xref: /openbmc/linux/crypto/lrw.c (revision b60a5b8d)
1 /* LRW: as defined by Cyril Guyot in
2  *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
3  *
4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based on ecb.c
7  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  */
14 /* This implementation is checked against the test vectors in the above
15  * document and by a test vector provided by Ken Buchanan at
16  * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
17  *
18  * The test vectors are included in the testing module tcrypt.[ch] */
19 
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/slab.h>
28 
29 #include <crypto/b128ops.h>
30 #include <crypto/gf128mul.h>
31 
32 #define LRW_BLOCK_SIZE 16
33 
34 struct priv {
35 	struct crypto_skcipher *child;
36 
37 	/*
38 	 * optimizes multiplying a random (non incrementing, as at the
39 	 * start of a new sector) value with key2, we could also have
40 	 * used 4k optimization tables or no optimization at all. In the
41 	 * latter case we would have to store key2 here
42 	 */
43 	struct gf128mul_64k *table;
44 
45 	/*
46 	 * stores:
47 	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
48 	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
49 	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
50 	 * needed for optimized multiplication of incrementing values
51 	 * with key2
52 	 */
53 	be128 mulinc[128];
54 };
55 
56 struct rctx {
57 	be128 t;
58 	struct skcipher_request subreq;
59 };
60 
61 static inline void setbit128_bbe(void *b, int bit)
62 {
63 	__set_bit(bit ^ (0x80 -
64 #ifdef __BIG_ENDIAN
65 			 BITS_PER_LONG
66 #else
67 			 BITS_PER_BYTE
68 #endif
69 			), b);
70 }
71 
72 static int setkey(struct crypto_skcipher *parent, const u8 *key,
73 		  unsigned int keylen)
74 {
75 	struct priv *ctx = crypto_skcipher_ctx(parent);
76 	struct crypto_skcipher *child = ctx->child;
77 	int err, bsize = LRW_BLOCK_SIZE;
78 	const u8 *tweak = key + keylen - bsize;
79 	be128 tmp = { 0 };
80 	int i;
81 
82 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
83 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
84 					 CRYPTO_TFM_REQ_MASK);
85 	err = crypto_skcipher_setkey(child, key, keylen - bsize);
86 	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
87 					  CRYPTO_TFM_RES_MASK);
88 	if (err)
89 		return err;
90 
91 	if (ctx->table)
92 		gf128mul_free_64k(ctx->table);
93 
94 	/* initialize multiplication table for Key2 */
95 	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
96 	if (!ctx->table)
97 		return -ENOMEM;
98 
99 	/* initialize optimization table */
100 	for (i = 0; i < 128; i++) {
101 		setbit128_bbe(&tmp, i);
102 		ctx->mulinc[i] = tmp;
103 		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
104 	}
105 
106 	return 0;
107 }
108 
109 /*
110  * Returns the number of trailing '1' bits in the words of the counter, which is
111  * represented by 4 32-bit words, arranged from least to most significant.
112  * At the same time, increments the counter by one.
113  *
114  * For example:
115  *
116  * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
117  * int i = next_index(&counter);
118  * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
119  */
120 static int next_index(u32 *counter)
121 {
122 	int i, res = 0;
123 
124 	for (i = 0; i < 4; i++) {
125 		if (counter[i] + 1 != 0)
126 			return res + ffz(counter[i]++);
127 
128 		counter[i] = 0;
129 		res += 32;
130 	}
131 
132 	/*
133 	 * If we get here, then x == 128 and we are incrementing the counter
134 	 * from all ones to all zeros. This means we must return index 127, i.e.
135 	 * the one corresponding to key2*{ 1,...,1 }.
136 	 */
137 	return 127;
138 }
139 
140 /*
141  * We compute the tweak masks twice (both before and after the ECB encryption or
142  * decryption) to avoid having to allocate a temporary buffer and/or make
143  * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
144  * just doing the next_index() calls again.
