1 /* 2 * RSA padding templates. 3 * 4 * Copyright (c) 2015 Intel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation; either version 2 of the License, or (at your option) 9 * any later version. 10 */ 11 12 #include <crypto/algapi.h> 13 #include <crypto/akcipher.h> 14 #include <crypto/internal/akcipher.h> 15 #include <crypto/internal/rsa.h> 16 #include <linux/err.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/random.h> 21 22 /* 23 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2]. 24 */ 25 static const u8 rsa_digest_info_md5[] = { 26 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 27 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */ 28 0x05, 0x00, 0x04, 0x10 29 }; 30 31 static const u8 rsa_digest_info_sha1[] = { 32 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 33 0x2b, 0x0e, 0x03, 0x02, 0x1a, 34 0x05, 0x00, 0x04, 0x14 35 }; 36 37 static const u8 rsa_digest_info_rmd160[] = { 38 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 39 0x2b, 0x24, 0x03, 0x02, 0x01, 40 0x05, 0x00, 0x04, 0x14 41 }; 42 43 static const u8 rsa_digest_info_sha224[] = { 44 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 45 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 46 0x05, 0x00, 0x04, 0x1c 47 }; 48 49 static const u8 rsa_digest_info_sha256[] = { 50 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 51 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 52 0x05, 0x00, 0x04, 0x20 53 }; 54 55 static const u8 rsa_digest_info_sha384[] = { 56 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 57 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 58 0x05, 0x00, 0x04, 0x30 59 }; 60 61 static const u8 rsa_digest_info_sha512[] = { 62 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 63 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 64 0x05, 0x00, 0x04, 0x40 65 }; 66 67 static const struct rsa_asn1_template { 68 const char *name; 69 const u8 *data; 70 size_t size; 71 } rsa_asn1_templates[] = { 72 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) } 73 _(md5), 74 _(sha1), 75 _(rmd160), 76 _(sha256), 77 _(sha384), 78 _(sha512), 79 _(sha224), 80 { NULL } 81 #undef _ 82 }; 83 84 static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name) 85 { 86 const struct rsa_asn1_template *p; 87 88 for (p = rsa_asn1_templates; p->name; p++) 89 if (strcmp(name, p->name) == 0) 90 return p; 91 return NULL; 92 } 93 94 struct pkcs1pad_ctx { 95 struct crypto_akcipher *child; 96 unsigned int key_size; 97 }; 98 99 struct pkcs1pad_inst_ctx { 100 struct crypto_akcipher_spawn spawn; 101 const struct rsa_asn1_template *digest_info; 102 }; 103 104 struct pkcs1pad_request { 105 struct scatterlist in_sg[2], out_sg[1]; 106 uint8_t *in_buf, *out_buf; 107 struct akcipher_request child_req; 108 }; 109 110 static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key, 111 unsigned int keylen) 112 { 113 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 114 int err; 115 116 ctx->key_size = 0; 117 118 err = crypto_akcipher_set_pub_key(ctx->child, key, keylen); 119 if (err) 120 return err; 121 122 /* Find out new modulus size from rsa implementation */ 123 err = crypto_akcipher_maxsize(ctx->child); 124 if (err > PAGE_SIZE) 125 return -ENOTSUPP; 126 127 ctx->key_size = err; 128 return 0; 129 } 130 131 static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key, 132 unsigned int keylen) 133 { 134 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 135 int err; 136 137 ctx->key_size = 0; 138 139 err = crypto_akcipher_set_priv_key(ctx->child, key, keylen); 140 if (err) 141 return err; 142 143 /* Find out new modulus size from rsa implementation */ 144 err = crypto_akcipher_maxsize(ctx->child); 145 if (err > PAGE_SIZE) 146 return -ENOTSUPP; 147 148 ctx->key_size = err; 149 return 0; 150 } 151 152 static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm) 153 { 154 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 155 156 /* 157 * The maximum destination buffer size for the encrypt/sign operations 158 * will be the same as for RSA, even though it's smaller for 159 * decrypt/verify. 