xref: /openbmc/linux/crypto/lrw.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /* LRW: as defined by Cyril Guyot in
2  *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
3  *
4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based om ecb.c
7  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  */
14 /* This implementation is checked against the test vectors in the above
15  * document and by a test vector provided by Ken Buchanan at
16  * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
17  *
18  * The test vectors are included in the testing module tcrypt.[ch] */
19 #include <crypto/algapi.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/slab.h>
26 
27 #include <crypto/b128ops.h>
28 #include <crypto/gf128mul.h>
29 
30 struct priv {
31 	struct crypto_cipher *child;
32 	/* optimizes multiplying a random (non incrementing, as at the
33 	 * start of a new sector) value with key2, we could also have
34 	 * used 4k optimization tables or no optimization at all. In the
35 	 * latter case we would have to store key2 here */
36 	struct gf128mul_64k *table;
37 	/* stores:
38 	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
39 	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
40 	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
41 	 * needed for optimized multiplication of incrementing values
42 	 * with key2 */
43 	be128 mulinc[128];
44 };
45 
46 static inline void setbit128_bbe(void *b, int bit)
47 {
48 	__set_bit(bit ^ (0x80 -
49 #ifdef __BIG_ENDIAN
50 			 BITS_PER_LONG
51 #else
52 			 BITS_PER_BYTE
53 #endif
54 			), b);
55 }
56 
57 static int setkey(struct crypto_tfm *parent, const u8 *key,
58 		  unsigned int keylen)
59 {
60 	struct priv *ctx = crypto_tfm_ctx(parent);
61 	struct crypto_cipher *child = ctx->child;
62 	int err, i;
63 	be128 tmp = { 0 };
64 	int bsize = crypto_cipher_blocksize(child);
65 
66 	crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
67 	crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
68 				       CRYPTO_TFM_REQ_MASK);
69 	if ((err = crypto_cipher_setkey(child, key, keylen - bsize)))
70 		return err;
71 	crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
72 				     CRYPTO_TFM_RES_MASK);
73 
74 	if (ctx->table)
75 		gf128mul_free_64k(ctx->table);
76 
77 	/* initialize multiplication table for Key2 */
78 	ctx->table = gf128mul_init_64k_bbe((be128 *)(key + keylen - bsize));
79 	if (!ctx->table)
80 		return -ENOMEM;
81 
82 	/* initialize optimization table */
83 	for (i = 0; i < 128; i++) {
84 		setbit128_bbe(&tmp, i);
85 		ctx->mulinc[i] = tmp;
86 		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
87 	}
88 
89 	return 0;
90 }
91 
92 struct sinfo {
93 	be128 t;
94 	struct crypto_tfm *tfm;
95 	void (*fn)(struct crypto_tfm *, u8 *, const u8 *);
96 };
97 
98 static inline void inc(be128 *iv)
99 {
100 	be64_add_cpu(&iv->b, 1);
101 	if (!iv->b)
102 		be64_add_cpu(&iv->a, 1);
103 }
104 
105 static inline void lrw_round(struct sinfo *s, void *dst, const void *src)
106 {
107 	be128_xor(dst, &s->t, src);		/* PP <- T xor P */
108 	s->fn(s->tfm, dst, dst);		/* CC <- E(Key2,PP) */
109 	be128_xor(dst, dst, &s->t);		/* C <- T xor CC */
110 }
111 
112 /* this returns the number of consequative 1 bits starting
113  * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
114 static inline int get_index128(be128 *block)
115 {
116 	int x;
117 	__be32 *p = (__be32 *) block;
118 
119 	for (p += 3, x = 0; x < 128; p--, x += 32) {
120 		u32 val = be32_to_cpup(p);
121 
122 		if (!~val)
123 			continue;
124 
125 		return x + ffz(val);
126 	}
127 
128 	return x;
129 }
130 
131 static int crypt(struct blkcipher_desc *d,
132 		 struct blkcipher_walk *w, struct priv *ctx,
133 		 void (*fn)(struct crypto_tfm *, u8 *, const u8 *))
134 {
135 	int err;
136 	unsigned int avail;
137 	const int bs = crypto_cipher_blocksize(ctx->child);
138 	struct sinfo s = {
139 		.tfm = crypto_cipher_tfm(ctx->child),
140 		.fn = fn
141 	};
142 	be128 *iv;
143 	u8 *wsrc;
144 	u8 *wdst;
145 
146 	err = blkcipher_walk_virt(d, w);
147 	if (!(avail = w->nbytes))
148 		return err;
149 
150 	wsrc = w->src.virt.addr;
151 	wdst = w->dst.virt.addr;
152 
153 	/* calculate first value of T */
154 	iv = (be128 *)w->iv;
155 	s.t = *iv;
156 
157 	/* T <- I*Key2 */
158 	gf128mul_64k_bbe(&s.t, ctx->table);
