1 /* 2 * RSA padding templates. 3 * 4 * Copyright (c) 2015 Intel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation; either version 2 of the License, or (at your option) 9 * any later version. 10 */ 11 12 #include <crypto/algapi.h> 13 #include <crypto/akcipher.h> 14 #include <crypto/internal/akcipher.h> 15 #include <linux/err.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/random.h> 20 21 /* 22 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2]. 23 */ 24 static const u8 rsa_digest_info_md5[] = { 25 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 26 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */ 27 0x05, 0x00, 0x04, 0x10 28 }; 29 30 static const u8 rsa_digest_info_sha1[] = { 31 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 32 0x2b, 0x0e, 0x03, 0x02, 0x1a, 33 0x05, 0x00, 0x04, 0x14 34 }; 35 36 static const u8 rsa_digest_info_rmd160[] = { 37 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 38 0x2b, 0x24, 0x03, 0x02, 0x01, 39 0x05, 0x00, 0x04, 0x14 40 }; 41 42 static const u8 rsa_digest_info_sha224[] = { 43 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 44 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 45 0x05, 0x00, 0x04, 0x1c 46 }; 47 48 static const u8 rsa_digest_info_sha256[] = { 49 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 50 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 51 0x05, 0x00, 0x04, 0x20 52 }; 53 54 static const u8 rsa_digest_info_sha384[] = { 55 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 56 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 57 0x05, 0x00, 0x04, 0x30 58 }; 59 60 static const u8 rsa_digest_info_sha512[] = { 61 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 62 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 63 0x05, 0x00, 0x04, 0x40 64 }; 65 66 static const struct rsa_asn1_template { 67 const char *name; 68 const u8 *data; 69 size_t size; 70 } rsa_asn1_templates[] = { 71 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) } 72 _(md5), 73 _(sha1), 74 _(rmd160), 75 _(sha256), 76 _(sha384), 77 _(sha512), 78 _(sha224), 79 { NULL } 80 #undef _ 81 }; 82 83 static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name) 84 { 85 const struct rsa_asn1_template *p; 86 87 for (p = rsa_asn1_templates; p->name; p++) 88 if (strcmp(name, p->name) == 0) 89 return p; 90 return NULL; 91 } 92 93 struct pkcs1pad_ctx { 94 struct crypto_akcipher *child; 95 unsigned int key_size; 96 }; 97 98 struct pkcs1pad_inst_ctx { 99 struct crypto_akcipher_spawn spawn; 100 const struct rsa_asn1_template *digest_info; 101 }; 102 103 struct pkcs1pad_request { 104 struct scatterlist in_sg[2], out_sg[1]; 105 uint8_t *in_buf, *out_buf; 106 struct akcipher_request child_req; 107 }; 108 109 static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key, 110 unsigned int keylen) 111 { 112 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 113 int err; 114 115 ctx->key_size = 0; 116 117 err = crypto_akcipher_set_pub_key(ctx->child, key, keylen); 118 if (err) 119 return err; 120 121 /* Find out new modulus size from rsa implementation */ 122 err = crypto_akcipher_maxsize(ctx->child); 123 if (err > PAGE_SIZE) 124 return -ENOTSUPP; 125 126 ctx->key_size = err; 127 return 0; 128 } 129 130 static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key, 131 unsigned int keylen) 132 { 133 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 134 int err; 135 136 ctx->key_size = 0; 137 138 err = crypto_akcipher_set_priv_key(ctx->child, key, keylen); 139 if (err) 140 return err; 141 142 /* Find out new modulus size from rsa implementation */ 143 err = crypto_akcipher_maxsize(ctx->child); 144 if (err > PAGE_SIZE) 145 return -ENOTSUPP; 146 147 ctx->key_size = err; 148 return 0; 149 } 150 151 static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm) 152 { 153 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 154 155 /* 156 * The maximum destination buffer size for the encrypt/sign operations 157 * will be the same as for RSA, even though it's smaller for 158 * decrypt/verify. 159 */ 160 161 return ctx->key_size; 162 } 163 164 static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len, 165 struct scatterlist *next) 166 { 167 int nsegs = next ? 