1 /* 2 * RSA padding templates. 3 * 4 * Copyright (c) 2015 Intel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation; either version 2 of the License, or (at your option) 9 * any later version. 10 */ 11 12 #include <crypto/algapi.h> 13 #include <crypto/akcipher.h> 14 #include <crypto/internal/akcipher.h> 15 #include <linux/err.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/random.h> 20 21 /* 22 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2]. 23 */ 24 static const u8 rsa_digest_info_md5[] = { 25 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 26 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */ 27 0x05, 0x00, 0x04, 0x10 28 }; 29 30 static const u8 rsa_digest_info_sha1[] = { 31 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 32 0x2b, 0x0e, 0x03, 0x02, 0x1a, 33 0x05, 0x00, 0x04, 0x14 34 }; 35 36 static const u8 rsa_digest_info_rmd160[] = { 37 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 38 0x2b, 0x24, 0x03, 0x02, 0x01, 39 0x05, 0x00, 0x04, 0x14 40 }; 41 42 static const u8 rsa_digest_info_sha224[] = { 43 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 44 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 45 0x05, 0x00, 0x04, 0x1c 46 }; 47 48 static const u8 rsa_digest_info_sha256[] = { 49 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 50 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 51 0x05, 0x00, 0x04, 0x20 52 }; 53 54 static const u8 rsa_digest_info_sha384[] = { 55 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 56 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 57 0x05, 0x00, 0x04, 0x30 58 }; 59 60 static const u8 rsa_digest_info_sha512[] = { 61 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 62 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 63 0x05, 0x00, 0x04, 0x40 64 }; 65 66 static const struct rsa_asn1_template { 67 const char *name; 68 const u8 *data; 69 size_t size; 70 } rsa_asn1_templates[] = { 71 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) } 72 _(md5), 73 _(sha1), 74 _(rmd160), 75 _(sha256), 76 _(sha384), 77 _(sha512), 78 _(sha224), 79 { NULL } 80 #undef _ 81 }; 82 83 static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name) 84 { 85 const struct rsa_asn1_template *p; 86 87 for (p = rsa_asn1_templates; p->name; p++) 88 if (strcmp(name, p->name) == 0) 89 return p; 90 return NULL; 91 } 92 93 struct pkcs1pad_ctx { 94 struct crypto_akcipher *child; 95 unsigned int key_size; 96 }; 97 98 struct pkcs1pad_inst_ctx { 99 struct crypto_akcipher_spawn spawn; 100 const struct rsa_asn1_template *digest_info; 101 }; 102 103 struct pkcs1pad_request { 104 struct scatterlist in_sg[2], out_sg[1]; 105 uint8_t *in_buf, *out_buf; 106 struct akcipher_request child_req; 107 }; 108 109 static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key, 110 unsigned int keylen) 111 { 112 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 113 int err; 114 115 ctx->key_size = 0; 116 117 err = crypto_akcipher_set_pub_key(ctx->child, key, keylen); 118 if (err) 119 return err; 120 121 /* Find out new modulus size from rsa implementation */ 122 err = crypto_akcipher_maxsize(ctx->child); 123 if (err > PAGE_SIZE) 124 return -ENOTSUPP; 125 126 ctx->key_size = err; 127 return 0; 128 } 129 130 static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key, 131 unsigned int keylen) 132 { 133 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 134 int err; 135 136 ctx->key_size = 0; 137 138 err = crypto_akcipher_set_priv_key(ctx->child, key, keylen); 139 if (err) 140 return err; 141 142 /* Find out new modulus size from rsa implementation */ 143 err = crypto_akcipher_maxsize(ctx->child); 144 if (err > PAGE_SIZE) 145 return -ENOTSUPP; 146 147 ctx->key_size = err; 148 return 0; 149 } 150 151 static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm) 152 { 153 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 154 155 /* 156 * The maximum destination buffer size for the encrypt/sign operations 157 * will be the same as for RSA, even though it's smaller for 158 * decrypt/verify. 