1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RSA padding templates. 4 * 5 * Copyright (c) 2015 Intel Corporation 6 */ 7 8 #include <crypto/algapi.h> 9 #include <crypto/akcipher.h> 10 #include <crypto/internal/akcipher.h> 11 #include <crypto/internal/rsa.h> 12 #include <linux/err.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/random.h> 17 18 /* 19 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2]. 20 */ 21 static const u8 rsa_digest_info_md5[] = { 22 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 23 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */ 24 0x05, 0x00, 0x04, 0x10 25 }; 26 27 static const u8 rsa_digest_info_sha1[] = { 28 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 29 0x2b, 0x0e, 0x03, 0x02, 0x1a, 30 0x05, 0x00, 0x04, 0x14 31 }; 32 33 static const u8 rsa_digest_info_rmd160[] = { 34 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 35 0x2b, 0x24, 0x03, 0x02, 0x01, 36 0x05, 0x00, 0x04, 0x14 37 }; 38 39 static const u8 rsa_digest_info_sha224[] = { 40 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 41 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 42 0x05, 0x00, 0x04, 0x1c 43 }; 44 45 static const u8 rsa_digest_info_sha256[] = { 46 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 47 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 48 0x05, 0x00, 0x04, 0x20 49 }; 50 51 static const u8 rsa_digest_info_sha384[] = { 52 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 53 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 54 0x05, 0x00, 0x04, 0x30 55 }; 56 57 static const u8 rsa_digest_info_sha512[] = { 58 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 59 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 60 0x05, 0x00, 0x04, 0x40 61 }; 62 63 static const struct rsa_asn1_template { 64 const char *name; 65 const u8 *data; 66 size_t size; 67 } rsa_asn1_templates[] = { 68 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) } 69 _(md5), 70 _(sha1), 71 _(rmd160), 72 _(sha256), 73 _(sha384), 74 _(sha512), 75 _(sha224), 76 { NULL } 77 #undef _ 78 }; 79 80 static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name) 81 { 82 const struct rsa_asn1_template *p; 83 84 for (p = rsa_asn1_templates; p->name; p++) 85 if (strcmp(name, p->name) == 0) 86 return p; 87 return NULL; 88 } 89 90 struct pkcs1pad_ctx { 91 struct crypto_akcipher *child; 92 unsigned int key_size; 93 }; 94 95 struct pkcs1pad_inst_ctx { 96 struct crypto_akcipher_spawn spawn; 97 const struct rsa_asn1_template *digest_info; 98 }; 99 100 struct pkcs1pad_request { 101 struct scatterlist in_sg[2], out_sg[1]; 102 uint8_t *in_buf, *out_buf; 103 struct akcipher_request child_req; 104 }; 105 106 static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key, 107 unsigned int keylen) 108 { 109 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 110 int err; 111 112 ctx->key_size = 0; 113 114 err = crypto_akcipher_set_pub_key(ctx->child, key, keylen); 115 if (err) 116 return err; 117 118 /* Find out new modulus size from rsa implementation */ 119 err = crypto_akcipher_maxsize(ctx->child); 120 if (err > PAGE_SIZE) 121 return -ENOTSUPP; 122 123 ctx->key_size = err; 124 return 0; 125 } 126 127 static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key, 128 unsigned int keylen) 129 { 130 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 131 int err; 132 133 ctx->key_size = 0; 134 135 err = crypto_akcipher_set_priv_key(ctx->child, key, keylen); 136 if (err) 137 return err; 138 139 /* Find out new modulus size from rsa implementation */ 140 err = crypto_akcipher_maxsize(ctx->child); 141 if (err > PAGE_SIZE) 142 return -ENOTSUPP; 143 144 ctx->key_size = err; 145 return 0; 146 } 147 148 static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm) 149 { 150 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 151 152 /* 153 * The maximum destination buffer size for the encrypt/sign operations 154 * will be the same as for RSA, even though it's smaller for 155 * decrypt/verify. 156 */ 157 158 return ctx->key_size; 159 } 160 161 static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len, 162 struct scatterlist *next) 163 { 164 int nsegs = next ? 