2 : 1; 168 169 sg_init_table(sg, nsegs); 170 sg_set_buf(sg, buf, len); 171 172 if (next) 173 sg_chain(sg, nsegs, next); 174 } 175 176 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err) 177 { 178 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 179 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 180 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 181 unsigned int pad_len; 182 unsigned int len; 183 u8 *out_buf; 184 185 if (err) 186 goto out; 187 188 len = req_ctx->child_req.dst_len; 189 pad_len = ctx->key_size - len; 190 191 /* Four billion to one */ 192 if (likely(!pad_len)) 193 goto out; 194 195 out_buf = kzalloc(ctx->key_size, GFP_KERNEL); 196 err = -ENOMEM; 197 if (!out_buf) 198 goto out; 199 200 sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len), 201 out_buf + pad_len, len); 202 sg_copy_from_buffer(req->dst, 203 sg_nents_for_len(req->dst, ctx->key_size), 204 out_buf, ctx->key_size); 205 kzfree(out_buf); 206 207 out: 208 req->dst_len = ctx->key_size; 209 210 kfree(req_ctx->in_buf); 211 212 return err; 213 } 214 215 static void pkcs1pad_encrypt_sign_complete_cb( 216 struct crypto_async_request *child_async_req, int err) 217 { 218 struct akcipher_request *req = child_async_req->data; 219 struct crypto_async_request async_req; 220 221 if (err == -EINPROGRESS) 222 return; 223 224 async_req.data = req->base.data; 225 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 226 async_req.flags = child_async_req->flags; 227 req->base.complete(&async_req, 228 pkcs1pad_encrypt_sign_complete(req, err)); 229 } 230 231 static int pkcs1pad_encrypt(struct akcipher_request *req) 232 { 233 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 234 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 235 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 236 int err; 237 unsigned int i, ps_end; 238 239 if (!ctx->key_size) 240 return -EINVAL; 241 242 if (req->src_len > ctx->key_size - 11) 243 return -EOVERFLOW; 244 245 if (req->dst_len < ctx->key_size) { 246 req->dst_len = ctx->key_size; 247 return -EOVERFLOW; 248 } 249 250 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 251 GFP_KERNEL); 252 if (!req_ctx->in_buf) 253 return -ENOMEM; 254 255 ps_end = ctx->key_size - req->src_len - 2; 256 req_ctx->in_buf[0] = 0x02; 257 for (i = 1; i < ps_end; i++) 258 req_ctx->in_buf[i] = 1 + prandom_u32_max(255); 259 req_ctx->in_buf[ps_end] = 0x00; 260 261 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 262 ctx->key_size - 1 - req->src_len, req->src); 263 264 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 265 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 266 pkcs1pad_encrypt_sign_complete_cb, req); 267 268 /* Reuse output buffer */ 269 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 270 req->dst, ctx->key_size - 1, req->dst_len); 271 272 err = crypto_akcipher_encrypt(&req_ctx->child_req); 273 if (err != -EINPROGRESS && err != -EBUSY) 274 return pkcs1pad_encrypt_sign_complete(req, err); 275 276 return err; 277 } 278 279 static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err) 280 { 281 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 282 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 283 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 284 unsigned int dst_len; 285 unsigned int pos; 286 u8 *out_buf; 287 288 if (err) 289 goto done; 290 291 err = -EINVAL; 292 dst_len = req_ctx->child_req.dst_len; 293 if (dst_len < ctx->key_size - 1) 294 goto done; 295 296 out_buf = req_ctx->out_buf; 297 if (dst_len == ctx->key_size) { 298 if (out_buf[0] != 0x00) 299 /* Decrypted value had no leading 0 byte */ 300 goto done; 301 302 dst_len--; 303 out_buf++; 304 } 305 306 if (out_buf[0] != 0x02) 307 goto done; 308 309 for (pos = 1; pos < dst_len; pos++) 310 if (out_buf[pos] == 0x00) 311 break; 312 if (pos < 9 || pos == dst_len) 313 goto done; 314 pos++; 315 316 err = 0; 317 318 if (req->dst_len < dst_len - pos) 319 err = -EOVERFLOW; 320 req->dst_len = dst_len - pos; 321 322 if (!err) 323 sg_copy_from_buffer(req->dst, 324 sg_nents_for_len(req->dst, req->dst_len), 325 out_buf + pos, req->dst_len); 326 327 done: 328 kzfree(req_ctx->out_buf); 329 330 return err; 331 } 332 333 static void pkcs1pad_decrypt_complete_cb( 334 struct crypto_async_request *child_async_req, int err) 335 { 336 struct akcipher_request *req = child_async_req->data; 337 struct crypto_async_request async_req; 338 339 if (err == -EINPROGRESS) 340 return; 341 342 async_req.data = req->base.data; 343 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 344 async_req.flags = child_async_req->flags; 345 req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err)); 346 } 347 348 static int pkcs1pad_decrypt(struct akcipher_request *req) 349 { 350 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 351 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 352 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 353 int err; 354 355 if (!ctx->key_size || req->src_len != ctx->key_size) 356 return -EINVAL; 357 358 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 359 if (!req_ctx->out_buf) 360 return -ENOMEM; 361 362 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 363 ctx->key_size, NULL); 364 365 