159 */ 160 161 return ctx->key_size; 162 } 163 164 static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len, 165 struct scatterlist *next) 166 { 167 int nsegs = next ? 2 : 1; 168 169 sg_init_table(sg, nsegs); 170 sg_set_buf(sg, buf, len); 171 172 if (next) 173 sg_chain(sg, nsegs, next); 174 } 175 176 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err) 177 { 178 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 179 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 180 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 181 unsigned int pad_len; 182 unsigned int len; 183 u8 *out_buf; 184 185 if (err) 186 goto out; 187 188 len = req_ctx->child_req.dst_len; 189 pad_len = ctx->key_size - len; 190 191 /* Four billion to one */ 192 if (likely(!pad_len)) 193 goto out; 194 195 out_buf = kzalloc(ctx->key_size, GFP_ATOMIC); 196 err = -ENOMEM; 197 if (!out_buf) 198 goto out; 199 200 sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len), 201 out_buf + pad_len, len); 202 sg_copy_from_buffer(req->dst, 203 sg_nents_for_len(req->dst, ctx->key_size), 204 out_buf, ctx->key_size); 205 kzfree(out_buf); 206 207 out: 208 req->dst_len = ctx->key_size; 209 210 kfree(req_ctx->in_buf); 211 212 return err; 213 } 214 215 static void pkcs1pad_encrypt_sign_complete_cb( 216 struct crypto_async_request *child_async_req, int err) 217 { 218 struct akcipher_request *req = child_async_req->data; 219 struct crypto_async_request async_req; 220 221 if (err == -EINPROGRESS) 222 return; 223 224 async_req.data = req->base.data; 225 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 226 async_req.flags = child_async_req->flags; 227 req->base.complete(&async_req, 228 pkcs1pad_encrypt_sign_complete(req, err)); 229 } 230 231 static int pkcs1pad_encrypt(struct akcipher_request *req) 232 { 233 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 234 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 235 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 236 int err; 237 unsigned int i, ps_end; 238 239 if (!ctx->key_size) 240 return -EINVAL; 241 242 if (req->src_len > ctx->key_size - 11) 243 return -EOVERFLOW; 244 245 if (req->dst_len < ctx->key_size) { 246 req->dst_len = ctx->key_size; 247 return -EOVERFLOW; 248 } 249 250 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 251 GFP_KERNEL); 252 if (!req_ctx->in_buf) 253 return -ENOMEM; 254 255 ps_end = ctx->key_size - req->src_len - 2; 256 req_ctx->in_buf[0] = 0x02; 257 for (i = 1; i < ps_end; i++) 258 req_ctx->in_buf[i] = 1 + prandom_u32_max(255); 259 req_ctx->in_buf[ps_end] = 0x00; 260 261 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 262 ctx->key_size - 1 - req->src_len, req->src); 263 264 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 265 if (!req_ctx->out_buf) { 266 kfree(req_ctx->in_buf); 267 return -ENOMEM; 268 } 269 270 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 271 ctx->key_size, NULL); 272 273 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 274 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 275 pkcs1pad_encrypt_sign_complete_cb, req); 276 277 /* Reuse output buffer */ 278 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 279 req->dst, ctx->key_size - 1, req->dst_len); 280 281 err = crypto_akcipher_encrypt(&req_ctx->child_req); 282 if (err != -EINPROGRESS && 283 (err != -EBUSY || 284 !