xref: /openbmc/linux/crypto/lrw.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /* LRW: as defined by Cyril Guyot in
2  *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
3  *
4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based on ecb.c
7  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  */
14 /* This implementation is checked against the test vectors in the above
15  * document and by a test vector provided by Ken Buchanan at
16  * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
17  *
18  * The test vectors are included in the testing module tcrypt.[ch] */
19 
20 #include <crypto/algapi.h>
21 #include <linux/err.h>
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/slab.h>
27 
28 #include <crypto/b128ops.h>
29 #include <crypto/gf128mul.h>
30 #include <crypto/lrw.h>
31 
32 struct priv {
33 	struct crypto_cipher *child;
34 	struct lrw_table_ctx table;
35 };
36 
37 static inline void setbit128_bbe(void *b, int bit)
38 {
39 	__set_bit(bit ^ (0x80 -
40 #ifdef __BIG_ENDIAN
41 			 BITS_PER_LONG
42 #else
43 			 BITS_PER_BYTE
44 #endif
45 			), b);
46 }
47 
48 int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
49 {
50 	be128 tmp = { 0 };
51 	int i;
52 
53 	if (ctx->table)
54 		gf128mul_free_64k(ctx->table);
55 
56 	/* initialize multiplication table for Key2 */
57 	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
58 	if (!ctx->table)
59 		return -ENOMEM;
60 
61 	/* initialize optimization table */
62 	for (i = 0; i < 128; i++) {
63 		setbit128_bbe(&tmp, i);
64 		ctx->mulinc[i] = tmp;
65 		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
66 	}
67 
68 	return 0;
69 }
70 EXPORT_SYMBOL_GPL(lrw_init_table);
71 
72 void lrw_free_table(struct lrw_table_ctx *ctx)
73 {
74 	if (ctx->table)
75 		gf128mul_free_64k(ctx->table);
76 }
77 EXPORT_SYMBOL_GPL(lrw_free_table);
78 
79 static int setkey(struct crypto_tfm *parent, const u8 *key,
80 		  unsigned int keylen)
81 {
82 	struct priv *ctx = crypto_tfm_ctx(parent);
83 	struct crypto_cipher *child = ctx->child;
84 	int err, bsize = LRW_BLOCK_SIZE;
85 	const u8 *tweak = key + keylen - bsize;
86 
87 	crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
88 	crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
89 				       CRYPTO_TFM_REQ_MASK);
90 	err = crypto_cipher_setkey(child, key, keylen - bsize);
91 	if (err)
92 		return err;
93 	crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
94 				     CRYPTO_TFM_RES_MASK);
95 
96 	return lrw_init_table(&ctx->table, tweak);
97 }
98 
99 struct sinfo {
100 	be128 t;
101 	struct crypto_tfm *tfm;
102 	void (*fn)(struct crypto_tfm *, u8 *, const u8 *);
103 };
104 
105 static inline void inc(be128 *iv)
106 {
107 	be64_add_cpu(&iv->b, 1);
108 	if (!iv->b)
109 		be64_add_cpu(&iv->a, 1);
110 }
111 
112 static inline void lrw_round(struct sinfo *s, void *dst, const void *src)
113 {
114 	be128_xor(dst, &s->t, src);		/* PP <- T xor P */
115 	s->fn(s->tfm, dst, dst);		/* CC <- E(Key2,PP) */
116 	be128_xor(dst, dst, &s->t);		/* C <- T xor CC */
117 }
118 
119 /* this returns the number of consequative 1 bits starting
120  * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
121 static inline int get_index128(be128 *block)
122 {
123 	int x;
124 	__be32 *p = (__be32 *) block;
125 
126 	for (p += 3, x = 0; x < 128; p--, x += 32) {
127 		u32 val = be32_to_cpup(p);
128 
129 		if (!~val)
130 			continue;
131 
132 		return x + ffz(val);
133 	}
134 
135 	return x;
136 }
137 
138 static int crypt(struct blkcipher_desc *d,
139 		 struct blkcipher_walk *w, struct priv *ctx,
