xref: /openbmc/linux/crypto/lrw.c (revision b664e06d)
1 /* LRW: as defined by Cyril Guyot in
2  *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
3  *
4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based on ecb.c
7  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  */
14 /* This implementation is checked against the test vectors in the above
15  * document and by a test vector provided by Ken Buchanan at
16  * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
17  *
18  * The test vectors are included in the testing module tcrypt.[ch] */
19 
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/slab.h>
28 
29 #include <crypto/b128ops.h>
30 #include <crypto/gf128mul.h>
31 
32 #define LRW_BLOCK_SIZE 16
33 
34 struct priv {
35 	struct crypto_skcipher *child;
36 
37 	/*
38 	 * optimizes multiplying a random (non incrementing, as at the
39 	 * start of a new sector) value with key2, we could also have
40 	 * used 4k optimization tables or no optimization at all. In the
41 	 * latter case we would have to store key2 here
42 	 */
43 	struct gf128mul_64k *table;
44 
45 	/*
46 	 * stores:
47 	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
48 	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
49 	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
50 	 * needed for optimized multiplication of incrementing values
51 	 * with key2
52 	 */
53 	be128 mulinc[128];
54 };
55 
56 struct rctx {
57 	be128 t;
58 	struct skcipher_request subreq;
59 };
60 
61 static inline void setbit128_bbe(void *b, int bit)
62 {
63 	__set_bit(bit ^ (0x80 -
64 #ifdef __BIG_ENDIAN
65 			 BITS_PER_LONG
66 #else
67 			 BITS_PER_BYTE
68 #endif
69 			), b);
70 }
71 
72 static int setkey(struct crypto_skcipher *parent, const u8 *key,
73 		  unsigned int keylen)
74 {
75 	struct priv *ctx = crypto_skcipher_ctx(parent);
76 	struct crypto_skcipher *child = ctx->child;
77 	int err, bsize = LRW_BLOCK_SIZE;
78 	const u8 *tweak = key + keylen - bsize;
79 	be128 tmp = { 0 };
80 	int i;
81 
82 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
83 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
84 					 CRYPTO_TFM_REQ_MASK);
85 	err = crypto_skcipher_setkey(child, key, keylen - bsize);
86 	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
87 					  CRYPTO_TFM_RES_MASK);
88 	if (err)
89 		return err;
90 
91 	if (ctx->table)
92 		gf128mul_free_64k(ctx->table);
93 
94 	/* initialize multiplication table for Key2 */
95 	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
96 	if (!ctx->table)
97 		return -ENOMEM;
98 
99 	/* initialize optimization table */
100 	for (i = 0; i < 128; i++) {
101 		setbit128_bbe(&tmp, i);
102 		ctx->mulinc[i] = tmp;
103 		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
104 	}
105 
106 	return 0;
107 }
108 
109 /*
110  * Returns the number of trailing '1' bits in the words of the counter, which is
111  * represented by 4 32-bit words, arranged from least to most significant.
112  * At the same time, increments the counter by one.
113  *
114  * For example:
115  *
116  * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
117  * int i = next_index(&counter);
118  * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
119  */
120 static int next_index(u32 *counter)
121 {
122 	int i, res = 0;
123 
124 	for (i = 0; i < 4; i++) {
125 		if (counter[i] + 1 != 0)
126 			return res + ffz(counter[i]++);
127 
128 		counter[i] = 0;
129 		res += 32;
130 	}
131 
132 	/*
133 	 * If we get here, then x == 128 and we are incrementing the counter
134 	 * from all ones to all zeros. This means we must return index 127, i.e.
135 	 * the one corresponding to key2*{ 1,...,1 }.
136 	 */
137 	return 127;
138 }
139 
140 /*
141  * We compute the tweak masks twice (both before and after the ECB encryption or
142  * decryption) to avoid having to allocate a temporary buffer and/or make
143  * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
144  * just doing the next_index() calls again.
