1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RSA padding templates. 4 * 5 * Copyright (c) 2015 Intel Corporation 6 */ 7 8 #include <crypto/algapi.h> 9 #include <crypto/akcipher.h> 10 #include <crypto/internal/akcipher.h> 11 #include <crypto/internal/rsa.h> 12 #include <linux/err.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/random.h> 17 #include <linux/scatterlist.h> 18 19 /* 20 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2]. 21 */ 22 static const u8 rsa_digest_info_md5[] = { 23 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 24 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */ 25 0x05, 0x00, 0x04, 0x10 26 }; 27 28 static const u8 rsa_digest_info_sha1[] = { 29 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 30 0x2b, 0x0e, 0x03, 0x02, 0x1a, 31 0x05, 0x00, 0x04, 0x14 32 }; 33 34 static const u8 rsa_digest_info_rmd160[] = { 35 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 36 0x2b, 0x24, 0x03, 0x02, 0x01, 37 0x05, 0x00, 0x04, 0x14 38 }; 39 40 static const u8 rsa_digest_info_sha224[] = { 41 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 42 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 43 0x05, 0x00, 0x04, 0x1c 44 }; 45 46 static const u8 rsa_digest_info_sha256[] = { 47 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 48 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 49 0x05, 0x00, 0x04, 0x20 50 }; 51 52 static const u8 rsa_digest_info_sha384[] = { 53 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 54 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 55 0x05, 0x00, 0x04, 0x30 56 }; 57 58 static const u8 rsa_digest_info_sha512[] = { 59 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 60 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 61 0x05, 0x00, 0x04, 0x40 62 }; 63 64 static const struct rsa_asn1_template { 65 const char *name; 66 const u8 *data; 67 size_t size; 68 } rsa_asn1_templates[] = { 69 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) } 70 _(md5), 71 _(sha1), 72 _(rmd160), 73 _(sha256), 74 _(sha384), 75 _(sha512), 76 _(sha224), 77 { NULL } 78 #undef _ 79 }; 80 81 static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name) 82 { 83 const struct rsa_asn1_template *p; 84 85 for (p = rsa_asn1_templates; p->name; p++) 86 if (strcmp(name, p->name) == 0) 87 return p; 88 return NULL; 89 } 90 91 struct pkcs1pad_ctx { 92 struct crypto_akcipher *child; 93 unsigned int key_size; 94 }; 95 96 struct pkcs1pad_inst_ctx { 97 struct crypto_akcipher_spawn spawn; 98 const struct rsa_asn1_template *digest_info; 99 }; 100 101 struct pkcs1pad_request { 102 struct scatterlist in_sg[2], out_sg[1]; 103 uint8_t *in_buf, *out_buf; 104 struct akcipher_request child_req; 105 }; 106 107 static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key, 108 unsigned int keylen) 109 { 110 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 111 int err; 112 113 ctx->key_size = 0; 114 115 err = crypto_akcipher_set_pub_key(ctx->child, key, keylen); 116 if (err) 117 return err; 118 119 /* Find out new modulus size from rsa implementation */ 120 err = crypto_akcipher_maxsize(ctx->child); 121 if (err > PAGE_SIZE) 122 return -ENOTSUPP; 123 124 ctx->key_size = err; 125 return 0; 126 } 127 128 static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key, 129 unsigned int keylen) 130 { 131 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 132 int err; 133 134 ctx->key_size = 0; 135 136 err = crypto_akcipher_set_priv_key(ctx->child, key, keylen); 137 if (err) 138 return err; 139 140 /* Find out new modulus size from rsa implementation */ 141 err = crypto_akcipher_maxsize(ctx->child); 142 if (err > PAGE_SIZE) 143 return -ENOTSUPP; 144 145 ctx->key_size = err; 146 return 0; 147 } 148 149 static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm) 150 { 151 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 152 153 /* 154 * The maximum destination buffer size for the encrypt/sign operations 155 * will be the same as for RSA, even though it's smaller for 156 * decrypt/verify. 