2 : 1; 165 166 sg_init_table(sg, nsegs); 167 sg_set_buf(sg, buf, len); 168 169 if (next) 170 sg_chain(sg, nsegs, next); 171 } 172 173 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err) 174 { 175 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 176 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 177 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 178 unsigned int pad_len; 179 unsigned int len; 180 u8 *out_buf; 181 182 if (err) 183 goto out; 184 185 len = req_ctx->child_req.dst_len; 186 pad_len = ctx->key_size - len; 187 188 /* Four billion to one */ 189 if (likely(!pad_len)) 190 goto out; 191 192 out_buf = kzalloc(ctx->key_size, GFP_KERNEL); 193 err = -ENOMEM; 194 if (!out_buf) 195 goto out; 196 197 sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len), 198 out_buf + pad_len, len); 199 sg_copy_from_buffer(req->dst, 200 sg_nents_for_len(req->dst, ctx->key_size), 201 out_buf, ctx->key_size); 202 kfree_sensitive(out_buf); 203 204 out: 205 req->dst_len = ctx->key_size; 206 207 kfree(req_ctx->in_buf); 208 209 return err; 210 } 211 212 static void pkcs1pad_encrypt_sign_complete_cb( 213 struct crypto_async_request *child_async_req, int err) 214 { 215 struct akcipher_request *req = child_async_req->data; 216 struct crypto_async_request async_req; 217 218 if (err == -EINPROGRESS) 219 return; 220 221 async_req.data = req->base.data; 222 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 223 async_req.flags = child_async_req->flags; 224 req->base.complete(&async_req, 225 pkcs1pad_encrypt_sign_complete(req, err)); 226 } 227 228 static int pkcs1pad_encrypt(struct akcipher_request *req) 229 { 230 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 231 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 232 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 233 int err; 234 unsigned int i, ps_end; 235 236 if (!ctx->key_size) 237 return -EINVAL; 238 239 if (req->src_len > ctx->key_size - 11) 240 return -EOVERFLOW; 241 242 if (req->dst_len < ctx->key_size) { 243 req->dst_len = ctx->key_size; 244 return -EOVERFLOW; 245 } 246 247 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 248 GFP_KERNEL); 249 if (!req_ctx->in_buf) 250 return -ENOMEM; 251 252 ps_end = ctx->key_size - req->src_len - 2; 253 req_ctx->in_buf[0] = 0x02; 254 for (i = 1; i < ps_end; i++) 255 req_ctx->in_buf[i] = 1 + prandom_u32_max(255); 256 req_ctx->in_buf[ps_end] = 0x00; 257 258 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 259 ctx->key_size - 1 - req->src_len, req->src); 260 261 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 262 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 263 pkcs1pad_encrypt_sign_complete_cb, req); 264 265 /* Reuse output buffer */ 266 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 267 req->dst, ctx->key_size - 1, req->dst_len); 268 269 err = crypto_akcipher_encrypt(&req_ctx->child_req); 270 if (err != -EINPROGRESS && err != -EBUSY) 271 return pkcs1pad_encrypt_sign_complete(req, err); 272 273 return err; 274 } 275 276 static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err) 277 { 278 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 279 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 280 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 281 unsigned int dst_len; 282 unsigned int pos; 283 u8 *out_buf; 284 285 if (err) 286 goto done; 287 288 err = -EINVAL; 289 dst_len = req_ctx->child_req.dst_len; 290 if (dst_len < ctx->key_size - 1) 291 goto done; 292 293 out_buf = req_ctx->out_buf; 294 if (dst_len == ctx->key_size) { 295 if (out_buf[0] != 0x00) 296 /* Decrypted value had no leading 0 byte */ 297 goto done; 298 299 dst_len--; 300 out_buf++; 301 } 302 303 if (out_buf[0] != 0x02) 304 goto done; 305 306 for (pos = 1; pos < dst_len; pos++) 307 if (out_buf[pos] == 0x00) 308 break; 309 if (pos < 9 || pos == dst_len) 310 goto done; 311 pos++; 312 313 err = 0; 314 315 if (req->dst_len < dst_len - pos) 316 err = -EOVERFLOW; 317 req->dst_len = dst_len - pos; 318 319 if (!err) 320 sg_copy_from_buffer(req->dst, 321 sg_nents_for_len(req->dst, req->dst_len), 322 out_buf + pos, req->dst_len); 323 324 done: 325 kfree_sensitive(req_ctx->out_buf); 326 327 return err; 328 } 329 330 static void pkcs1pad_decrypt_complete_cb( 331 struct crypto_async_request *child_async_req, int err) 332 { 333 struct akcipher_request *req = child_async_req->data; 334 struct crypto_async_request async_req; 335 336 if (err == -EINPROGRESS) 337 return; 338 339 async_req.data = req->base.data; 340 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 341 async_req.flags = child_async_req->flags; 342 req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err)); 343 } 344 345 static int pkcs1pad_decrypt(struct akcipher_request *req) 346 { 347 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 348 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 349 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 350 int err; 351 352 if (!ctx->key_size || req->src_len != ctx->key_size) 353 return -EINVAL; 354 355 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 356 if (!req_ctx->out_buf) 357 return -ENOMEM; 358 359 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 360 ctx->key_size, NULL); 361 362 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 363 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 364 pkcs1pad_decrypt_complete_cb, req); 365 366 /* Reuse input