140 		 void (*fn)(struct crypto_tfm *, u8 *, const u8 *))
141 {
142 	int err;
143 	unsigned int avail;
144 	const int bs = LRW_BLOCK_SIZE;
145 	struct sinfo s = {
146 		.tfm = crypto_cipher_tfm(ctx->child),
147 		.fn = fn
148 	};
149 	be128 *iv;
150 	u8 *wsrc;
151 	u8 *wdst;
152 
153 	err = blkcipher_walk_virt(d, w);
154 	if (!(avail = w->nbytes))
155 		return err;
156 
157 	wsrc = w->src.virt.addr;
158 	wdst = w->dst.virt.addr;
159 
160 	/* calculate first value of T */
161 	iv = (be128 *)w->iv;
162 	s.t = *iv;
163 
164 	/* T <- I*Key2 */
165 	gf128mul_64k_bbe(&s.t, ctx->table.table);
166 
167 	goto first;
168 
169 	for (;;) {
170 		do {
171 			/* T <- I*Key2, using the optimization
172 			 * discussed in the specification */
173 			be128_xor(&s.t, &s.t,
174 				  &ctx->table.mulinc[get_index128(iv)]);
175 			inc(iv);
176 
177 first:
178 			lrw_round(&s, wdst, wsrc);
179 
180 			wsrc += bs;
181 			wdst += bs;
182 		} while ((avail -= bs) >= bs);
183 
184 		err = blkcipher_walk_done(d, w, avail);
185 		if (!(avail = w->nbytes))
186 			break;
187 
188 		wsrc = w->src.virt.addr;
189 		wdst = w->dst.virt.addr;
190 	}
191 
192 	return err;
193 }
194 
195 static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
196 		   struct scatterlist *src, unsigned int nbytes)
197 {
198 	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
199 	struct blkcipher_walk w;
200 
201 	blkcipher_walk_init(&w, dst, src, nbytes);
202 	return crypt(desc, &w, ctx,
203 		     crypto_cipher_alg(ctx->child)->cia_encrypt);
204 }
205 
206 static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
207 		   struct scatterlist *src, unsigned int nbytes)
208 {
209 	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
210 	struct blkcipher_walk w;
211 
212 	blkcipher_walk_init(&w, dst, src, nbytes);
213 	return crypt(desc, &w, ctx,
214 		     crypto_cipher_alg(ctx->child)->cia_decrypt);
215 }
216 
217 int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *sdst,
218 	      struct scatterlist *ssrc, unsigned int nbytes,
219 	      struct lrw_crypt_req *req)
220 {
221 	const unsigned int bsize = LRW_BLOCK_SIZE;
222 	const unsigned int max_blks = req->tbuflen / bsize;
223 	struct lrw_table_ctx *ctx = req->table_ctx;
224 	struct blkcipher_walk walk;
225 	unsigned int nblocks;
226 	be128 *iv, *src, *dst, *t;
227 	be128 *t_buf = req->tbuf;
228 	int err, i;
229 
230 	BUG_ON(max_blks < 1);
231 
232 	blkcipher_walk_init(&walk, sdst, ssrc, nbytes);
233 
234 	err = blkcipher_walk_virt(desc, &walk);
235 	nbytes = walk.nbytes;
236 	if (!nbytes)
237 		return err;
238 
239 	nblocks = min(walk.nbytes / bsize, max_blks);
240 	src = (be128 *)walk.src.virt.addr;
241 	dst = (be128 *)walk.dst.virt.addr;
242 
243 	/* calculate first value of T */
244 	iv = (be128 *)walk.iv;
245 	t_buf[0] = *iv;
246 
247 	/* T <- I*Key2 */
248 	gf128mul_64k_bbe(&t_buf[0], ctx->table);
249 
250 	i = 0;
251 	goto first;
252 
253 	for (;;) {
254 		do {
255 			for (i = 0; i < nblocks; i++) {
256 				/* T <- I*Key2, using the optimization
257 				 * discussed in the specification */
258 				be128_xor(&t_buf[i], t,
259 						&ctx->mulinc[get_index128(iv)]);
260 				inc(iv);
261 first:
262 				t = &t_buf[i];
263 
264 				/* PP <- T xor P */
265 				be128_xor(dst + i, t, src + i);
266 			}
267 
268 			/* CC <- E(Key2,PP) */
269 			req->crypt_fn(req->crypt_ctx, (u8 *)dst,
270 				      nblocks * bsize);
271 
272 			/* C <- T xor CC */
273 			for (i = 0; i < nblocks; i++)
274 				be128_xor(dst + i, dst + i, &t_buf[i]);
275 
276 			src += nblocks;