160 */ 161 162 return ctx->key_size; 163 } 164 165 static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len, 166 struct scatterlist *next) 167 { 168 int nsegs = next ? 2 : 1; 169 170 sg_init_table(sg, nsegs); 171 sg_set_buf(sg, buf, len); 172 173 if (next) 174 sg_chain(sg, nsegs, next); 175 } 176 177 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err) 178 { 179 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 180 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 181 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 182 unsigned int pad_len; 183 unsigned int len; 184 u8 *out_buf; 185 186 if (err) 187 goto out; 188 189 len = req_ctx->child_req.dst_len; 190 pad_len = ctx->key_size - len; 191 192 /* Four billion to one */ 193 if (likely(!pad_len)) 194 goto out; 195 196 out_buf = kzalloc(ctx->key_size, GFP_KERNEL); 197 err = -ENOMEM; 198 if (!out_buf) 199 goto out; 200 201 sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len), 202 out_buf + pad_len, len); 203 sg_copy_from_buffer(req->dst, 204 sg_nents_for_len(req->dst, ctx->key_size), 205 out_buf, ctx->key_size); 206 kzfree(out_buf); 207 208 out: 209 req->dst_len = ctx->key_size; 210 211 kfree(req_ctx->in_buf); 212 213 return err; 214 } 215 216 static void pkcs1pad_encrypt_sign_complete_cb( 217 struct crypto_async_request *child_async_req, int err) 218 { 219 struct akcipher_request *req = child_async_req->data; 220 struct crypto_async_request async_req; 221 222 if (err == -EINPROGRESS) 223 return; 224 225 async_req.data = req->base.data; 226 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 227 async_req.flags = child_async_req->flags; 228 req->base.complete(&async_req, 229 pkcs1pad_encrypt_sign_complete(req, err)); 230 } 231 232 static int pkcs1pad_encrypt(struct akcipher_request *req) 233 { 234 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 235 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 236 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 237 int err; 238 unsigned int i, ps_end; 239 240 if (!ctx->key_size) 241 return -EINVAL; 242 243 if (req->src_len > ctx->key_size - 11) 244 return -EOVERFLOW; 245 246 if (req->dst_len < ctx->key_size) { 247 req->dst_len = ctx->key_size; 248 return -EOVERFLOW; 249 } 250 251 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 252 GFP_KERNEL); 253 if (!req_ctx->in_buf) 254 return -ENOMEM; 255 256 ps_end = ctx->key_size - req->src_len - 2; 257 req_ctx->in_buf[0] = 0x02; 258 for (i = 1; i < ps_end; i++) 259 req_ctx->in_buf[i] = 1 + prandom_u32_max(255); 260 req_ctx->in_buf[ps_end] = 0x00; 261 262 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 263 ctx->key_size - 1 - req->src_len, req->src); 264 265 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 266 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 267 pkcs1pad_encrypt_sign_complete_cb, req); 268 269 /* Reuse output buffer */ 270 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 271 req->dst, ctx->key_size - 1, req->dst_len); 272 273 err = crypto_akcipher_encrypt(&req_ctx->child_req); 274 if (err != -EINPROGRESS && err != -EBUSY) 275 return pkcs1pad_encrypt_sign_complete(req, err); 276 277 return err; 278 } 279 280 static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err) 281 { 282 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 283 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 284 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 285 unsigned int dst_len; 286 unsigned int pos; 287 u8 *out_buf; 288 289 if (err) 290 goto done; 291 292 err = -EINVAL; 293 dst_len = req_ctx->child_req.dst_len; 294 if (dst_len < ctx->key_size - 1) 295 goto done; 296 297 out_buf = req_ctx->out_buf; 298 if (dst_len == ctx->key_size) { 299 if (out_buf[0] != 0x00) 300 /* Decrypted value had no leading 0 byte */ 301 goto done; 302 303 dst_len--; 304 out_buf++; 305 } 306 307 if (out_buf[0] != 0x02) 308 goto done; 309 310 for (pos = 1; pos < dst_len; pos++) 311 if (out_buf[pos] == 0x00) 312 break; 313 if (pos < 9 || pos == dst_len) 314 goto done; 315 pos++; 316 317 err = 0; 318 319 if (req->dst_len < dst_len - pos) 320 err = -EOVERFLOW; 321 req->dst_len = dst_len - pos; 322 323 if (!err) 324 sg_copy_from_buffer(req->dst, 325 sg_nents_for_len(req->dst, req->dst_len), 326 out_buf + pos, req->dst_len); 327 328 done: 329 kzfree(req_ctx->out_buf); 330 331 return err; 332 } 333 334 static void pkcs1pad_decrypt_complete_cb( 335 struct crypto_async_request *child_async_req, int err) 336 { 337 struct akcipher_request *req = child_async_req->data; 338 struct crypto_async_request async_req; 339 340 if (err == -EINPROGRESS) 341 return; 342 343 async_req.data = req->base.data; 344 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 345 async_req.flags = child_async_req->flags; 346 req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err)); 347 } 348 349 static int pkcs1pad_decrypt(struct akcipher_request *req) 350 { 351 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 352 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 353 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 354 int err; 355 356 if (!ctx->key_size || req->src_len != ctx->key_size) 357 return -EINVAL; 358 359 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 360 if (!req_ctx->out_buf) 361 return -ENOMEM; 362 363 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 364 ctx->key_size, NULL); 365 366 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 367 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 368 pkcs1pad_decrypt_complete_cb, req); 369 370 /* Reuse input buffer, output to a new buffer */ 371 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 372 req_ctx->out_sg, req->src_len, 373 ctx->key_size); 374 375 err = crypto_akcipher_decrypt(&req_ctx->child_req); 376 if (err != -EINPROGRESS && err != -EBUSY) 377 return pkcs1pad_decrypt_complete(req, err); 378 379 return err; 380 } 381 382 static int pkcs1pad_sign(struct akcipher_request *req) 383 { 384 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 385 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 386 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 387 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 388 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 389 const struct rsa_asn1_template *digest_info = ictx->digest_info; 390 int err; 391 unsigned int ps_end, digest_size = 0; 392 393 if (!ctx->key_size) 394 return -EINVAL; 395 396 if (digest_info) 397 digest_size = digest_info->size; 398 399 if (req->src_len + digest_size > ctx->key_size - 11) 400 return -EOVERFLOW; 401 402 if (req->dst_len < ctx->key_size) { 403 req->dst_len = ctx->key_size; 404 return -EOVERFLOW; 405 } 406 407 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 408 GFP_KERNEL); 409 if (!req_ctx->in_buf) 410 return -ENOMEM; 411 412 ps_end = ctx->key_size - digest_size - req->src_len - 2; 413 req_ctx->in_buf[0] = 0x01; 414 memset(req_ctx->in_buf + 1, 0xff, ps_end - 1); 415 req_ctx->in_buf[ps_end] = 0x00; 416 417 if (digest_info) 418 memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data, 419 digest_info->size); 420 421 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 422 ctx->key_size - 1 - req->src_len, req->src); 423 424 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 425 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 426 pkcs1pad_encrypt_sign_complete_cb, req); 427 428 /* Reuse output buffer */ 429 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 430 req->dst, ctx->key_size - 1, req->dst_len); 431 432 err = crypto_akcipher_decrypt(&req_ctx->child_req); 433 if (err != -EINPROGRESS && err != -EBUSY) 434 return pkcs1pad_encrypt_sign_complete(req, err); 435 436 return err; 437 } 438 439 static int pkcs1pad_verify_complete(struct akcipher_request *req, int err) 440 { 441 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 