buffer, output to a new buffer */ 367 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 368 req_ctx->out_sg, req->src_len, 369 ctx->key_size); 370 371 err = crypto_akcipher_decrypt(&req_ctx->child_req); 372 if (err != -EINPROGRESS && err != -EBUSY) 373 return pkcs1pad_decrypt_complete(req, err); 374 375 return err; 376 } 377 378 static int pkcs1pad_sign(struct akcipher_request *req) 379 { 380 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 381 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 382 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 383 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 384 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 385 const struct rsa_asn1_template *digest_info = ictx->digest_info; 386 int err; 387 unsigned int ps_end, digest_size = 0; 388 389 if (!ctx->key_size) 390 return -EINVAL; 391 392 if (digest_info) 393 digest_size = digest_info->size; 394 395 if (req->src_len + digest_size > ctx->key_size - 11) 396 return -EOVERFLOW; 397 398 if (req->dst_len < ctx->key_size) { 399 req->dst_len = ctx->key_size; 400 return -EOVERFLOW; 401 } 402 403 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 404 GFP_KERNEL); 405 if (!req_ctx->in_buf) 406 return -ENOMEM; 407 408 ps_end = ctx->key_size - digest_size - req->src_len - 2; 409 req_ctx->in_buf[0] = 0x01; 410 memset(req_ctx->in_buf + 1, 0xff, ps_end - 1); 411 req_ctx->in_buf[ps_end] = 0x00; 412 413 if (digest_info) 414 memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data, 415 digest_info->size); 416 417 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 418 ctx->key_size - 1 - req->src_len, req->src); 419 420 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 421 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 422 pkcs1pad_encrypt_sign_complete_cb, req); 423 424 /* Reuse output buffer */ 425 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 426 req->dst, ctx->key_size - 1, req->dst_len); 427 428 err = crypto_akcipher_decrypt(&req_ctx->child_req); 429 if (err != -EINPROGRESS && err != -EBUSY) 430 return pkcs1pad_encrypt_sign_complete(req, err); 431 432 return err; 433 } 434 435 static int pkcs1pad_verify_complete(struct akcipher_request *req, int err) 436 { 437 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 438 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 439 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 440 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 441 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 442 const struct rsa_asn1_template *digest_info = ictx->digest_info; 443 unsigned int dst_len; 444 unsigned int pos; 445 u8 *out_buf; 446 447 if (err) 448 goto done; 449 450 err = -EINVAL; 451 dst_len = req_ctx->child_req.dst_len; 452 if (dst_len < ctx->key_size - 1) 453 goto done; 454 455 out_buf = req_ctx->out_buf; 456 if (dst_len == ctx->key_size) { 457 if (out_buf[0] != 0x00) 458 /* Decrypted value had no leading 0 byte */ 459 goto done; 460 461 dst_len--; 462 out_buf++; 463 } 464 465 err = -EBADMSG; 466 if (out_buf[0] != 0x01) 467 goto done; 468 469 for (pos = 1; pos < dst_len; pos++) 470 if (out_buf[pos] != 0xff) 471 break; 472 473 if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00) 474 goto done; 475 pos++; 476 477 if (digest_info) { 478 if (crypto_memneq(out_buf + pos, digest_info->data, 479 digest_info->size)) 480 goto done; 481 482 pos += digest_info->size; 483 } 484 485 err = 0; 486 487 if (req->dst_len != dst_len - pos) { 488 err = -EKEYREJECTED; 489 req->dst_len = dst_len - pos; 490 goto done; 491 } 492 /* Extract appended digest. */ 493 sg_pcopy_to_buffer(req->src, 494 sg_nents_for_len(req->src, 495 req->src_len + req->dst_len), 496 req_ctx->out_buf + ctx->key_size, 497 req->dst_len, ctx->key_size); 498 /* Do the actual verification step. */ 499 if (memcmp(req_ctx->out_buf + ctx->key_size, out_buf + pos, 500 req->dst_len) != 0) 501 err = -EKEYREJECTED; 502 done: 503 kfree_sensitive(req_ctx->out_buf); 504 505 return err; 506 } 507 508 static void pkcs1pad_verify_complete_cb( 509 struct crypto_async_request *child_async_req, int err) 510 { 511 struct akcipher_request *req = child_async_req->data; 512 struct crypto_async_request async_req; 513 514 if (err == -EINPROGRESS) 515 return; 516 517 async_req.data = req->base.data; 518 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 519 async_req.flags = child_async_req->flags; 520 req->base.complete(&async_req, pkcs1pad_verify_complete(req, err)); 521 } 522 523 /* 524 * The verify operation is here for completeness similar to the verification 525 * defined in RFC2313 section 10.2 except that block type 0 is not accepted, 526 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to 527 * retrieve the DigestInfo from a signature, instead the user is expected 528 * to call the sign operation to generate the expected signature and compare 529 * signatures instead of the message-digests. 