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) 285 return pkcs1pad_encrypt_sign_complete(req, err); 286 287 return err; 288 } 289 290 static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err) 291 { 292 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 293 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 294 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 295 unsigned int dst_len; 296 unsigned int pos; 297 u8 *out_buf; 298 299 if (err) 300 goto done; 301 302 err = -EINVAL; 303 dst_len = req_ctx->child_req.dst_len; 304 if (dst_len < ctx->key_size - 1) 305 goto done; 306 307 out_buf = req_ctx->out_buf; 308 if (dst_len == ctx->key_size) { 309 if (out_buf[0] != 0x00) 310 /* Decrypted value had no leading 0 byte */ 311 goto done; 312 313 dst_len--; 314 out_buf++; 315 } 316 317 if (out_buf[0] != 0x02) 318 goto done; 319 320 for (pos = 1; pos < dst_len; pos++) 321 if (out_buf[pos] == 0x00) 322 break; 323 if (pos < 9 || pos == dst_len) 324 goto done; 325 pos++; 326 327 err = 0; 328 329 if (req->dst_len < dst_len - pos) 330 err = -EOVERFLOW; 331 req->dst_len = dst_len - pos; 332 333 if (!err) 334 sg_copy_from_buffer(req->dst, 335 sg_nents_for_len(req->dst, req->dst_len), 336 out_buf + pos, req->dst_len); 337 338 done: 339 kzfree(req_ctx->out_buf); 340 341 return err; 342 } 343 344 static void pkcs1pad_decrypt_complete_cb( 345 struct crypto_async_request *child_async_req, int err) 346 { 347 struct akcipher_request *req = child_async_req->data; 348 struct crypto_async_request async_req; 349 350 if (err == -EINPROGRESS) 351 return; 352 353 async_req.data = req->base.data; 354 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 355 async_req.flags = child_async_req->flags; 356 req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err)); 357 } 358 359 static int pkcs1pad_decrypt(struct akcipher_request *req) 360 { 361 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 362 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 363 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 364 int err; 365 366 if (!ctx->key_size || req->src_len != ctx->key_size) 367 return -EINVAL; 368 369 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 370 if (!req_ctx->out_buf) 371 return -ENOMEM; 372 373 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 374 ctx->key_size, NULL); 375 376 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 377 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 378 pkcs1pad_decrypt_complete_cb, req); 379 380 /* Reuse input buffer, output to a new buffer */ 381 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 382 req_ctx->out_sg, req->src_len, 383 ctx->key_size); 384 385 err = crypto_akcipher_decrypt(&req_ctx->child_req); 386 if (err != -EINPROGRESS && 387 (err != -EBUSY || 388 !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) 389 return pkcs1pad_decrypt_complete(req, err); 390 391 return err; 392 } 393 394 static int pkcs1pad_sign(struct akcipher_request *req) 395 { 396 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 397 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 398 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 399 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 400 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 401 const struct rsa_asn1_template *digest_info = ictx->digest_info; 402 int err; 403 unsigned int ps_end, digest_size = 0; 404 405 if (!ctx->key_size) 406 return -EINVAL; 407 408 digest_size = digest_info->size; 409 410 if (req->src_len + digest_size > ctx->key_size - 11) 411 return -EOVERFLOW; 412 413 if (req->dst_len < ctx->key_size) { 414 req->dst_len = ctx->key_size; 415 return -EOVERFLOW; 416 } 417 418 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 419 GFP_KERNEL); 420 if (!req_ctx->in_buf) 421 return -ENOMEM; 422 423 ps_end = ctx->key_size - digest_size - req->src_len - 2; 424 req_ctx->in_buf[0] = 0x01; 425 memset(req_ctx->in_buf + 1, 0xff, ps_end - 1); 426 req_ctx->in_buf[ps_end] = 0x00; 427 428 memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data, 429 digest_info->size); 430 431 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 432 ctx->key_size - 1 - req->src_len, req->src); 433 434 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 435 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 436 pkcs1pad_encrypt_sign_complete_cb, req); 437 438 /* Reuse output buffer */ 439 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 440 req->dst, ctx->key_size - 1, req->dst_len); 441 442 err = crypto_akcipher_sign(&req_ctx->child_req); 443 if (err != -EINPROGRESS && 444 (err != -EBUSY || 445 !