145  */
146 static int xor_tweak(struct skcipher_request *req, bool second_pass)
147 {
148 	const int bs = LRW_BLOCK_SIZE;
149 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
150 	struct priv *ctx = crypto_skcipher_ctx(tfm);
151 	struct rctx *rctx = skcipher_request_ctx(req);
152 	be128 t = rctx->t;
153 	struct skcipher_walk w;
154 	__be32 *iv;
155 	u32 counter[4];
156 	int err;
157 
158 	if (second_pass) {
159 		req = &rctx->subreq;
160 		/* set to our TFM to enforce correct alignment: */
161 		skcipher_request_set_tfm(req, tfm);
162 	}
163 
164 	err = skcipher_walk_virt(&w, req, false);
165 	if (err)
166 		return err;
167 
168 	iv = (__be32 *)w.iv;
169 	counter[0] = be32_to_cpu(iv[3]);
170 	counter[1] = be32_to_cpu(iv[2]);
171 	counter[2] = be32_to_cpu(iv[1]);
172 	counter[3] = be32_to_cpu(iv[0]);
173 
174 	while (w.nbytes) {
175 		unsigned int avail = w.nbytes;
176 		be128 *wsrc;
177 		be128 *wdst;
178 
179 		wsrc = w.src.virt.addr;
180 		wdst = w.dst.virt.addr;
181 
182 		do {
183 			be128_xor(wdst++, &t, wsrc++);
184 
185 			/* T <- I*Key2, using the optimization
186 			 * discussed in the specification */
187 			be128_xor(&t, &t, &ctx->mulinc[next_index(counter)]);
188 		} while ((avail -= bs) >= bs);
189 
190 		if (second_pass && w.nbytes == w.total) {
191 			iv[0] = cpu_to_be32(counter[3]);
192 			iv[1] = cpu_to_be32(counter[2]);
193 			iv[2] = cpu_to_be32(counter[1]);
194 			iv[3] = cpu_to_be32(counter[0]);
195 		}
196 
197 		err = skcipher_walk_done(&w, avail);
198 	}
199 
200 	return err;
201 }
202 
203 static int xor_tweak_pre(struct skcipher_request *req)
204 {
205 	return xor_tweak(req, false);
206 }
207 
208 static int xor_tweak_post(struct skcipher_request *req)
209 {
210 	return xor_tweak(req, true);
211 }
212 
213 static void crypt_done(struct crypto_async_request *areq, int err)
214 {
215 	struct skcipher_request *req = areq->data;
216 
217 	if (!err) {
218 		struct rctx *rctx = skcipher_request_ctx(req);
219 
220 		rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
221 		err = xor_tweak_post(req);
222 	}
223 
224 	skcipher_request_complete(req, err);
225 }
226 
227 static void init_crypt(struct skcipher_request *req)
228 {
229 	struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
230 	struct rctx *rctx = skcipher_request_ctx(req);
231 	struct skcipher_request *subreq = &rctx->subreq;
232 
233 	skcipher_request_set_tfm(subreq, ctx->child);
234 	skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req);
235 	/* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
236 	skcipher_request_set_crypt(subreq, req->dst, req->dst,
237 				   req->cryptlen, req->iv);
238 
239 	/* calculate first value of T */
240 	memcpy(&rctx->t, req->iv, sizeof(rctx->t));
241 
242 	/* T <- I*Key2 */
243 	gf128mul_64k_bbe(&rctx->t, ctx->table);
244 }
245 
246 static int encrypt(struct skcipher_request *req)
247 {
248 	struct rctx *rctx = skcipher_request_ctx(req);
249 	struct skcipher_request *subreq = &rctx->subreq;
250 
251 	init_crypt(req);
252 	return xor_tweak_pre(req) ?:
253 		crypto_skcipher_encrypt(subreq) ?:
254 		xor_tweak_post(req);
255 }
256 
257 static int decrypt(struct skcipher_request *req)
258 {
259 	struct rctx *rctx = skcipher_request_ctx(req);
260 	struct skcipher_request *subreq = &rctx->subreq;
261 
262 	init_crypt(req);
263 	return xor_tweak_pre(req) ?:
264 		crypto_skcipher_decrypt(subreq) ?:
265 		xor_tweak_post(req);
266 }
267 
268 static int init_tfm(struct crypto_skcipher *tfm)
269 {
270 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
271 	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
272 	struct priv *ctx = crypto_skcipher_ctx(tfm);
273 	struct crypto_skcipher *cipher;
274 
275 	cipher = crypto_spawn_skcipher(spawn);
276 	if (IS_ERR(cipher))
277 		return PTR_ERR(cipher);
278 
279 	ctx->child = cipher;
280 
281 	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
282 					 sizeof(struct rctx));
283 
284 	return 0;
285 }
286 
287 static void exit_tfm(struct crypto_skcipher *tfm)
288 {
289 	struct priv *ctx = crypto_skcipher_ctx(tfm);
290 
291 	if (ctx->table)
292 		gf128mul_free_64k(ctx->table);