442 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 443 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 444 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 445 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 446 const struct rsa_asn1_template *digest_info = ictx->digest_info; 447 unsigned int dst_len; 448 unsigned int pos; 449 u8 *out_buf; 450 451 if (err) 452 goto done; 453 454 err = -EINVAL; 455 dst_len = req_ctx->child_req.dst_len; 456 if (dst_len < ctx->key_size - 1) 457 goto done; 458 459 out_buf = req_ctx->out_buf; 460 if (dst_len == ctx->key_size) { 461 if (out_buf[0] != 0x00) 462 /* Decrypted value had no leading 0 byte */ 463 goto done; 464 465 dst_len--; 466 out_buf++; 467 } 468 469 err = -EBADMSG; 470 if (out_buf[0] != 0x01) 471 goto done; 472 473 for (pos = 1; pos < dst_len; pos++) 474 if (out_buf[pos] != 0xff) 475 break; 476 477 if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00) 478 goto done; 479 pos++; 480 481 if (digest_info) { 482 if (crypto_memneq(out_buf + pos, digest_info->data, 483 digest_info->size)) 484 goto done; 485 486 pos += digest_info->size; 487 } 488 489 err = 0; 490 491 if (req->dst_len != dst_len - pos) { 492 err = -EKEYREJECTED; 493 req->dst_len = dst_len - pos; 494 goto done; 495 } 496 /* Extract appended digest. */ 497 sg_pcopy_to_buffer(req->src, 498 sg_nents_for_len(req->src, 499 req->src_len + req->dst_len), 500 req_ctx->out_buf + ctx->key_size, 501 req->dst_len, ctx->key_size); 502 /* Do the actual verification step. */ 503 if (memcmp(req_ctx->out_buf + ctx->key_size, out_buf + pos, 504 req->dst_len) != 0) 505 err = -EKEYREJECTED; 506 done: 507 kzfree(req_ctx->out_buf); 508 509 return err; 510 } 511 512 static void pkcs1pad_verify_complete_cb( 513 struct crypto_async_request *child_async_req, int err) 514 { 515 struct akcipher_request *req = child_async_req->data; 516 struct crypto_async_request async_req; 517 518 if (err == -EINPROGRESS) 519 return; 520 521 async_req.data = req->base.data; 522 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 523 async_req.flags = child_async_req->flags; 524 req->base.complete(&async_req, pkcs1pad_verify_complete(req, err)); 525 } 526 527 /* 528 * The verify operation is here for completeness similar to the verification 529 * defined in RFC2313 section 10.2 except that block type 0 is not accepted, 530 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to 531 * retrieve the DigestInfo from a signature, instead the user is expected 532 * to call the sign operation to generate the expected signature and compare 533 * signatures instead of the message-digests. 534 */ 535 static int pkcs1pad_verify(struct akcipher_request *req) 536 { 537 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 538 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 539 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 540 int err; 541 542 if (WARN_ON(req->dst) || 543 WARN_ON(!req->dst_len) || 544 !ctx->key_size || req->src_len < ctx->key_size) 545 return -EINVAL; 546 547 req_ctx->out_buf = kmalloc(ctx->key_size + req->dst_len, GFP_KERNEL); 548 if (!req_ctx->out_buf) 549 return -ENOMEM; 550 551 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 552 ctx->key_size, NULL); 553 554 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 555 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 556 pkcs1pad_verify_complete_cb, req); 557 558 /* Reuse input buffer, output to a new buffer */ 559 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 560 req_ctx->out_sg, req->src_len, 561 ctx->key_size); 562 563 err = crypto_akcipher_encrypt(&req_ctx->child_req); 564 if (err != -EINPROGRESS && err != -EBUSY) 565 return pkcs1pad_verify_complete(req, err); 566 567 return err; 568 } 569 570 static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm) 571 { 572 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 573 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 574 