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) 446 return pkcs1pad_encrypt_sign_complete(req, err); 447 448 return err; 449 } 450 451 static int pkcs1pad_verify_complete(struct akcipher_request *req, int err) 452 { 453 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 454 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 455 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 456 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 457 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 458 const struct rsa_asn1_template *digest_info = ictx->digest_info; 459 unsigned int dst_len; 460 unsigned int pos; 461 u8 *out_buf; 462 463 if (err) 464 goto done; 465 466 err = -EINVAL; 467 dst_len = req_ctx->child_req.dst_len; 468 if (dst_len < ctx->key_size - 1) 469 goto done; 470 471 out_buf = req_ctx->out_buf; 472 if (dst_len == ctx->key_size) { 473 if (out_buf[0] != 0x00) 474 /* Decrypted value had no leading 0 byte */ 475 goto done; 476 477 dst_len--; 478 out_buf++; 479 } 480 481 err = -EBADMSG; 482 if (out_buf[0] != 0x01) 483 goto done; 484 485 for (pos = 1; pos < dst_len; pos++) 486 if (out_buf[pos] != 0xff) 487 break; 488 489 if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00) 490 goto done; 491 pos++; 492 493 if (crypto_memneq(out_buf + pos, digest_info->data, digest_info->size)) 494 goto done; 495 496 pos += digest_info->size; 497 498 err = 0; 499 500 if (req->dst_len < dst_len - pos) 501 err = -EOVERFLOW; 502 req->dst_len = dst_len - pos; 503 504 if (!err) 505 sg_copy_from_buffer(req->dst, 506 sg_nents_for_len(req->dst, req->dst_len), 507 out_buf + pos, req->dst_len); 508 done: 509 kzfree(req_ctx->out_buf); 510 511 return err; 512 } 513 514 static void pkcs1pad_verify_complete_cb( 515 struct crypto_async_request *child_async_req, int err) 516 { 517 struct akcipher_request *req = child_async_req->data; 518 struct crypto_async_request async_req; 519 520 if (err == -EINPROGRESS) 521 return; 522 523 async_req.data = req->base.data; 524 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 525 async_req.flags = child_async_req->flags; 526 req->base.complete(&async_req, pkcs1pad_verify_complete(req, err)); 527 } 528 529 /* 530 * The verify operation is here for completeness similar to the verification 531 * defined in RFC2313 section 10.2 except that block type 0 is not accepted, 532 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to 533 * retrieve the DigestInfo from a signature, instead the user is expected 534 * to call the sign operation to generate the expected signature and compare 535 * signatures instead of the message-digests. 536 */ 537 static int pkcs1pad_verify(struct akcipher_request *req) 538 { 539 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 540 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 541 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 542 int err; 543 544 if (!ctx->key_size || req->src_len < ctx->key_size) 545 return -EINVAL; 546 547 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 548 if (!req_ctx->out_buf) 549 return -ENOMEM; 550 551 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 552 ctx->key_size, NULL); 553 554 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 555 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 556 pkcs1pad_verify_complete_cb, req); 557 558 /* Reuse input buffer, output to a new buffer */ 559 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 560 req_ctx->out_sg, req->src_len, 561 ctx->key_size); 562 563 err = crypto_akcipher_verify(&req_ctx->child_req); 564 if (err != -EINPROGRESS && 565 (err != -EBUSY || 566 !