xref: /openbmc/linux/crypto/lrw.c (revision a1b2f04ea527397fcacacd09e0d690927feef429)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* LRW: as defined by Cyril Guyot in
3  *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
4  *
5  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
6  *
7  * Based on ecb.c
8  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
9  */
10 /* This implementation is checked against the test vectors in the above
11  * document and by a test vector provided by Ken Buchanan at
12  * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
13  *
14  * The test vectors are included in the testing module tcrypt.[ch] */
15 
16 #include <crypto/internal/skcipher.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 
25 #include <crypto/b128ops.h>
26 #include <crypto/gf128mul.h>
27 
28 #define LRW_BLOCK_SIZE 16
29 
30 struct priv {
31 	struct crypto_skcipher *child;
32 
33 	/*
34 	 * optimizes multiplying a random (non incrementing, as at the
35 	 * start of a new sector) value with key2, we could also have
36 	 * used 4k optimization tables or no optimization at all. In the
37 	 * latter case we would have to store key2 here
38 	 */
39 	struct gf128mul_64k *table;
40 
41 	/*
42 	 * stores:
43 	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
44 	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
45 	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
46 	 * needed for optimized multiplication of incrementing values
47 	 * with key2
48 	 */
49 	be128 mulinc[128];
50 };
51 
52 struct rctx {
53 	be128 t;
54 	struct skcipher_request subreq;
55 };
56 
57 static inline void setbit128_bbe(void *b, int bit)
58 {
59 	__set_bit(bit ^ (0x80 -
60 #ifdef __BIG_ENDIAN
61 			 BITS_PER_LONG
62 #else
63 			 BITS_PER_BYTE
64 #endif
65 			), b);
66 }
67 
68 static int setkey(struct crypto_skcipher *parent, const u8 *key,
69 		  unsigned int keylen)
70 {
71 	struct priv *ctx = crypto_skcipher_ctx(parent);
72 	struct crypto_skcipher *child = ctx->child;
73 	int err, bsize = LRW_BLOCK_SIZE;
74 	const u8 *tweak = key + keylen - bsize;
75 	be128 tmp = { 0 };
76 	int i;
77 
78 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
79 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
80 					 CRYPTO_TFM_REQ_MASK);
81 	err = crypto_skcipher_setkey(child, key, keylen - bsize);
82 	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
83 					  CRYPTO_TFM_RES_MASK);
84 	if (err)
85 		return err;
86 
87 	if (ctx->table)
88 		gf128mul_free_64k(ctx->table);
89 
90 	/* initialize multiplication table for Key2 */
91 	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
92 	if (!ctx->table)
93 		return -ENOMEM;
94 
95 	/* initialize optimization table */
96 	for (i = 0; i < 128; i++) {
97 		setbit128_bbe(&tmp, i);
98 		ctx->mulinc[i] = tmp;
99 		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
100 	}
101 
102 	return 0;
103 }
104 
105 /*
106  * Returns the number of trailing '1' bits in the words of the counter, which is
107  * represented by 4 32-bit words, arranged from least to most significant.
108  * At the same time, increments the counter by one.
109  *
110  * For example:
111  *
112  * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
113  * int i = next_index(&counter);
114  * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
115  */
116 static int next_index(u32 *counter)
117 {
118 	int i, res = 0;
119 
120 	for (i = 0; i < 4; i++) {
121 		if (counter[i] + 1 != 0)
122 			return res + ffz(counter[i]++);
123 
124 		counter[i] = 0;
125 		res += 32;
126 	}
127 
128 	/*
129 	 * If we get here, then x == 128 and we are incrementing the counter
130 	 * from all ones to all zeros. This means we must return index 127, i.e.
131 	 * the one corresponding to key2*{ 1,...,1 }.
132 	 */
133 	return 127;
134 }
135 
136 /*
137  * We compute the tweak masks twice (both before and after the ECB encryption or
138  * decryption) to avoid having to allocate a temporary buffer and/or make
139  * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
140  * just doing the next_index() calls again.