157 */ 158 159 return ctx->key_size; 160 } 161 162 static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len, 163 struct scatterlist *next) 164 { 165 int nsegs = next ? 2 : 1; 166 167 sg_init_table(sg, nsegs); 168 sg_set_buf(sg, buf, len); 169 170 if (next) 171 sg_chain(sg, nsegs, next); 172 } 173 174 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err) 175 { 176 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 177 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 178 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 179 unsigned int pad_len; 180 unsigned int len; 181 u8 *out_buf; 182 183 if (err) 184 goto out; 185 186 len = req_ctx->child_req.dst_len; 187 pad_len = ctx->key_size - len; 188 189 /* Four billion to one */ 190 if (likely(!pad_len)) 191 goto out; 192 193 out_buf = kzalloc(ctx->key_size, GFP_KERNEL); 194 err = -ENOMEM; 195 if (!out_buf) 196 goto out; 197 198 sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len), 199 out_buf + pad_len, len); 200 sg_copy_from_buffer(req->dst, 201 sg_nents_for_len(req->dst, ctx->key_size), 202 out_buf, ctx->key_size); 203 kfree_sensitive(out_buf); 204 205 out: 206 req->dst_len = ctx->key_size; 207 208 kfree(req_ctx->in_buf); 209 210 return err; 211 } 212 213 static void pkcs1pad_encrypt_sign_complete_cb( 214 struct crypto_async_request *child_async_req, int err) 215 { 216 struct akcipher_request *req = child_async_req->data; 217 struct crypto_async_request async_req; 218 219 if (err == -EINPROGRESS) 220 return; 221 222 async_req.data = req->base.data; 223 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 224 async_req.flags = child_async_req->flags; 225 req->base.complete(&async_req, 226 pkcs1pad_encrypt_sign_complete(req, err)); 227 } 228 229 static int pkcs1pad_encrypt(struct akcipher_request *req) 230 { 231 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 232 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 233 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 234 int err; 235 unsigned int i, ps_end; 236 237 if (!ctx->key_size) 238 return -EINVAL; 239 240 if (req->src_len > ctx->key_size - 11) 241 return -EOVERFLOW; 242 243 if (req->dst_len < ctx->key_size) { 244 req->dst_len = ctx->key_size; 245 return -EOVERFLOW; 246 } 247 248 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 249 GFP_KERNEL); 250 if (!req_ctx->in_buf) 251 return -ENOMEM; 252 253 ps_end = ctx->key_size - req->src_len - 2; 254 req_ctx->in_buf[0] = 0x02; 255 for (i = 1; i < ps_end; i++) 256 req_ctx->in_buf[i] = 1 + prandom_u32_max(255); 257 req_ctx->in_buf[ps_end] = 0x00; 258 259 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 260 ctx->key_size - 1 - req->src_len, req->src); 261 262 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 263 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 264 pkcs1pad_encrypt_sign_complete_cb, req); 265 266 /* Reuse output buffer */ 267 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 268 req->dst, ctx->key_size - 1, req->dst_len); 269 270 err = crypto_akcipher_encrypt(&req_ctx->child_req); 271 if (err != -EINPROGRESS && err != -EBUSY) 272 return pkcs1pad_encrypt_sign_complete(req, err); 273 274 return err; 275 } 276 277 static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err) 278 { 279 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 280 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 281 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 282 unsigned int dst_len; 283 unsigned int pos; 284 u8 *out_buf; 285 286 if (err) 287 goto done; 288 289 err = -EINVAL; 290 dst_len = req_ctx->child_req.dst_len; 291 if (dst_len < ctx->key_size - 1) 292 goto done; 293 294 out_buf = req_ctx->out_buf; 295 if (dst_len == ctx->key_size) { 296 if (out_buf[0] != 0x00) 297 /* Decrypted value had no