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 366 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 367 pkcs1pad_decrypt_complete_cb, req); 368 369 /* Reuse input buffer, output to a new buffer */ 370 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 371 req_ctx->out_sg, req->src_len, 372 ctx->key_size); 373 374 err = crypto_akcipher_decrypt(&req_ctx->child_req); 375 if (err != -EINPROGRESS && err != -EBUSY) 376 return pkcs1pad_decrypt_complete(req, err); 377 378 return err; 379 } 380 381 static int pkcs1pad_sign(struct akcipher_request *req) 382 { 383 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 384 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 385 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 386 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 387 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 388 const struct rsa_asn1_template *digest_info = ictx->digest_info; 389 int err; 390 unsigned int ps_end, digest_size = 0; 391 392 if (!ctx->key_size) 393 return -EINVAL; 394 395 digest_size = digest_info->size; 396 397 if (req->src_len + digest_size > ctx->key_size - 11) 398 return -EOVERFLOW; 399 400 if (req->dst_len < ctx->key_size) { 401 req->dst_len = ctx->key_size; 402 return -EOVERFLOW; 403 } 404 405 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 406 GFP_KERNEL); 407 if (!req_ctx->in_buf) 408 return -ENOMEM; 409 410 ps_end = ctx->key_size - digest_size - req->src_len - 2; 411 req_ctx->in_buf[0] = 0x01; 412 memset(req_ctx->in_buf + 1, 0xff, ps_end - 1); 413 req_ctx->in_buf[ps_end] = 0x00; 414 415 memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data, 416 digest_info->size); 417 418 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 419 ctx->key_size - 1 - req->src_len, req->src); 420 421 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 422 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 423 pkcs1pad_encrypt_sign_complete_cb, req); 424 425 /* Reuse output buffer */ 426 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 427 req->dst, ctx->key_size - 1, req->dst_len); 428 429 err = crypto_akcipher_sign(&req_ctx->child_req); 430 if (err != -EINPROGRESS && err != -EBUSY) 431 return pkcs1pad_encrypt_sign_complete(req, err); 432 433 return err; 434 } 435 436 static int pkcs1pad_verify_complete(struct akcipher_request *req, int err) 437 { 438 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 439 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 440 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 441 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 442 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 443 const struct rsa_asn1_template *digest_info = ictx->digest_info; 444 unsigned int dst_len; 445 unsigned int pos; 446 u8 *out_buf; 447 448 if (err) 449 goto done; 450 451 err = -EINVAL; 452 dst_len = req_ctx->child_req.dst_len; 453 if (dst_len < ctx->key_size - 1) 454 goto done; 455 456 out_buf = req_ctx->out_buf; 457 if (dst_len == ctx->key_size) { 458 if (out_buf[0] != 0x00) 459 /* Decrypted value had no leading 0 byte */ 460 goto done; 461 462 dst_len--; 463 out_buf++; 464 } 465 466 err = -EBADMSG; 467 if (out_buf[0] != 0x01) 468 goto done; 469 470 for (pos = 1; pos < dst_len; pos++) 471 if (out_buf[pos] != 0xff) 472 break; 473 474 if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00) 475 goto done; 476 pos++; 477 478 if (crypto_memneq(out_buf + pos, digest_info->data, digest_info->size)) 479 goto done; 480 481 pos += digest_info->size; 482 483 err = 0; 484 485 if (req->dst_len < dst_len - pos) 486 err = -EOVERFLOW; 487 req->dst_len = dst_len - pos; 488 489 if (!err) 490 sg_copy_from_buffer(req->dst, 491 sg_nents_for_len(req->dst, req->dst_len), 492 out_buf + pos, req->dst_len); 493 done: 494 kzfree(req_ctx->out_buf); 495 496 return err; 497 } 498 499 static void pkcs1pad_verify_complete_cb( 500 struct crypto_async_request *child_async_req, int err) 501 { 502 struct akcipher_request *req = child_async_req->data; 503 struct crypto_async_request async_req; 504 505 if (err == -EINPROGRESS) 506 return; 507 508 async_req.data = req->base.data; 509 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 510 async_req.flags = child_async_req->flags; 511 req->base.complete(&async_req, pkcs1pad_verify_complete(req, err)); 512 } 513 514 /* 515 * The verify operation is here for completeness similar to the verification 516 * defined in RFC2313 section 10.2 except that block type 0 is not accepted, 517 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to 518 * retrieve the DigestInfo from a signature, instead the user is expected 519 * to call the sign operation to generate the expected signature and compare 520 * signatures instead of the message-digests. 