1 /* 2 * RSA padding templates. 3 * 4 * Copyright (c) 2015 Intel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation; either version 2 of the License, or (at your option) 9 * any later version. 10 */ 11 12 #include <crypto/algapi.h> 13 #include <crypto/akcipher.h> 14 #include <crypto/internal/akcipher.h> 15 #include <linux/err.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/random.h> 20 21 /* 22 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2]. 23 */ 24 static const u8 rsa_digest_info_md5[] = { 25 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 26 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */ 27 0x05, 0x00, 0x04, 0x10 28 }; 29 30 static const u8 rsa_digest_info_sha1[] = { 31 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 32 0x2b, 0x0e, 0x03, 0x02, 0x1a, 33 0x05, 0x00, 0x04, 0x14 34 }; 35 36 static const u8 rsa_digest_info_rmd160[] = { 37 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 38 0x2b, 0x24, 0x03, 0x02, 0x01, 39 0x05, 0x00, 0x04, 0x14 40 }; 41 42 static const u8 rsa_digest_info_sha224[] = { 43 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 44 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 45 0x05, 0x00, 0x04, 0x1c 46 }; 47 48 static const u8 rsa_digest_info_sha256[] = { 49 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 50 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 51 0x05, 0x00, 0x04, 0x20 52 }; 53 54 static const u8 rsa_digest_info_sha384[] = { 55 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 56 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 57 0x05, 0x00, 0x04, 0x30 58 }; 59 60 static const u8 rsa_digest_info_sha512[] = { 61 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 62 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 63 0x05, 0x00, 0x04, 0x40 64 }; 65 66 static const struct rsa_asn1_template { 67 const char *name; 68 const u8 *data; 69 size_t size; 70 } rsa_asn1_templates[] = { 71 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) } 72 _(md5), 73 _(sha1), 74 _(rmd160), 75 _(sha256), 76 _(sha384), 77 _(sha512), 78 _(sha224), 79 { NULL } 80 #undef _ 81 }; 82 83 static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name) 84 { 85 const struct rsa_asn1_template *p; 86 87 for (p = rsa_asn1_templates; p->name; p++) 88 if (strcmp(name, p->name) == 0) 89 return p; 90 return NULL; 91 } 92 93 struct pkcs1pad_ctx { 94 struct crypto_akcipher *child; 95 unsigned int key_size; 96 }; 97 98 struct pkcs1pad_inst_ctx { 99 struct crypto_akcipher_spawn spawn; 100 const struct rsa_asn1_template *digest_info; 101 }; 102 103 struct pkcs1pad_request { 104 struct scatterlist in_sg[2], out_sg[1]; 105 uint8_t *in_buf, *out_buf; 106 struct akcipher_request child_req; 107 }; 108 109 static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key, 110 unsigned int keylen) 111 { 112 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 113 int err; 114 115 ctx->key_size = 0; 116 117 err = crypto_akcipher_set_pub_key(ctx->child, key, keylen); 118 if (err) 119 return err; 120 121 /* Find out new modulus size from rsa implementation */ 122 err = crypto_akcipher_maxsize(ctx->child); 123 if (err > PAGE_SIZE) 124 return -ENOTSUPP; 125 126 ctx->key_size = err; 127 return 0; 128 } 129 130 static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key, 131 unsigned int keylen) 132 { 133 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 134 int err; 135 136 ctx->key_size = 0; 137 138 err = crypto_akcipher_set_priv_key(ctx->child, key, keylen); 139 if (err) 140 return err; 141 142 /* Find out new modulus size from rsa implementation */ 143 err = crypto_akcipher_maxsize(ctx->child); 144 if (err > PAGE_SIZE) 145 return -ENOTSUPP; 146 147 ctx->key_size = err; 148 return 0; 149 } 150 151 static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm) 152 { 153 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 154 155 /* 156 * The maximum destination buffer size for the encrypt/sign operations 157 * will be the same as for RSA, even though it's smaller for 158 * decrypt/verify. 159 */ 160 161 return ctx->key_size; 162 } 163 164 static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len, 165 struct scatterlist *next) 166 { 167 int nsegs = next ? 