leading 0 byte */ 298 goto done; 299 300 dst_len--; 301 out_buf++; 302 } 303 304 if (out_buf[0] != 0x02) 305 goto done; 306 307 for (pos = 1; pos < dst_len; pos++) 308 if (out_buf[pos] == 0x00) 309 break; 310 if (pos < 9 || pos == dst_len) 311 goto done; 312 pos++; 313 314 err = 0; 315 316 if (req->dst_len < dst_len - pos) 317 err = -EOVERFLOW; 318 req->dst_len = dst_len - pos; 319 320 if (!err) 321 sg_copy_from_buffer(req->dst, 322 sg_nents_for_len(req->dst, req->dst_len), 323 out_buf + pos, req->dst_len); 324 325 done: 326 kfree_sensitive(req_ctx->out_buf); 327 328 return err; 329 } 330 331 static void pkcs1pad_decrypt_complete_cb( 332 struct crypto_async_request *child_async_req, int err) 333 { 334 struct akcipher_request *req = child_async_req->data; 335 struct crypto_async_request async_req; 336 337 if (err == -EINPROGRESS) 338 return; 339 340 async_req.data = req->base.data; 341 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 342 async_req.flags = child_async_req->flags; 343 req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err)); 344 } 345 346 static int pkcs1pad_decrypt(struct akcipher_request *req) 347 { 348 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 349 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 350 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 351 int err; 352 353 if (!ctx->key_size || req->src_len != ctx->key_size) 354 return -EINVAL; 355 356 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 357 if (!req_ctx->out_buf) 358 return -ENOMEM; 359 360 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 361 ctx->key_size, NULL); 362 363 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 364 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 365 pkcs1pad_decrypt_complete_cb, req); 366 367 /* Reuse input buffer, output to a new buffer */ 368 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 369 req_ctx->out_sg, req->src_len, 370 ctx->key_size); 371 372 err = crypto_akcipher_decrypt(&req_ctx->child_req); 373 if (err != -EINPROGRESS && err != -EBUSY) 374 return pkcs1pad_decrypt_complete(req, err); 375 376 return err; 377 } 378 379 static int pkcs1pad_sign(struct akcipher_request *req) 380 { 381 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 382 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 383 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 384 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 385 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 386 const struct rsa_asn1_template *digest_info = ictx->digest_info; 387 int err; 388 unsigned int ps_end, digest_info_size = 0; 389 390 if (!ctx->key_size) 391 return -EINVAL; 392 393 if (digest_info) 394 digest_info_size = digest_info->size; 395 396 if (req->src_len + digest_info_size > ctx->key_size - 11) 397 return -EOVERFLOW; 398 399 if (req->dst_len < ctx->key_size) { 400 req->dst_len = ctx->key_size; 401 return -EOVERFLOW; 402 } 403 404 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 405 GFP_KERNEL); 406 if (!req_ctx->in_buf) 407 return -ENOMEM; 408 409 ps_end = ctx->key_size - digest_info_size - req->src_len - 2; 410 req_ctx->in_buf[0] = 0x01; 411 memset(req_ctx->in_buf + 1, 0xff, ps_end - 1); 412 req_ctx->in_buf[ps_end] = 0x00; 413 414 if (digest_info) 415 memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data, 416 digest_info->size); 417 418 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 419 ctx->key_size - 1 - req->src_len, req->src); 420 421 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 422 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 423 pkcs1pad_encrypt_sign_complete_cb, req); 424 425 /* Reuse output buffer */ 426 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 427 req->dst, ctx->key_size - 1, req->dst_len); 428 429 err = crypto_akcipher_decrypt(&req_ctx->child_req); 430 if (err != -EINPROGRESS && err != -EBUSY) 431 return