline 33 #else 34 #define SHA3_INLINE noinline 35 #endif 36 37 #define KECCAK_ROUNDS 24 38 39 static const u64 keccakf_rndc[24] = { 40 0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL, 41 0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL, 42 0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL, 43 0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL, 44 0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL, 45 0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL, 46 0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL, 47 0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL 48 }; 49 50 /* update the state with given number of rounds */ 51 52 static SHA3_INLINE void keccakf_round(u64 st[25]) 53 { 54 u64 t[5], tt, bc[5]; 55 56 /* Theta */ 57 bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20]; 58 bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21]; 59 bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22]; 60 bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23]; 61 bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24]; 62 63 t[0] = bc[4] ^ rol64(bc[1], 1); 64 t[1] = bc[0] ^ rol64(bc[2], 1); 65 t[2] = bc[1] ^ rol64(bc[3], 1); 66 t[3] = bc[2] ^ rol64(bc[4], 1); 67 t[4] = bc[3] ^ rol64(bc[0], 1); 68 69 st[0] ^= t[0]; 70 71 /* Rho Pi */ 72 tt = st[1]; 73 st[ 1] = rol64(st[ 6] ^ t[1], 44); 74 st[ 6] = rol64(st[ 9] ^ t[4], 20); 75 st[ 9] = rol64(st[22] ^ t[2], 61); 76 st[22] = rol64(st[14] ^ t[4], 39); 77 st[14] = rol64(st[20] ^ t[0], 18); 78 st[20] = rol64(st[ 2] ^ t[2], 62); 79 st[ 2] = rol64(st[12] ^ t[2], 43); 80 st[12] = rol64(st[13] ^ t[3], 25); 81 st[13] = rol64(st[19] ^ t[4], 8); 82 st[19] = rol64(st[23] ^ t[3], 56); 83 st[23] = rol64(st[15] ^ t[0], 41); 84 st[15] = rol64(st[ 4] ^ t[4], 27); 85 st[ 4] = rol64(st[24] ^ t[4], 14); 86 st[24] = rol64(st[21] ^ t[1], 2); 87 st[21] = rol64(st[ 8] ^ t[3], 55); 88 st[ 8] = rol64(st[16] ^ t[1], 45); 89 st[16] = rol64(st[ 5] ^ t[0], 36); 90 st[ 5] = rol64(st[ 3] ^ t[3], 28); 91 st[ 3] = rol64(st[18] ^ t[3], 21); 92 st[18] = rol64(st[17] ^ t[2], 15); 93 st[17] = rol64(st[11] ^ t[1], 10); 94 st[11] = rol64(st[ 7] ^ t[2], 6); 95 st[ 7] = rol64(st[10] ^ t[0], 3); 96 st[10] = rol64( tt ^ t[1], 1); 97 98 /* Chi */ 99 bc[ 0] = ~st[ 1] & st[ 2]; 100 bc[ 1] = ~st[ 2] & st[ 3]; 101 bc[ 2] = ~st[ 3] & st[ 4]; 102 bc[ 3] = ~st[ 4] & st[ 0]; 103 bc[ 4] = ~st[ 0] & st[ 1]; 104 st[ 0] ^= bc[ 0]; 105 st[ 1] ^= bc[ 1]; 106 st[ 2] ^= bc[ 2]; 107 st[ 3] ^= bc[ 3]; 108 st[ 4] ^= bc[ 4]; 109 110 bc[ 0] = ~st[ 6] & st[ 7]; 111 bc[ 1] = ~st[ 7] & st[ 8]; 112 bc[ 2] = ~st[ 8] & st[ 9]; 113 bc[ 3] = ~st[ 9] & st[ 5]; 114 bc[ 4] = ~st[ 5] & st[ 6]; 115 st[ 5] ^= bc[ 0]; 116 st[ 6] ^= bc[ 1]; 117 st[ 7] ^= bc[ 2]; 118 st[ 8] ^= bc[ 