145  */
146 static int xor_tweak(struct skcipher_request *req, bool second_pass)
147 {
148 	const int bs = LRW_BLOCK_SIZE;
149 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
150 	struct priv *ctx = crypto_skcipher_ctx(tfm);
151 	struct rctx *rctx = skcipher_request_ctx(req);
152 	be128 t = rctx->t;
153 	struct skcipher_walk w;
154 	__be32 *iv;
155 	u32 counter[4];
156 	int err;
157 
158 	if (second_pass) {
159 		req = &rctx->subreq;
160 		/* set to our TFM to enforce correct alignment: */
161 		skcipher_request_set_tfm(req, tfm);
162 	}
163 
164 	err = skcipher_walk_virt(&w, req, false);
165 	iv = (__be32 *)w.iv;
166 
167 	counter[0] = be32_to_cpu(iv[3]);
168 	counter[1] = be32_to_cpu(iv[2]);
169 	counter[2] = be32_to_cpu(iv[1]);
170 	counter[3] = be32_to_cpu(iv[0]);
171 
172 	while (w.nbytes) {
173 		unsigned int avail = w.nbytes;
174 		be128 *wsrc;
175 		be128 *wdst;
176 
177 		wsrc = w.src.virt.addr;
178 		wdst = w.dst.virt.addr;
179 
180 		do {
181 			be128_xor(wdst++, &t, wsrc++);
182 
183 			/* T <- I*Key2, using the optimization
184 			 * discussed in the specification */
185 			be128_xor(&t, &t, &ctx->mulinc[next_index(counter)]);
186 		} while ((avail -= bs) >= bs);
187 
188 		if (second_pass && w.nbytes == w.total) {
189 			iv[0] = cpu_to_be32(counter[3]);
190 			iv[1] = cpu_to_be32(counter[2]);
191 			iv[2] = cpu_to_be32(counter[1]);
192 			iv[3] = cpu_to_be32(counter[0]);
193 		}
194 
195 		err = skcipher_walk_done(&w, avail);
196 	}
197 
198 	return err;
199 }
200 
201 static int xor_tweak_pre(struct skcipher_request *req)
202 {
203 	return xor_tweak(req, false);
204 }
205 
206 static int xor_tweak_post(struct skcipher_request *req)
207 {
208 	return xor_tweak(req, true);
209 }
210 
211 static void crypt_done(struct crypto_async_request *areq, int err)
212 {
213 	struct skcipher_request *req = areq->data;
214 
215 	if (!err)
216 		err = xor_tweak_post(req);
217 
218 	skcipher_request_complete(req, err);
219 }
220 
221 static void init_crypt(struct skcipher_request *req)
222 {
223 	struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
224 	struct rctx *rctx = skcipher_request_ctx(req);
225 	struct skcipher_request *subreq = &rctx->subreq;
226 
227 	skcipher_request_set_tfm(subreq, ctx->child);
228 	skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req);
229 	/* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
230 	skcipher_request_set_crypt(subreq, req->dst, req->dst,
231 				   req->cryptlen, req->iv);
232 
233 	/* calculate first value of T */
234 	memcpy(&rctx->t, req->iv, sizeof(rctx->t));
235 
236 	/* T <- I*Key2 */
237 	gf128mul_64k_bbe(&rctx->t, ctx->table);
238 }
239 
240 static int encrypt(struct skcipher_request *req)
241 {
242 	struct rctx *rctx = skcipher_request_ctx(req);
243 	struct skcipher_request *subreq = &rctx->subreq;
244 
245 	init_crypt(req);
246 	return xor_tweak_pre(req) ?:
247 		crypto_skcipher_encrypt(subreq) ?:
248 		xor_tweak_post(req);
249 }
250 
251 static int decrypt(struct skcipher_request *req)
252 {
253 	struct rctx *rctx = skcipher_request_ctx(req);
254 	struct skcipher_request *subreq = &rctx->subreq;
255 
256 	init_crypt(req);
257 	return xor_tweak_pre(req) ?:
258 		crypto_skcipher_decrypt(subreq) ?:
259 		xor_tweak_post(req);
260 }
261 
262 static int init_tfm(struct crypto_skcipher *tfm)
263 {
264 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
265 	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
266 	struct priv *ctx = crypto_skcipher_ctx(tfm);
267 	struct crypto_skcipher *cipher;
268 
269 	cipher = crypto_spawn_skcipher(spawn);
270 	if (IS_ERR(cipher))
271 		return PTR_ERR(cipher);
272 
273 	ctx->child = cipher;
274 
275 	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
276 					 sizeof(struct rctx));
277 
278 	return 0;
279 }
280 
281 static void exit_tfm(struct crypto_skcipher *tfm)
282 {
283 	struct priv *ctx = crypto_skcipher_ctx(tfm);
284 
285 	if (ctx->table)
286 		gf128mul_free_64k(ctx->table);
287 	crypto_free_skcipher(ctx->child);
288 }
289 
290 static void free(struct skcipher_instance *inst)