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 575 struct crypto_akcipher *child_tfm; 576 577 child_tfm = crypto_spawn_akcipher(&ictx->spawn); 578 if (IS_ERR(child_tfm)) 579 return PTR_ERR(child_tfm); 580 581 ctx->child = child_tfm; 582 return 0; 583 } 584 585 static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm) 586 { 587 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 588 589 crypto_free_akcipher(ctx->child); 590 } 591 592 static void pkcs1pad_free(struct akcipher_instance *inst) 593 { 594 struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst); 595 struct crypto_akcipher_spawn *spawn = &ctx->spawn; 596 597 crypto_drop_akcipher(spawn); 598 kfree(inst); 599 } 600 601 static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb) 602 { 603 const struct rsa_asn1_template *digest_info; 604 struct crypto_attr_type *algt; 605 struct akcipher_instance *inst; 606 struct pkcs1pad_inst_ctx *ctx; 607 struct crypto_akcipher_spawn *spawn; 608 struct akcipher_alg *rsa_alg; 609 const char *rsa_alg_name; 610 const char *hash_name; 611 int err; 612 613 algt = crypto_get_attr_type(tb); 614 if (IS_ERR(algt)) 615 return PTR_ERR(algt); 616 617 if ((algt->type ^ CRYPTO_ALG_TYPE_AKCIPHER) & algt->mask) 618 return -EINVAL; 619 620 rsa_alg_name = crypto_attr_alg_name(tb[1]); 621 if (IS_ERR(rsa_alg_name)) 622 return PTR_ERR(rsa_alg_name); 623 624 hash_name = crypto_attr_alg_name(tb[2]); 625 if (IS_ERR(hash_name)) 626 hash_name = NULL; 627 628 if (hash_name) { 629 digest_info = rsa_lookup_asn1(hash_name); 630 if (!digest_info) 631 return -EINVAL; 632 } else 633 digest_info = NULL; 634 635 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 636 if (!inst) 637 return -ENOMEM; 638 639 ctx = akcipher_instance_ctx(inst); 640 spawn = &ctx->spawn; 641 ctx->digest_info = digest_info; 642 643 crypto_set_spawn(&spawn->base, akcipher_crypto_instance(inst)); 644 err = crypto_grab_akcipher(spawn, rsa_alg_name, 0, 645 crypto_requires_sync(algt->type, algt->mask)); 646 if (err) 647 goto out_free_inst; 648 649 rsa_alg = crypto_spawn_akcipher_alg(spawn); 650 651 err = -ENAMETOOLONG; 652 653 if (!hash_name) { 654 if (snprintf(inst->alg.base.cra_name, 655 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", 656 rsa_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME) 657 goto out_drop_alg; 658 659 if (snprintf(inst->alg.base.cra_driver_name, 660 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", 661 rsa_alg->base.cra_driver_name) >= 662 CRYPTO_MAX_ALG_NAME) 663 goto out_drop_alg; 664 } else { 665 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 666 "pkcs1pad(%s,%s)", rsa_alg->base.cra_name, 667 hash_name) >= CRYPTO_MAX_ALG_NAME) 668 goto out_drop_alg; 669 670 if (snprintf(inst->alg.base.cra_driver_name, 671 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s,%s)", 672 rsa_alg->base.cra_driver_name, 673 hash_name) >= CRYPTO_MAX_ALG_NAME) 674 goto out_drop_alg; 675 } 676 677 inst->alg.base.cra_flags = rsa_alg->base.cra_flags & CRYPTO_ALG_ASYNC; 678 inst->alg.base.cra_priority = rsa_alg->base.cra_priority; 679 inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx); 680 681 inst->alg.init = pkcs1pad_init_tfm; 682 inst->alg.exit = pkcs1pad_exit_tfm; 683 684 inst->alg.encrypt = pkcs1pad_encrypt; 685 inst->alg.decrypt = pkcs1pad_decrypt; 686 inst->alg.sign = pkcs1pad_sign; 687 inst->alg.verify = pkcs1pad_verify; 688 inst->alg.set_pub_key = pkcs1pad_set_pub_key; 689 inst->alg.set_priv_key = pkcs1pad_set_priv_key; 690 inst->alg.max_size = pkcs1pad_get_max_size; 691 inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize; 692 693 inst->free = pkcs1pad_free; 694 695 err = akcipher_register_instance(tmpl, inst); 696 if (err) 697 goto out_drop_alg; 698 699 return 0; 700 701 out_drop_alg: 702 crypto_drop_akcipher(spawn); 703 out_free_inst: 704 kfree(inst); 705 return err; 706 } 707 708 struct crypto_template rsa_pkcs1pad_tmpl = { 709 .name = "pkcs1pad", 710 .create = pkcs1pad_create, 711 .module = THIS_MODULE, 712 }; 713