3]; 119 st[ 9] ^= bc[ 4]; 120 121 bc[ 0] = ~st[11] & st[12]; 122 bc[ 1] = ~st[12] & st[13]; 123 bc[ 2] = ~st[13] & st[14]; 124 bc[ 3] = ~st[14] & st[10]; 125 bc[ 4] = ~st[10] & st[11]; 126 st[10] ^= bc[ 0]; 127 st[11] ^= bc[ 1]; 128 st[12] ^= bc[ 2]; 129 st[13] ^= bc[ 3]; 130 st[14] ^= bc[ 4]; 131 132 bc[ 0] = ~st[16] & st[17]; 133 bc[ 1] = ~st[17] & st[18]; 134 bc[ 2] = ~st[18] & st[19]; 135 bc[ 3] = ~st[19] & st[15]; 136 bc[ 4] = ~st[15] & st[16]; 137 st[15] ^= bc[ 0]; 138 st[16] ^= bc[ 1]; 139 st[17] ^= bc[ 2]; 140 st[18] ^= bc[ 3]; 141 st[19] ^= bc[ 4]; 142 143 bc[ 0] = ~st[21] & st[22]; 144 bc[ 1] = ~st[22] & st[23]; 145 bc[ 2] = ~st[23] & st[24]; 146 bc[ 3] = ~st[24] & st[20]; 147 bc[ 4] = ~st[20] & st[21]; 148 st[20] ^= bc[ 0]; 149 st[21] ^= bc[ 1]; 150 st[22] ^= bc[ 2]; 151 st[23] ^= bc[ 3]; 152 st[24] ^= bc[ 4]; 153 } 154 155 static void __optimize("O3") keccakf(u64 st[25]) 156 { 157 int round; 158 159 for (round = 0; round < KECCAK_ROUNDS; round++) { 160 keccakf_round(st); 161 /* Iota */ 162 st[0] ^= keccakf_rndc[round]; 163 } 164 } 165 166 int crypto_sha3_init(struct shash_desc *desc) 167 { 168 struct sha3_state *sctx = shash_desc_ctx(desc); 169 unsigned int digest_size = crypto_shash_digestsize(desc->tfm); 170 171 sctx->rsiz = 200 - 2 * digest_size; 172 sctx->rsizw = sctx->rsiz / 8; 173 sctx->partial = 0; 174 175 memset(sctx->st, 0, sizeof(sctx->st)); 176 return 0; 177 } 178 EXPORT_SYMBOL(crypto_sha3_init); 179 180 int crypto_sha3_update(struct shash_desc *desc, const u8 *data, 181 unsigned int len) 182 { 183 struct sha3_state *sctx = shash_desc_ctx(desc); 184 unsigned int done; 185 const u8 *src; 186 187 done = 0; 188 src = data; 189 190 if ((sctx->partial + len) > (sctx->rsiz - 1)) { 191 if (sctx->partial) { 192 done = -sctx->partial; 193 memcpy(sctx->buf + sctx->partial, data, 194 done + sctx->rsiz); 195 src = sctx->buf; 196 } 197 198 do { 199 unsigned int i; 200 201 for (i = 0; i < sctx->rsizw; i++) 202 sctx->st[i] ^= get_unaligned_le64(src + 8 * i); 203 keccakf(sctx->st); 204 205 done += sctx->rsiz; 206 src = data + done; 207 } while (done + (sctx->rsiz - 1) < len); 208 209 sctx->partial = 0; 210 } 211 memcpy(sctx->buf + sctx->partial, src, len - done); 212 sctx->partial += (len - done); 213 214 return 0; 215 } 216 EXPORT_SYMBOL(crypto_sha3_update); 217 218 int crypto_sha3_final(struct shash_desc *desc, u8 *out) 219 { 220 struct sha3_state *sctx = shash_desc_ctx(desc); 221 unsigned int i, inlen = sctx->partial; 222 unsigned int digest_size = crypto_shash_digestsize(desc->tfm); 223 __le64 *digest = (__le64 *)out; 224 225 sctx->buf[inlen++] = 0x06; 226 memset(sctx->buf + inlen, 0, sctx->rsiz - inlen); 227 sctx->buf[sctx->rsiz - 1] |= 0x80; 228 229 for (i = 0; i < sctx->rsizw; i++) 