530 */ 531 static int pkcs1pad_verify(struct akcipher_request *req) 532 { 533 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 534 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 535 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 536 int err; 537 538 if (WARN_ON(req->dst) || 539 WARN_ON(!req->dst_len) || 540 !ctx->key_size || req->src_len < ctx->key_size) 541 return -EINVAL; 542 543 req_ctx->out_buf = kmalloc(ctx->key_size + req->dst_len, GFP_KERNEL); 544 if (!req_ctx->out_buf) 545 return -ENOMEM; 546 547 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 548 ctx->key_size, NULL); 549 550 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 551 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 552 pkcs1pad_verify_complete_cb, req); 553 554 /* Reuse input buffer, output to a new buffer */ 555 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 556 req_ctx->out_sg, req->src_len, 557 ctx->key_size); 558 559 err = crypto_akcipher_encrypt(&req_ctx->child_req); 560 if (err != -EINPROGRESS && err != -EBUSY) 561 return pkcs1pad_verify_complete(req, err); 562 563 return err; 564 } 565 566 static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm) 567 { 568 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 569 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 570 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 571 struct crypto_akcipher *child_tfm; 572 573 child_tfm = crypto_spawn_akcipher(&ictx->spawn); 574 if (IS_ERR(child_tfm)) 575 return PTR_ERR(child_tfm); 576 577 ctx->child = child_tfm; 578 return 0; 579 } 580 581 static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm) 582 { 583 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 584 585 crypto_free_akcipher(ctx->child); 586 } 587 588 static void pkcs1pad_free(struct akcipher_instance *inst) 589 { 590 struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst); 591 struct crypto_akcipher_spawn *spawn = &ctx->spawn; 592 593 crypto_drop_akcipher(spawn); 594 kfree(inst); 595 } 596 597 static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb) 598 { 599 u32 mask; 600 struct akcipher_instance *inst; 601 struct pkcs1pad_inst_ctx *ctx; 602 struct akcipher_alg *rsa_alg; 603 const char *hash_name; 604 int err; 605 606 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AKCIPHER, &mask); 607 if (err) 608 return err; 609 610 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 611 if (!inst) 612 return -ENOMEM; 613 614 ctx = akcipher_instance_ctx(inst); 615 616 err = crypto_grab_akcipher(&ctx->spawn, akcipher_crypto_instance(inst), 617 crypto_attr_alg_name(tb[1]), 0, mask); 618 if (err) 619 goto err_free_inst; 620 621 rsa_alg = crypto_spawn_akcipher_alg(&ctx->spawn); 622 623 err = -ENAMETOOLONG; 624 hash_name = crypto_attr_alg_name(tb[2]); 625 if (IS_ERR(hash_name)) { 626 if (snprintf(inst->alg.base.cra_name, 627 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", 628 rsa_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME) 629 goto err_free_inst; 630 631 if (snprintf(inst->alg.base.cra_driver_name, 632 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", 633 rsa_alg->base.cra_driver_name) >= 634 CRYPTO_MAX_ALG_NAME) 635 goto err_free_inst; 636 } else { 637 ctx->digest_info = rsa_lookup_asn1(hash_name); 638 if (!ctx->digest_info) { 639 err = -EINVAL; 640 goto err_free_inst; 641 } 642 643 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 644 "pkcs1pad(%s,%s)", rsa_alg->base.cra_name, 645 hash_name) >= CRYPTO_MAX_ALG_NAME) 646 goto err_free_inst; 647 648 if (snprintf(inst->alg.base.cra_driver_name, 649 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s,%s)", 650 rsa_alg->base.cra_driver_name, 651 hash_name) >= CRYPTO_MAX_ALG_NAME) 652 goto err_free_inst; 653 } 654 655 inst->alg.base.cra_priority = rsa_alg->base.cra_priority; 656 inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx); 657 658 inst->alg.init = pkcs1pad_init_tfm; 659 inst->alg.exit = pkcs1pad_exit_tfm; 660 661 inst->alg.encrypt = pkcs1pad_encrypt; 662 inst->alg.decrypt = pkcs1pad_decrypt; 663 inst->alg.sign = pkcs1pad_sign; 664 inst->alg.verify = pkcs1pad_verify; 665 inst->alg.set_pub_key = pkcs1pad_set_pub_key; 666 inst->alg.set_priv_key = pkcs1pad_set_priv_key; 667 inst->alg.max_size = pkcs1pad_get_max_size; 668 inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize; 669 670 inst->free = pkcs1pad_free; 671 672 err = akcipher_register_instance(tmpl, inst); 673 if (err) { 674 err_free_inst: 675 pkcs1pad_free(inst); 676 } 677 return err; 678 } 679 680 struct crypto_template rsa_pkcs1pad_tmpl = { 681 .name = "pkcs1pad", 682 .create = pkcs1pad_create, 683 .module = THIS_MODULE, 684 }; 685