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) 567 return pkcs1pad_verify_complete(req, err); 568 569 return err; 570 } 571 572 static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm) 573 { 574 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 575 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 576 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 577 struct crypto_akcipher *child_tfm; 578 579 child_tfm = crypto_spawn_akcipher(&ictx->spawn); 580 if (IS_ERR(child_tfm)) 581 return PTR_ERR(child_tfm); 582 583 ctx->child = child_tfm; 584 return 0; 585 } 586 587 static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm) 588 { 589 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 590 591 crypto_free_akcipher(ctx->child); 592 } 593 594 static void pkcs1pad_free(struct akcipher_instance *inst) 595 { 596 struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst); 597 struct crypto_akcipher_spawn *spawn = &ctx->spawn; 598 599 crypto_drop_akcipher(spawn); 600 kfree(inst); 601 } 602 603 static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb) 604 { 605 const struct rsa_asn1_template *digest_info; 606 struct crypto_attr_type *algt; 607 struct akcipher_instance *inst; 608 struct pkcs1pad_inst_ctx *ctx; 609 struct crypto_akcipher_spawn *spawn; 610 struct akcipher_alg *rsa_alg; 611 const char *rsa_alg_name; 612 const char *hash_name; 613 int err; 614 615 algt = crypto_get_attr_type(tb); 616 if (IS_ERR(algt)) 617 return PTR_ERR(algt); 618 619 if ((algt->type ^ CRYPTO_ALG_TYPE_AKCIPHER) & algt->mask) 620 return -EINVAL; 621 622 rsa_alg_name = crypto_attr_alg_name(tb[1]); 623 if (IS_ERR(rsa_alg_name)) 624 return PTR_ERR(rsa_alg_name); 625 626 hash_name = crypto_attr_alg_name(tb[2]); 627 if (IS_ERR(hash_name)) 628 return PTR_ERR(hash_name); 629 630 digest_info = rsa_lookup_asn1(hash_name); 631 if (!digest_info) 632 return -EINVAL; 633 634 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 635 if (!inst) 636 return -ENOMEM; 637 638 ctx = akcipher_instance_ctx(inst); 639 spawn = &ctx->spawn; 640 ctx->digest_info = digest_info; 641 642 crypto_set_spawn(&spawn->base, akcipher_crypto_instance(inst)); 643 err = crypto_grab_akcipher(spawn, rsa_alg_name, 0, 644 crypto_requires_sync(algt->type, algt->mask)); 645 if (err) 646 goto out_free_inst; 647 648 rsa_alg = crypto_spawn_akcipher_alg(spawn); 649 650 err = -ENAMETOOLONG; 651 652 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 653 "pkcs1pad(%s,%s)", rsa_alg->base.cra_name, hash_name) >= 654 CRYPTO_MAX_ALG_NAME || 655 snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, 656 "pkcs1pad(%s,%s)", 657 rsa_alg->base.cra_driver_name, hash_name) >= 658 CRYPTO_MAX_ALG_NAME) 659 goto out_drop_alg; 660 661 inst->alg.base.cra_flags = rsa_alg->base.cra_flags & CRYPTO_ALG_ASYNC; 662 inst->alg.base.cra_priority = rsa_alg->base.cra_priority; 663 inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx); 664 665 inst->alg.init = pkcs1pad_init_tfm; 666 inst->alg.exit = pkcs1pad_exit_tfm; 667 668 inst->alg.encrypt = pkcs1pad_encrypt; 669 inst->alg.decrypt = pkcs1pad_decrypt; 670 inst->alg.sign = pkcs1pad_sign; 671 inst->alg.verify = pkcs1pad_verify; 672 inst->alg.set_pub_key = pkcs1pad_set_pub_key; 673 inst->alg.set_priv_key = pkcs1pad_set_priv_key; 674 inst->alg.max_size = pkcs1pad_get_max_size; 675 inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize; 676 677 inst->free = pkcs1pad_free; 678 679 err = akcipher_register_instance(tmpl, inst); 680 if (err) 681 goto out_drop_alg; 682 683 return 0; 684 685 out_drop_alg: 686 crypto_drop_akcipher(spawn); 687 out_free_inst: 688 kfree(inst); 689 return err; 690 } 691 692 struct crypto_template rsa_pkcs1pad_tmpl = { 693 .name = "pkcs1pad", 694 .create = pkcs1pad_create, 695 .module = THIS_MODULE, 696 }; 697