2 : 1; 168 169 sg_init_table(sg, nsegs); 170 sg_set_buf(sg, buf, len); 171 172 if (next) 173 sg_chain(sg, nsegs, next); 174 } 175 176 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err) 177 { 178 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 179 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 180 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 181 unsigned int pad_len; 182 unsigned int len; 183 u8 *out_buf; 184 185 if (err) 186 goto out; 187 188 len = req_ctx->child_req.dst_len; 189 pad_len = ctx->key_size - len; 190 191 /* Four billion to one */ 192 if (likely(!pad_len)) 193 goto out; 194 195 out_buf = kzalloc(ctx->key_size, GFP_ATOMIC); 196 err = -ENOMEM; 197 if (!out_buf) 198 goto out; 199 200 sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len), 201 out_buf + pad_len, len); 202 sg_copy_from_buffer(req->dst, 203 sg_nents_for_len(req->dst, ctx->key_size), 204 out_buf, ctx->key_size); 205 kzfree(out_buf); 206 207 out: 208 req->dst_len = ctx->key_size; 209 210 kfree(req_ctx->in_buf); 211 212 return err; 213 } 214 215 static void pkcs1pad_encrypt_sign_complete_cb( 216 struct crypto_async_request *child_async_req, int err) 217 { 218 struct akcipher_request *req = child_async_req->data; 219 struct crypto_async_request async_req; 220 221 if (err == -EINPROGRESS) 222 return; 223 224 async_req.data = req->base.data; 225 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 226 async_req.flags = child_async_req->flags; 227 req->base.complete(&async_req, 228 pkcs1pad_encrypt_sign_complete(req, err)); 229 } 230 231 static int pkcs1pad_encrypt(struct akcipher_request *req) 232 { 233 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 234 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 235 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 236 int err; 237 unsigned int i, ps_end; 238 239 if (!ctx->key_size) 240 return -EINVAL; 241 242 if (req->src_len > ctx->key_size - 11) 243 return -EOVERFLOW; 244 245 if (req->dst_len < ctx->key_size) { 246 req->dst_len = ctx->key_size; 247 return -EOVERFLOW; 248 } 249 250 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 251 GFP_KERNEL); 252 if (!req_ctx->in_buf) 253 return -ENOMEM; 254 255 ps_end = ctx->key_size - req->src_len - 2; 256 req_ctx->in_buf[0] = 0x02; 257 for (i = 1; i < ps_end; i++) 258 req_ctx->in_buf[i] = 1 + prandom_u32_max(255); 259 req_ctx->in_buf[ps_end] = 0x00; 260 261 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 262 ctx->key_size - 1 - req->src_len, req->src); 263 264 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 265 if (!req_ctx->out_buf) { 266 kfree(req_ctx->in_buf); 267 return -ENOMEM; 268 } 269 270 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 271 ctx->key_size, NULL); 272 273 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 274 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 275 pkcs1pad_encrypt_sign_complete_cb, req); 276 277 /* Reuse output buffer */ 278 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 279 req->dst, ctx->key_size - 1, req->dst_len); 280 281 err = crypto_akcipher_encrypt(&req_ctx->child_req); 282 if (err != -EINPROGRESS && err != -EBUSY) 283 return pkcs1pad_encrypt_sign_complete(req, err); 284 285 return err; 286 } 287 288 static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err) 289 { 290 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 291 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 292 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 293 unsigned int dst_len; 294 unsigned int pos; 295 u8 *out_buf; 296 297 if (err) 298 goto done; 299 300 err = -EINVAL; 301 dst_len = req_ctx->child_req.dst_len; 302 if (dst_len < ctx->key_size - 1) 303 goto done; 304 305 out_buf = req_ctx->out_buf; 306 if (dst_len == ctx->key_size) { 307 if (out_buf[0] != 0x00) 308 /* Decrypted value had no leading 0 byte */ 309 goto done; 310 311 dst_len--; 312 out_buf++; 313 } 314 315 if (out_buf[0] != 0x02) 316 goto done; 317 318 for (pos = 1; pos < dst_len; pos++) 319 if (out_buf[pos] == 0x00) 320 break; 321 if (pos < 9 || pos == dst_len) 322 goto done; 323 pos++; 324 325 err = 0; 326 327 if (req->dst_len < dst_len - pos) 328 err = -EOVERFLOW; 329 req->dst_len = dst_len - pos; 330 331 if (!err) 332 sg_copy_from_buffer(req->dst, 333 sg_nents_for_len(req->dst, req->dst_len), 334 out_buf + pos, req->dst_len); 335 336 done: 337 kzfree(req_ctx->out_buf); 338 339 return err; 340 } 341 342 static void pkcs1pad_decrypt_complete_cb( 343 struct crypto_async_request *child_async_req, int err) 344 { 345 struct akcipher_request *req = child_async_req->data; 346 struct crypto_async_request async_req; 347 348 if (err == -EINPROGRESS) 349 return; 350 351 async_req.data = req->base.data; 352 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 353 async_req.flags = child_async_req->flags; 354 req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err)); 355 } 356 357 static int pkcs1pad_decrypt(struct akcipher_request *req) 358 { 359 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 360 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 361 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 362 int err; 363 364 if (!ctx->key_size || req->src_len != ctx->key_size) 365 return -EINVAL; 366 367 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 368 if (!req_ctx->out_buf) 369 return -ENOMEM; 370 371 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 372 ctx->key_size, NULL); 373 374 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 375 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 376 pkcs1pad_decrypt_complete_cb, req); 377 378 /* Reuse input buffer, output to a new buffer */ 379 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 380 req_ctx->out_sg, req->src_len, 381 ctx->key_size); 382 383 err = crypto_akcipher_decrypt(&req_ctx->child_req); 384 if (err != -EINPROGRESS && err != -EBUSY) 385 return pkcs1pad_decrypt_complete(req, err); 386 387 return err; 388 } 389 390 static int pkcs1pad_sign(struct akcipher_request *req) 391 { 392 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 393 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 394 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 395 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 396 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 397 const struct rsa_asn1_template *digest_info = ictx->digest_info; 398 int err; 399 unsigned int ps_end, digest_size = 0; 400 401 if (!ctx->key_size) 402 return -EINVAL; 403 404 digest_size = digest_info->size; 405 406 if (req->src_len + digest_size > ctx->key_size - 11) 407 return -EOVERFLOW; 408 409 if (req->dst_len < ctx->key_size) { 410 req->dst_len = ctx->key_size; 411 return -EOVERFLOW; 412 } 413 414 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 415 GFP_KERNEL); 416 if (!req_ctx->in_buf) 417 return -ENOMEM; 418 419 ps_end = ctx->key_size - digest_size - req->src_len - 2; 420 req_ctx->in_buf[0] = 0x01; 421 memset(req_ctx->in_buf + 1, 0xff, ps_end - 1); 422 req_ctx->in_buf[ps_end] = 0x00; 423 424 memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data, 425 digest_info->size); 426 427 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 428 ctx->key_size - 1 - req->src_len, req->src); 429 430 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 431 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 432 pkcs1pad_encrypt_sign_complete_cb, req); 433 434 /* Reuse output buffer */ 435 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 436 req->dst, ctx->key_size - 1, req->dst_len); 437 438 err = crypto_akcipher_sign(&req_ctx->child_req); 439 if (err != -EINPROGRESS && err != -EBUSY) 440 return pkcs1pad_encrypt_sign_complete(req, err); 441 442 return err; 443 } 444 445 static int pkcs1pad_verify_complete(struct akcipher_request *req, int err) 446 { 447 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 448 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 449 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 450 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 451 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 452 const struct rsa_asn1_template *digest_info = ictx->digest_info; 453 unsigned int dst_len; 454 unsigned int pos; 455 u8 *out_buf; 456 457 if (err) 458 goto done; 459 460 err = -EINVAL; 461 dst_len = req_ctx->child_req.dst_len; 462 if (dst_len < ctx->key_size - 1) 463 goto done; 464 465 out_buf = req_ctx->out_buf; 466 if (dst_len == ctx->key_size) { 467 if (out_buf[0] != 0x00) 468 /* Decrypted value had no leading 0 byte */ 469 goto done; 470 471 dst_len--; 472 out_buf++; 473 } 474 475 err = -EBADMSG; 476 if (out_buf[0] != 0x01) 477 goto done; 478 479 for (pos = 1; pos < dst_len; pos++) 480 if (out_buf[pos] != 0xff) 481 break; 482 483 if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00) 484 goto done; 485 pos++; 486 487 if (crypto_memneq(out_buf + pos, digest_info->data, digest_info->size)) 488 goto done; 489 490 pos += digest_info->size; 491 492 err = 0; 493 494 if (req->dst_len < dst_len - pos) 495 err = -EOVERFLOW; 496 req->dst_len = dst_len - pos; 497 498 if (!err) 499 sg_copy_from_buffer(req->dst, 500 sg_nents_for_len(req->dst, req->dst_len), 501 out_buf + pos, req->dst_len); 502 done: 503 kzfree(req_ctx->out_buf); 504 505 return err; 506 } 507 508 static void pkcs1pad_verify_complete_cb( 509 struct crypto_async_request *child_async_req, int err) 510 { 511 struct akcipher_request *req = child_async_req->data; 512 struct crypto_async_request async_req; 513 514 if (err == -EINPROGRESS) 515 return; 516 517 async_req.data = req->base.data; 518 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 519 async_req.flags = child_async_req->flags; 520 req->base.complete(&async_req, pkcs1pad_verify_complete(req, err)); 521 } 522 523 /* 524 * The verify operation is here for completeness similar to the verification 525 * defined in RFC2313 section 10.2 except that block type 0 is not accepted, 526 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to 527 * retrieve the DigestInfo from a signature, instead the user is expected 528 * to call the sign operation to generate the expected signature and compare 529 * signatures instead of the message-digests. 