pkcs1pad_encrypt_sign_complete(req, err); 432 433 return err; 434 } 435 436 static int pkcs1pad_verify_complete(struct akcipher_request *req, int err) 437 { 438 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 439 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 440 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 441 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 442 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 443 const struct rsa_asn1_template *digest_info = ictx->digest_info; 444 const unsigned int sig_size = req->src_len; 445 const unsigned int digest_size = req->dst_len; 446 unsigned int dst_len; 447 unsigned int pos; 448 u8 *out_buf; 449 450 if (err) 451 goto done; 452 453 err = -EINVAL; 454 dst_len = req_ctx->child_req.dst_len; 455 if (dst_len < ctx->key_size - 1) 456 goto done; 457 458 out_buf = req_ctx->out_buf; 459 if (dst_len == ctx->key_size) { 460 if (out_buf[0] != 0x00) 461 /* Decrypted value had no leading 0 byte */ 462 goto done; 463 464 dst_len--; 465 out_buf++; 466 } 467 468 err = -EBADMSG; 469 if (out_buf[0] != 0x01) 470 goto done; 471 472 for (pos = 1; pos < dst_len; pos++) 473 if (out_buf[pos] != 0xff) 474 break; 475 476 if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00) 477 goto done; 478 pos++; 479 480 if (digest_info) { 481 if (digest_info->size > dst_len - pos) 482 goto done; 483 if (crypto_memneq(out_buf + pos, digest_info->data, 484 digest_info->size)) 485 goto done; 486 487 pos += digest_info->size; 488 } 489 490 err = 0; 491 492 if (digest_size != dst_len - pos) { 493 err = -EKEYREJECTED; 494 req->dst_len = dst_len - pos; 495 goto done; 496 } 497 /* Extract appended digest. */ 498 sg_pcopy_to_buffer(req->src, 499 sg_nents_for_len(req->src, sig_size + digest_size), 500 req_ctx->out_buf + ctx->key_size, 501 digest_size, sig_size); 502 /* Do the actual verification step. */ 503 if (memcmp(req_ctx->out_buf + ctx->key_size, out_buf + pos, 504 digest_size) != 0) 505 err = -EKEYREJECTED; 506 done: 507 kfree_sensitive(req_ctx->out_buf); 508 509 return err; 510 } 511 512 static void pkcs1pad_verify_complete_cb( 513 struct crypto_async_request *child_async_req, int err) 514 { 515 struct akcipher_request *req = child_async_req->data; 516 struct crypto_async_request async_req; 517 518 if (err == -EINPROGRESS) 519 return; 520 521 async_req.data = req->base.data; 522 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 523 async_req.flags = child_async_req->flags; 524 req->base.complete(&async_req, pkcs1pad_verify_complete(req, err)); 525 } 526 527 /* 528 * The verify operation is here for completeness similar to the verification 529 * defined in RFC2313 section 10.2 except that block type 0 is not accepted, 530 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to 531 * retrieve the DigestInfo from a signature, instead the user is expected 532 * to call the sign operation to generate the expected signature and compare 533 * signatures instead of the message-digests. 534 */ 535 static int pkcs1pad_verify(struct akcipher_request *req) 536 { 537 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 538 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 539 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 540 const unsigned int sig_size = req->src_len; 541 const unsigned int digest_size = req->dst_len; 542 int err; 543 544 if (WARN_ON(req->dst) || WARN_ON(!digest_size) || 545 !ctx->key_size || sig_size != ctx->key_size) 546 return -EINVAL; 547 548 req_ctx->out_buf = kmalloc(ctx->key_size + digest_size, GFP_KERNEL); 549 if (!req_ctx->out_buf) 550 return -ENOMEM; 551 552 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 553 ctx->key_size, NULL); 554 555 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 556 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 557 pkcs1pad_verify_complete_cb, req); 558 559 /* Reuse input buffer, output to a new buffer */ 560 