159 
160 	goto first;
161 
162 	for (;;) {
163 		do {
164 			/* T <- I*Key2, using the optimization
165 			 * discussed in the specification */
166 			be128_xor(&s.t, &s.t, &ctx->mulinc[get_index128(iv)]);
167 			inc(iv);
168 
169 first:
170 			lrw_round(&s, wdst, wsrc);
171 
172 			wsrc += bs;
173 			wdst += bs;
174 		} while ((avail -= bs) >= bs);
175 
176 		err = blkcipher_walk_done(d, w, avail);
177 		if (!(avail = w->nbytes))
178 			break;
179 
180 		wsrc = w->src.virt.addr;
181 		wdst = w->dst.virt.addr;
182 	}
183 
184 	return err;
185 }
186 
187 static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
188 		   struct scatterlist *src, unsigned int nbytes)
189 {
190 	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
191 	struct blkcipher_walk w;
192 
193 	blkcipher_walk_init(&w, dst, src, nbytes);
194 	return crypt(desc, &w, ctx,
195 		     crypto_cipher_alg(ctx->child)->cia_encrypt);
196 }
197 
198 static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
199 		   struct scatterlist *src, unsigned int nbytes)
200 {
201 	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
202 	struct blkcipher_walk w;
203 
204 	blkcipher_walk_init(&w, dst, src, nbytes);
205 	return crypt(desc, &w, ctx,
206 		     crypto_cipher_alg(ctx->child)->cia_decrypt);
207 }
208 
209 static int init_tfm(struct crypto_tfm *tfm)
210 {
211 	struct crypto_cipher *cipher;
212 	struct crypto_instance *inst = (void *)tfm->__crt_alg;
213 	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
214 	struct priv *ctx = crypto_tfm_ctx(tfm);
215 	u32 *flags = &tfm->crt_flags;
216 
217 	cipher = crypto_spawn_cipher(spawn);
218 	if (IS_ERR(cipher))
219 		return PTR_ERR(cipher);
220 
221 	if (crypto_cipher_blocksize(cipher) != 16) {
222 		*flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
223 		return -EINVAL;
224 	}
225 
226 	ctx->child = cipher;
227 	return 0;
228 }
229 
230 static void exit_tfm(struct crypto_tfm *tfm)
231 {
232 	struct priv *ctx = crypto_tfm_ctx(tfm);
233 	if (ctx->table)
234 		gf128mul_free_64k(ctx->table);
235 	crypto_free_cipher(ctx->child);
236 }
237 
238 static struct crypto_instance *alloc(struct rtattr **tb)
239 {
240 	struct crypto_instance *inst;
241 	struct crypto_alg *alg;
242 	int err;
243 
244 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
245 	if (err)
246 		return ERR_PTR(err);
247 
248 	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
249 				  CRYPTO_ALG_TYPE_MASK);
250 	if (IS_ERR(alg))
251 		return ERR_CAST(alg);
252 
253 	inst = crypto_alloc_instance("lrw", alg);
254 	if (IS_ERR(inst))
255 		goto out_put_alg;
256 
257 	inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
258 	inst->alg.cra_priority = alg->cra_priority;
259 	inst->alg.cra_blocksize = alg->cra_blocksize;
260 
261 	if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7;
262 	else inst->alg.cra_alignmask = alg->cra_alignmask;
263 	inst->alg.cra_type = &crypto_blkcipher_type;
264 
265 	if (!(alg->cra_blocksize % 4))
266 		inst->alg.cra_alignmask |= 3;
267 	inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize;
268 	inst->alg.cra_blkcipher.min_keysize =
269 		alg->cra_cipher.cia_min_keysize + alg->cra_blocksize;
270 	inst->alg.cra_blkcipher.max_keysize =
271 		alg->cra_cipher.cia_max_keysize + alg->cra_blocksize;
272 
273 	inst->alg.cra_ctxsize = sizeof(struct priv);
274 
275 	inst->alg.cra_init = init_tfm;
276 	inst->alg.cra_exit = exit_tfm;
277 
278 	inst->alg.cra_blkcipher.setkey = setkey;
279 	inst->alg.cra_blkcipher.encrypt = encrypt;
280 	inst->alg.cra_blkcipher.decrypt = decrypt;
281 
282 out_put_alg:
283 	crypto_mod_put(alg);
284 	return inst;
285 }
286 
287 static void free(struct crypto_instance *inst)
288 {
289 	crypto_drop_spawn(crypto_instance_ctx(inst));
290 	kfree(inst);
291 }
292 
293 static struct crypto_template crypto_tmpl = {
294 	.name = "lrw",
295 	.alloc = alloc,
296 	.free = free,
297 	.module = THIS_MODULE,
298 };
299 
300 static int __init crypto_module_init(void)
301 {
302 	return crypto_register_template(&crypto_tmpl);
303 }
304 
305 static void __exit crypto_module_exit(void)
306 {
307 	crypto_unregister_template(&crypto_tmpl);
308 }
309 
310 module_init(crypto_module_init);
311 module_exit(crypto_module_exit);
312 
313 MODULE_LICENSE("GPL");
314 MODULE_DESCRIPTION("LRW block cipher mode");
315