530 */ 531 static int pkcs1pad_verify(struct akcipher_request *req) 532 { 533 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 534 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 535 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 536 int err; 537 538 if (!ctx->key_size || req->src_len < ctx->key_size) 539 return -EINVAL; 540 541 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 542 if (!req_ctx->out_buf) 543 return -ENOMEM; 544 545 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 546 ctx->key_size, NULL); 547 548 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 549 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 550 pkcs1pad_verify_complete_cb, req); 551 552 /* Reuse input buffer, output to a new buffer */ 553 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 554 req_ctx->out_sg, req->src_len, 555 ctx->key_size); 556 557 err = crypto_akcipher_verify(&req_ctx->child_req); 558 if (err != -EINPROGRESS && err != -EBUSY) 559 return pkcs1pad_verify_complete(req, err); 560 561 return err; 562 } 563 564 static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm) 565 { 566 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 567 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 568 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 569 struct crypto_akcipher *child_tfm; 570 571 child_tfm = crypto_spawn_akcipher(&ictx->spawn); 572 if (IS_ERR(child_tfm)) 573 return PTR_ERR(child_tfm); 574 575 ctx->child = child_tfm; 576 return 0; 577 } 578 579 static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm) 580 { 581 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 582 583 crypto_free_akcipher(ctx->child); 584 } 585 586 static void pkcs1pad_free(struct akcipher_instance *inst) 587 { 588 struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst); 589 struct crypto_akcipher_spawn *spawn = &ctx->spawn; 590 591 crypto_drop_akcipher(spawn); 592 kfree(inst); 593 } 594 595 static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb) 596 { 597 const struct rsa_asn1_template *digest_info; 598 struct crypto_attr_type *algt; 599 struct akcipher_instance *inst; 600 struct pkcs1pad_inst_ctx *ctx; 601 struct crypto_akcipher_spawn *spawn; 602 struct akcipher_alg *rsa_alg; 603 const char *rsa_alg_name; 604 const char *hash_name; 605 int err; 606 607 algt = crypto_get_attr_type(tb); 608 if (IS_ERR(algt)) 609 return PTR_ERR(algt); 610 611 if ((algt->type ^ CRYPTO_ALG_TYPE_AKCIPHER) & algt->mask) 612 return -EINVAL; 613 614 rsa_alg_name = crypto_attr_alg_name(tb[1]); 615 if (IS_ERR(rsa_alg_name)) 616 return PTR_ERR(rsa_alg_name); 617 618 hash_name = crypto_attr_alg_name(tb[2]); 619 if (IS_ERR(hash_name)) 620 return PTR_ERR(hash_name); 621 622 digest_info = rsa_lookup_asn1(hash_name); 623 if (!digest_info) 624 return -EINVAL; 625 626 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 627 if (!inst) 628 return -ENOMEM; 629 630 ctx = akcipher_instance_ctx(inst); 631 spawn = &ctx->spawn; 632 ctx->digest_info = digest_info; 633 634 crypto_set_spawn(&spawn->base, akcipher_crypto_instance(inst)); 635 err = crypto_grab_akcipher(spawn, rsa_alg_name, 0, 636 crypto_requires_sync(algt->type, algt->mask)); 637 if (err) 638 goto out_free_inst; 639 640 rsa_alg = crypto_spawn_akcipher_alg(spawn); 641 642 err = -ENAMETOOLONG; 643 644 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 645 "pkcs1pad(%s,%s)", rsa_alg->base.cra_name, hash_name) >= 646 CRYPTO_MAX_ALG_NAME || 647 snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, 648 "pkcs1pad(%s,%s)", 649 rsa_alg->base.cra_driver_name, hash_name) >= 650 CRYPTO_MAX_ALG_NAME) 651 goto out_drop_alg; 652 653 inst->alg.base.cra_flags = rsa_alg->base.cra_flags & CRYPTO_ALG_ASYNC; 654 inst->alg.base.cra_priority = rsa_alg->base.cra_priority; 655 inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx); 656 657 inst->alg.init = pkcs1pad_init_tfm; 658 inst->alg.exit = pkcs1pad_exit_tfm; 659 660 inst->alg.encrypt = pkcs1pad_encrypt; 661 inst->alg.decrypt = pkcs1pad_decrypt; 662 inst->alg.sign = pkcs1pad_sign; 663 inst->alg.verify = pkcs1pad_verify; 664 inst->alg.set_pub_key = pkcs1pad_set_pub_key; 665 inst->alg.set_priv_key = pkcs1pad_set_priv_key; 666 inst->alg.max_size = pkcs1pad_get_max_size; 667 inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize; 668 669 inst->free = pkcs1pad_free; 670 671 err = akcipher_register_instance(tmpl, inst); 672 if (err) 673 goto out_drop_alg; 674 675 return 0; 676 677 out_drop_alg: 678 crypto_drop_akcipher(spawn); 679 out_free_inst: 680 kfree(inst); 681 return err; 682 } 683 684 struct crypto_template rsa_pkcs1pad_tmpl = { 685 .name = "pkcs1pad", 686 .create = pkcs1pad_create, 687 .module = THIS_MODULE, 688 }; 689