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 561 req_ctx->out_sg, sig_size, ctx->key_size); 562 563 err = crypto_akcipher_encrypt(&req_ctx->child_req); 564 if (err != -EINPROGRESS && err != -EBUSY) 565 return pkcs1pad_verify_complete(req, err); 566 567 return err; 568 } 569 570 static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm) 571 { 572 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 573 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 574 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 575 struct crypto_akcipher *child_tfm; 576 577 child_tfm = crypto_spawn_akcipher(&ictx->spawn); 578 if (IS_ERR(child_tfm)) 579 return PTR_ERR(child_tfm); 580 581 ctx->child = child_tfm; 582 return 0; 583 } 584 585 static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm) 586 { 587 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 588 589 crypto_free_akcipher(ctx->child); 590 } 591 592 static void pkcs1pad_free(struct akcipher_instance *inst) 593 { 594 struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst); 595 struct crypto_akcipher_spawn *spawn = &ctx->spawn; 596 597 crypto_drop_akcipher(spawn); 598 kfree(inst); 599 } 600 601 static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb) 602 { 603 u32 mask; 604 struct akcipher_instance *inst; 605 struct pkcs1pad_inst_ctx *ctx; 606 struct akcipher_alg *rsa_alg; 607 const char *hash_name; 608 int err; 609 610 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AKCIPHER, &mask); 611 if (err) 612 return err; 613 614 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 615 if (!inst) 616 return -ENOMEM; 617 618 ctx = akcipher_instance_ctx(inst); 619 620 err = crypto_grab_akcipher(&ctx->spawn, akcipher_crypto_instance(inst), 621 crypto_attr_alg_name(tb[1]), 0, mask); 622 if (err) 623 goto err_free_inst; 624 625 rsa_alg = crypto_spawn_akcipher_alg(&ctx->spawn); 626 627 if (strcmp(rsa_alg->base.cra_name, "rsa") != 0) { 628 err = -EINVAL; 629 goto err_free_inst; 630 } 631 632 err = -ENAMETOOLONG; 633 hash_name = crypto_attr_alg_name(tb[2]); 634 if (IS_ERR(hash_name)) { 635 if (snprintf(inst->alg.base.cra_name, 636 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", 637 rsa_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME) 638 goto err_free_inst; 639 640 if (snprintf(inst->alg.base.cra_driver_name, 641 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", 642 rsa_alg->base.cra_driver_name) >= 643 CRYPTO_MAX_ALG_NAME) 644 goto err_free_inst; 645 } else { 646 ctx->digest_info = rsa_lookup_asn1(hash_name); 647 if (!ctx->digest_info) { 648 err = -EINVAL; 649 goto err_free_inst; 650 } 651 652 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 653 "pkcs1pad(%s,%s)", rsa_alg->base.cra_name, 654 hash_name) >= CRYPTO_MAX_ALG_NAME) 655 goto err_free_inst; 656 657 if (snprintf(inst->alg.base.cra_driver_name, 658 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s,%s)", 659 rsa_alg->base.cra_driver_name, 660 hash_name) >= CRYPTO_MAX_ALG_NAME) 661 goto err_free_inst; 662 } 663 664 inst->alg.base.cra_priority = rsa_alg->base.cra_priority; 665 inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx); 666 667 inst->alg.init = pkcs1pad_init_tfm; 668 inst->alg.exit = pkcs1pad_exit_tfm; 669 670 inst->alg.encrypt = pkcs1pad_encrypt; 671 inst->alg.decrypt = pkcs1pad_decrypt; 672 inst->alg.sign = pkcs1pad_sign; 673 inst->alg.verify = pkcs1pad_verify; 674 inst->alg.set_pub_key = pkcs1pad_set_pub_key; 675 inst->alg.set_priv_key = pkcs1pad_set_priv_key; 676 inst->alg.max_size = pkcs1pad_get_max_size; 677 inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize; 678 679 inst->free = pkcs1pad_free; 680 681 err = akcipher_register_instance(tmpl, inst); 682 if (err) { 683 err_free_inst: 684 pkcs1pad_free(inst); 685 } 686 return err; 687 } 688 689 struct crypto_template rsa_pkcs1pad_tmpl = { 690 .name = "pkcs1pad", 691 .create = pkcs1pad_create, 692 .module = THIS_MODULE, 693 }; 694