521 */ 522 static int pkcs1pad_verify(struct akcipher_request *req) 523 { 524 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 525 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 526 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 527 int err; 528 529 if (!ctx->key_size || req->src_len < ctx->key_size) 530 return -EINVAL; 531 532 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 533 if (!req_ctx->out_buf) 534 return -ENOMEM; 535 536 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 537 ctx->key_size, NULL); 538 539 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 540 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 541 pkcs1pad_verify_complete_cb, req); 542 543 /* Reuse input buffer, output to a new buffer */ 544 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 545 req_ctx->out_sg, req->src_len, 546 ctx->key_size); 547 548 err = crypto_akcipher_verify(&req_ctx->child_req); 549 if (err != -EINPROGRESS && err != -EBUSY) 550 return pkcs1pad_verify_complete(req, err); 551 552 return err; 553 } 554 555 static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm) 556 { 557 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 558 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 559 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 560 struct crypto_akcipher *child_tfm; 561 562 child_tfm = crypto_spawn_akcipher(&ictx->spawn); 563 if (IS_ERR(child_tfm)) 564 return PTR_ERR(child_tfm); 565 566 ctx->child = child_tfm; 567 return 0; 568 } 569 570 static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm) 571 { 572 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 573 574 crypto_free_akcipher(ctx->child); 575 } 576 577 static void pkcs1pad_free(struct akcipher_instance *inst) 578 { 579 struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst); 580 struct crypto_akcipher_spawn *spawn = &ctx->spawn; 581 582 crypto_drop_akcipher(spawn); 583 kfree(inst); 584 } 585 586 static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb) 587 { 588 const struct rsa_asn1_template *digest_info; 589 struct crypto_attr_type *algt; 590 struct akcipher_instance *inst; 591 struct pkcs1pad_inst_ctx *ctx; 592 struct crypto_akcipher_spawn *spawn; 593 struct akcipher_alg *rsa_alg; 594 const char *rsa_alg_name; 595 const char *hash_name; 596 int err; 597 598 algt = crypto_get_attr_type(tb); 599 if (IS_ERR(algt)) 600 return PTR_ERR(algt); 601 602 if ((algt->type ^ CRYPTO_ALG_TYPE_AKCIPHER) & algt->mask) 603 return -EINVAL; 604 605 rsa_alg_name = crypto_attr_alg_name(tb[1]); 606 if (IS_ERR(rsa_alg_name)) 607 return PTR_ERR(rsa_alg_name); 608 609 hash_name = crypto_attr_alg_name(tb[2]); 610 if (IS_ERR(hash_name)) 611 return PTR_ERR(hash_name); 612 613 digest_info = rsa_lookup_asn1(hash_name); 614 if (!digest_info) 615 return -EINVAL; 616 617 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 618 if (!inst) 619 return -ENOMEM; 620 621 ctx = akcipher_instance_ctx(inst); 622 spawn = &ctx->spawn; 623 ctx->digest_info = digest_info; 624 625 crypto_set_spawn(&spawn->base, akcipher_crypto_instance(inst)); 626 err = crypto_grab_akcipher(spawn, rsa_alg_name, 0, 627 crypto_requires_sync(algt->type, algt->mask)); 628 if (err) 629 goto out_free_inst; 630 631 rsa_alg = crypto_spawn_akcipher_alg(spawn); 632 633 err = -ENAMETOOLONG; 634 635 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 636 "pkcs1pad(%s,%s)", rsa_alg->base.cra_name, hash_name) >= 637 CRYPTO_MAX_ALG_NAME || 638 snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, 639 "pkcs1pad(%s,%s)", 640 rsa_alg->base.cra_driver_name, hash_name) >= 641 CRYPTO_MAX_ALG_NAME) 642 goto out_drop_alg; 643 644 inst->alg.base.cra_flags = rsa_alg->base.cra_flags & CRYPTO_ALG_ASYNC; 645 inst->alg.base.cra_priority = rsa_alg->base.cra_priority; 646 inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx); 647 648 inst->alg.init = pkcs1pad_init_tfm; 649 inst->alg.exit = pkcs1pad_exit_tfm; 650 651 inst->alg.encrypt = pkcs1pad_encrypt; 652 inst->alg.decrypt = pkcs1pad_decrypt; 653 inst->alg.sign = pkcs1pad_sign; 654 inst->alg.verify = pkcs1pad_verify; 655 inst->alg.set_pub_key = pkcs1pad_set_pub_key; 656 inst->alg.set_priv_key = pkcs1pad_set_priv_key; 657 inst->alg.max_size = pkcs1pad_get_max_size; 658 inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize; 659 660 inst->free = pkcs1pad_free; 661 662 err = akcipher_register_instance(tmpl, inst); 663 if (err) 664 goto out_drop_alg; 665 666 return 0; 667 668 out_drop_alg: 669 crypto_drop_akcipher(spawn); 670 out_free_inst: 671 kfree(inst); 672 return err; 673 } 674 675 struct crypto_template rsa_pkcs1pad_tmpl = { 676 .name = "pkcs1pad", 677 .create = pkcs1pad_create, 678 .module = THIS_MODULE, 679 }; 680