230 sctx->st[i] ^= get_unaligned_le64(sctx->buf + 8 * i); 231 232 keccakf(sctx->st); 233 234 for (i = 0; i < digest_size / 8; i++) 235 put_unaligned_le64(sctx->st[i], digest++); 236 237 if (digest_size & 4) 238 put_unaligned_le32(sctx->st[i], (__le32 *)digest); 239 240 memset(sctx, 0, sizeof(*sctx)); 241 return 0; 242 } 243 EXPORT_SYMBOL(crypto_sha3_final); 244 245 static struct shash_alg algs[] = { { 246 .digestsize = SHA3_224_DIGEST_SIZE, 247 .init = crypto_sha3_init, 248 .update = crypto_sha3_update, 249 .final = crypto_sha3_final, 250 .descsize = sizeof(struct sha3_state), 251 .base.cra_name = "sha3-224", 252 .base.cra_driver_name = "sha3-224-generic", 253 .base.cra_flags = CRYPTO_ALG_TYPE_SHASH, 254 .base.cra_blocksize = SHA3_224_BLOCK_SIZE, 255 .base.cra_module = THIS_MODULE, 256 }, { 257 .digestsize = SHA3_256_DIGEST_SIZE, 258 .init = crypto_sha3_init, 259 .update = crypto_sha3_update, 260 .final = crypto_sha3_final, 261 .descsize = sizeof(struct sha3_state), 262 .base.cra_name = "sha3-256", 263 .base.cra_driver_name = "sha3-256-generic", 264 .base.cra_flags = CRYPTO_ALG_TYPE_SHASH, 265 .base.cra_blocksize = SHA3_256_BLOCK_SIZE, 266 .base.cra_module = THIS_MODULE, 267 }, { 268 .digestsize = SHA3_384_DIGEST_SIZE, 269 .init = crypto_sha3_init, 270 .update = crypto_sha3_update, 271 .final = crypto_sha3_final, 272 .descsize = sizeof(struct sha3_state), 273 .base.cra_name = "sha3-384", 274 .base.cra_driver_name = "sha3-384-generic", 275 .base.cra_flags = CRYPTO_ALG_TYPE_SHASH, 276 .base.cra_blocksize = SHA3_384_BLOCK_SIZE, 277 .base.cra_module = THIS_MODULE, 278 }, { 279 .digestsize = SHA3_512_DIGEST_SIZE, 280 .init = crypto_sha3_init, 281 .update = crypto_sha3_update, 282 .final = crypto_sha3_final, 283 .descsize = sizeof(struct sha3_state), 284 .base.cra_name = "sha3-512", 285 .base.cra_driver_name = "sha3-512-generic", 286 .base.cra_flags = CRYPTO_ALG_TYPE_SHASH, 287 .base.cra_blocksize = SHA3_512_BLOCK_SIZE, 288 .base.cra_module = THIS_MODULE, 289 } }; 290 291 static int __init sha3_generic_mod_init(void) 292 { 293 return crypto_register_shashes(algs, ARRAY_SIZE(algs)); 294 } 295 296 static void __exit sha3_generic_mod_fini(void) 297 { 298 crypto_unregister_shashes(algs, ARRAY_SIZE(algs)); 299 } 300 301 module_init(sha3_generic_mod_init); 302 module_exit(sha3_generic_mod_fini); 303 304 MODULE_LICENSE("GPL"); 305 MODULE_DESCRIPTION("SHA-3 Secure Hash Algorithm"); 306 307 MODULE_ALIAS_CRYPTO("sha3-224"); 308 MODULE_ALIAS_CRYPTO("sha3-224-generic"); 309 MODULE_ALIAS_CRYPTO("sha3-256"); 310 MODULE_ALIAS_CRYPTO("sha3-256-generic"); 311 MODULE_ALIAS_CRYPTO("sha3-384"); 312 MODULE_ALIAS_CRYPTO("sha3-384-generic"); 313 MODULE_ALIAS_CRYPTO("sha3-512"); 314 MODULE_ALIAS_CRYPTO("sha3-512-generic"); 315