293 	crypto_free_skcipher(ctx->child);
294 }
295 
296 static void free(struct skcipher_instance *inst)
297 {
298 	crypto_drop_skcipher(skcipher_instance_ctx(inst));
299 	kfree(inst);
300 }
301 
302 static int create(struct crypto_template *tmpl, struct rtattr **tb)
303 {
304 	struct crypto_skcipher_spawn *spawn;
305 	struct skcipher_instance *inst;
306 	struct crypto_attr_type *algt;
307 	struct skcipher_alg *alg;
308 	const char *cipher_name;
309 	char ecb_name[CRYPTO_MAX_ALG_NAME];
310 	int err;
311 
312 	algt = crypto_get_attr_type(tb);
313 	if (IS_ERR(algt))
314 		return PTR_ERR(algt);
315 
316 	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
317 		return -EINVAL;
318 
319 	cipher_name = crypto_attr_alg_name(tb[1]);
320 	if (IS_ERR(cipher_name))
321 		return PTR_ERR(cipher_name);
322 
323 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
324 	if (!inst)
325 		return -ENOMEM;
326 
327 	spawn = skcipher_instance_ctx(inst);
328 
329 	crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
330 	err = crypto_grab_skcipher(spawn, cipher_name, 0,
331 				   crypto_requires_sync(algt->type,
332 							algt->mask));
333 	if (err == -ENOENT) {
334 		err = -ENAMETOOLONG;
335 		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
336 			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
337 			goto err_free_inst;
338 
339 		err = crypto_grab_skcipher(spawn, ecb_name, 0,
340 					   crypto_requires_sync(algt->type,
341 								algt->mask));
342 	}
343 
344 	if (err)
345 		goto err_free_inst;
346 
347 	alg = crypto_skcipher_spawn_alg(spawn);
348 
349 	err = -EINVAL;
350 	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
351 		goto err_drop_spawn;
352 
353 	if (crypto_skcipher_alg_ivsize(alg))
354 		goto err_drop_spawn;
355 
356 	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
357 				  &alg->base);
358 	if (err)
359 		goto err_drop_spawn;
360 
361 	err = -EINVAL;
362 	cipher_name = alg->base.cra_name;
363 
364 	/* Alas we screwed up the naming so we have to mangle the
365 	 * cipher name.
366 	 */
367 	if (!strncmp(cipher_name, "ecb(", 4)) {
368 		unsigned len;
369 
370 		len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
371 		if (len < 2 || len >= sizeof(ecb_name))
372 			goto err_drop_spawn;
373 
374 		if (ecb_name[len - 1] != ')')
375 			goto err_drop_spawn;
376 
377 		ecb_name[len - 1] = 0;
378 
379 		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
380 			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
381 			err = -ENAMETOOLONG;
382 			goto err_drop_spawn;
383 		}
384 	} else
385 		goto err_drop_spawn;
386 
387 	inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
388 	inst->alg.base.cra_priority = alg->base.cra_priority;
389 	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
390 	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
391 				       (__alignof__(__be32) - 1);
392 
393 	inst->alg.ivsize = LRW_BLOCK_SIZE;
394 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
395 				LRW_BLOCK_SIZE;
396 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
397 				LRW_BLOCK_SIZE;
398 
399 	inst->alg.base.cra_ctxsize = sizeof(struct priv);
400 
401 	inst->alg.init = init_tfm;
402 	inst->alg.exit = exit_tfm;
403 
404 	inst->alg.setkey = setkey;
405 	inst->alg.encrypt = encrypt;
406 	inst->alg.decrypt = decrypt;
407 
408 	inst->free = free;
409 
410 	err = skcipher_register_instance(tmpl, inst);
411 	if (err)
412 		goto err_drop_spawn;
413 
414 out:
415 	return err;
416 
417 err_drop_spawn:
418 	crypto_drop_skcipher(spawn);
419 err_free_inst:
420 	kfree(inst);
421 	goto out;
422 }
423 
424 static struct crypto_template crypto_tmpl = {
425 	.name = "lrw",
426 	.create = create,
427 	.module = THIS_MODULE,
428 };
429 
430 static int __init crypto_module_init(void)
431 {
432 	return crypto_register_template(&crypto_tmpl);
433 }
434 
435 static void __exit crypto_module_exit(void)
436 {
437 	crypto_unregister_template(&crypto_tmpl);
438 }
439 
440 subsys_initcall(crypto_module_init);
441 module_exit(crypto_module_exit);
442 
443 MODULE_LICENSE("GPL");
444 MODULE_DESCRIPTION("LRW block cipher mode");
445 MODULE_ALIAS_CRYPTO("lrw");
446