277 			dst += nblocks;
278 			nbytes -= nblocks * bsize;
279 			nblocks = min(nbytes / bsize, max_blks);
280 		} while (nblocks > 0);
281 
282 		err = blkcipher_walk_done(desc, &walk, nbytes);
283 		nbytes = walk.nbytes;
284 		if (!nbytes)
285 			break;
286 
287 		nblocks = min(nbytes / bsize, max_blks);
288 		src = (be128 *)walk.src.virt.addr;
289 		dst = (be128 *)walk.dst.virt.addr;
290 	}
291 
292 	return err;
293 }
294 EXPORT_SYMBOL_GPL(lrw_crypt);
295 
296 static int init_tfm(struct crypto_tfm *tfm)
297 {
298 	struct crypto_cipher *cipher;
299 	struct crypto_instance *inst = (void *)tfm->__crt_alg;
300 	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
301 	struct priv *ctx = crypto_tfm_ctx(tfm);
302 	u32 *flags = &tfm->crt_flags;
303 
304 	cipher = crypto_spawn_cipher(spawn);
305 	if (IS_ERR(cipher))
306 		return PTR_ERR(cipher);
307 
308 	if (crypto_cipher_blocksize(cipher) != LRW_BLOCK_SIZE) {
309 		*flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
310 		crypto_free_cipher(cipher);
311 		return -EINVAL;
312 	}
313 
314 	ctx->child = cipher;
315 	return 0;
316 }
317 
318 static void exit_tfm(struct crypto_tfm *tfm)
319 {
320 	struct priv *ctx = crypto_tfm_ctx(tfm);
321 
322 	lrw_free_table(&ctx->table);
323 	crypto_free_cipher(ctx->child);
324 }
325 
326 static struct crypto_instance *alloc(struct rtattr **tb)
327 {
328 	struct crypto_instance *inst;
329 	struct crypto_alg *alg;
330 	int err;
331 
332 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
333 	if (err)
334 		return ERR_PTR(err);
335 
336 	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
337 				  CRYPTO_ALG_TYPE_MASK);
338 	if (IS_ERR(alg))
339 		return ERR_CAST(alg);
340 
341 	inst = crypto_alloc_instance("lrw", alg);
342 	if (IS_ERR(inst))
343 		goto out_put_alg;
344 
345 	inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
346 	inst->alg.cra_priority = alg->cra_priority;
347 	inst->alg.cra_blocksize = alg->cra_blocksize;
348 
349 	if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7;
350 	else inst->alg.cra_alignmask = alg->cra_alignmask;
351 	inst->alg.cra_type = &crypto_blkcipher_type;
352 
353 	if (!(alg->cra_blocksize % 4))
354 		inst->alg.cra_alignmask |= 3;
355 	inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize;
356 	inst->alg.cra_blkcipher.min_keysize =
357 		alg->cra_cipher.cia_min_keysize + alg->cra_blocksize;
358 	inst->alg.cra_blkcipher.max_keysize =
359 		alg->cra_cipher.cia_max_keysize + alg->cra_blocksize;
360 
361 	inst->alg.cra_ctxsize = sizeof(struct priv);
362 
363 	inst->alg.cra_init = init_tfm;
364 	inst->alg.cra_exit = exit_tfm;
365 
366 	inst->alg.cra_blkcipher.setkey = setkey;
367 	inst->alg.cra_blkcipher.encrypt = encrypt;
368 	inst->alg.cra_blkcipher.decrypt = decrypt;
369 
370 out_put_alg:
371 	crypto_mod_put(alg);
372 	return inst;
373 }
374 
375 static void free(struct crypto_instance *inst)
376 {
377 	crypto_drop_spawn(crypto_instance_ctx(inst));
378 	kfree(inst);
379 }
380 
381 static struct crypto_template crypto_tmpl = {
382 	.name = "lrw",
383 	.alloc = alloc,
384 	.free = free,
385 	.module = THIS_MODULE,
386 };
387 
388 static int __init crypto_module_init(void)
389 {
390 	return crypto_register_template(&crypto_tmpl);
391 }
392 
393 static void __exit crypto_module_exit(void)
394 {
395 	crypto_unregister_template(&crypto_tmpl);
396 }
397 
398 module_init(crypto_module_init);
399 module_exit(crypto_module_exit);
400 
401 MODULE_LICENSE("GPL");
402 MODULE_DESCRIPTION("LRW block cipher mode");
403 MODULE_ALIAS_CRYPTO("lrw");
404