291 {
292 	crypto_drop_skcipher(skcipher_instance_ctx(inst));
293 	kfree(inst);
294 }
295 
296 static int create(struct crypto_template *tmpl, struct rtattr **tb)
297 {
298 	struct crypto_skcipher_spawn *spawn;
299 	struct skcipher_instance *inst;
300 	struct crypto_attr_type *algt;
301 	struct skcipher_alg *alg;
302 	const char *cipher_name;
303 	char ecb_name[CRYPTO_MAX_ALG_NAME];
304 	int err;
305 
306 	algt = crypto_get_attr_type(tb);
307 	if (IS_ERR(algt))
308 		return PTR_ERR(algt);
309 
310 	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
311 		return -EINVAL;
312 
313 	cipher_name = crypto_attr_alg_name(tb[1]);
314 	if (IS_ERR(cipher_name))
315 		return PTR_ERR(cipher_name);
316 
317 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
318 	if (!inst)
319 		return -ENOMEM;
320 
321 	spawn = skcipher_instance_ctx(inst);
322 
323 	crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
324 	err = crypto_grab_skcipher(spawn, cipher_name, 0,
325 				   crypto_requires_sync(algt->type,
326 							algt->mask));
327 	if (err == -ENOENT) {
328 		err = -ENAMETOOLONG;
329 		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
330 			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
331 			goto err_free_inst;
332 
333 		err = crypto_grab_skcipher(spawn, ecb_name, 0,
334 					   crypto_requires_sync(algt->type,
335 								algt->mask));
336 	}
337 
338 	if (err)
339 		goto err_free_inst;
340 
341 	alg = crypto_skcipher_spawn_alg(spawn);
342 
343 	err = -EINVAL;
344 	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
345 		goto err_drop_spawn;
346 
347 	if (crypto_skcipher_alg_ivsize(alg))
348 		goto err_drop_spawn;
349 
350 	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
351 				  &alg->base);
352 	if (err)
353 		goto err_drop_spawn;
354 
355 	err = -EINVAL;
356 	cipher_name = alg->base.cra_name;
357 
358 	/* Alas we screwed up the naming so we have to mangle the
359 	 * cipher name.
360 	 */
361 	if (!strncmp(cipher_name, "ecb(", 4)) {
362 		unsigned len;
363 
364 		len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
365 		if (len < 2 || len >= sizeof(ecb_name))
366 			goto err_drop_spawn;
367 
368 		if (ecb_name[len - 1] != ')')
369 			goto err_drop_spawn;
370 
371 		ecb_name[len - 1] = 0;
372 
373 		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
374 			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
375 			err = -ENAMETOOLONG;
376 			goto err_drop_spawn;
377 		}
378 	} else
379 		goto err_drop_spawn;
380 
381 	inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
382 	inst->alg.base.cra_priority = alg->base.cra_priority;
383 	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
384 	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
385 				       (__alignof__(__be32) - 1);
386 
387 	inst->alg.ivsize = LRW_BLOCK_SIZE;
388 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
389 				LRW_BLOCK_SIZE;
390 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
391 				LRW_BLOCK_SIZE;
392 
393 	inst->alg.base.cra_ctxsize = sizeof(struct priv);
394 
395 	inst->alg.init = init_tfm;
396 	inst->alg.exit = exit_tfm;
397 
398 	inst->alg.setkey = setkey;
399 	inst->alg.encrypt = encrypt;
400 	inst->alg.decrypt = decrypt;
401 
402 	inst->free = free;
403 
404 	err = skcipher_register_instance(tmpl, inst);
405 	if (err)
406 		goto err_drop_spawn;
407 
408 out:
409 	return err;
410 
411 err_drop_spawn:
412 	crypto_drop_skcipher(spawn);
413 err_free_inst:
414 	kfree(inst);
415 	goto out;
416 }
417 
418 static struct crypto_template crypto_tmpl = {
419 	.name = "lrw",
420 	.create = create,
421 	.module = THIS_MODULE,
422 };
423 
424 static int __init crypto_module_init(void)
425 {
426 	return crypto_register_template(&crypto_tmpl);
427 }
428 
429 static void __exit crypto_module_exit(void)
430 {
431 	crypto_unregister_template(&crypto_tmpl);
432 }
433 
434 module_init(crypto_module_init);
435 module_exit(crypto_module_exit);
436 
437 MODULE_LICENSE("GPL");
438 MODULE_DESCRIPTION("LRW block cipher mode");
439 MODULE_ALIAS_CRYPTO("lrw");
440