141  */
142 static int xor_tweak(struct skcipher_request *req, bool second_pass)
143 {
144 	const int bs = LRW_BLOCK_SIZE;
145 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
146 	struct priv *ctx = crypto_skcipher_ctx(tfm);
147 	struct rctx *rctx = skcipher_request_ctx(req);
148 	be128 t = rctx->t;
149 	struct skcipher_walk w;
150 	__be32 *iv;
151 	u32 counter[4];
152 	int err;
153 
154 	if (second_pass) {
155 		req = &rctx->subreq;
156 		/* set to our TFM to enforce correct alignment: */
157 		skcipher_request_set_tfm(req, tfm);
158 	}
159 
160 	err = skcipher_walk_virt(&w, req, false);
161 	if (err)
162 		return err;
163 
164 	iv = (__be32 *)w.iv;
165 	counter[0] = be32_to_cpu(iv[3]);
166 	counter[1] = be32_to_cpu(iv[2]);
167 	counter[2] = be32_to_cpu(iv[1]);
168 	counter[3] = be32_to_cpu(iv[0]);
169 
170 	while (w.nbytes) {
171 		unsigned int avail = w.nbytes;
172 		be128 *wsrc;
173 		be128 *wdst;
174 
175 		wsrc = w.src.virt.addr;
176 		wdst = w.dst.virt.addr;
177 
178 		do {
179 			be128_xor(wdst++, &t, wsrc++);
180 
181 			/* T <- I*Key2, using the optimization
182 			 * discussed in the specification */
183 			be128_xor(&t, &t, &ctx->mulinc[next_index(counter)]);
184 		} while ((avail -= bs) >= bs);
185 
186 		if (second_pass && w.nbytes == w.total) {
187 			iv[0] = cpu_to_be32(counter[3]);
188 			iv[1] = cpu_to_be32(counter[2]);
189 			iv[2] = cpu_to_be32(counter[1]);
190 			iv[3] = cpu_to_be32(counter[0]);
191 		}
192 
193 		err = skcipher_walk_done(&w, avail);
194 	}
195 
196 	return err;
197 }
198 
199 static int xor_tweak_pre(struct skcipher_request *req)
200 {
201 	return xor_tweak(req, false);
202 }
203 
204 static int xor_tweak_post(struct skcipher_request *req)
205 {
206 	return xor_tweak(req, true);
207 }
208 
209 static void crypt_done(struct crypto_async_request *areq, int err)
210 {
211 	struct skcipher_request *req = areq->data;
212 
213 	if (!err) {
214 		struct rctx *rctx = skcipher_request_ctx(req);
215 
216 		rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
217 		err = xor_tweak_post(req);
218 	}
219 
220 	skcipher_request_complete(req, err);
221 }
222 
223 static void init_crypt(struct skcipher_request *req)
224 {
225 	struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
226 	struct rctx *rctx = skcipher_request_ctx(req);
227 	struct skcipher_request *subreq = &rctx->subreq;
228 
229 	skcipher_request_set_tfm(subreq, ctx->child);
230 	skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req);
231 	/* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
232 	skcipher_request_set_crypt(subreq, req->dst, req->dst,
233 				   req->cryptlen, req->iv);
234 
235 	/* calculate first value of T */
236 	memcpy(&rctx->t, req->iv, sizeof(rctx->t));
237 
238 	/* T <- I*Key2 */
239 	gf128mul_64k_bbe(&rctx->t, ctx->table);
240 }
241 
242 static int encrypt(struct skcipher_request *req)
243 {
244 	struct rctx *rctx = skcipher_request_ctx(req);
245 	struct skcipher_request *subreq = &rctx->subreq;
246 
247 	init_crypt(req);
248 	return xor_tweak_pre(req) ?:
249 		crypto_skcipher_encrypt(subreq) ?:
250 		xor_tweak_post(req);
251 }
252 
253 static int decrypt(struct skcipher_request *req)
254 {
255 	struct rctx *rctx = skcipher_request_ctx(req);
256 	struct skcipher_request *subreq = &rctx->subreq;
257 
258 	init_crypt(req);
259 	return xor_tweak_pre(req) ?:
260 		crypto_skcipher_decrypt(subreq) ?:
261 		xor_tweak_post(req);
262 }
263 
264 static int init_tfm(struct crypto_skcipher *tfm)
265 {
266 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
267 	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
268 	struct priv *ctx = crypto_skcipher_ctx(tfm);
269 	struct crypto_skcipher *cipher;
270 
271 	cipher = crypto_spawn_skcipher(spawn);
272 	if (IS_ERR(cipher))
273 		return PTR_ERR(cipher);
274 
275 	ctx->child = cipher;
276 
277 	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
278 					 sizeof(struct rctx));
279 
280 	return 0;
281 }
282 
283 static void exit_tfm(struct crypto_skcipher *tfm)
284 {
285 	struct priv *ctx = crypto_skcipher_ctx(tfm);
286 
287 	if (ctx->table)
288 		gf128mul_free_64k(ctx->table);
289 	crypto_free_skcipher(ctx->child);
290 }
291 
292 static void free(struct skcipher_instance *inst)
293 {
294 	crypto_drop_skcipher(skcipher_instance_ctx(inst));
295 	kfree(inst);
296 }
297 
298 static int create(struct crypto_template *tmpl, struct rtattr **tb)
299 {
300 	struct crypto_skcipher_spawn *spawn;
301 	struct skcipher_instance *inst;
302 	struct crypto_attr_type *algt;
303 	struct skcipher_alg *alg;
304 	const char *cipher_name;
305 	char ecb_name[CRYPTO_MAX_ALG_NAME];
306 	int err;
307 
308 	algt = crypto_get_attr_type(tb);
309 	if (IS_ERR(algt))
310 		return PTR_ERR(algt);
311 
312 	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
313 		return -EINVAL;
314 
315 	cipher_name = crypto_attr_alg_name(tb[1]);
316 	if (IS_ERR(cipher_name))
317 		return PTR_ERR(cipher_name);
318 
319 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
320 	if (!inst)
321 		return -ENOMEM;
322 
323 	spawn = skcipher_instance_ctx(inst);
324 
325 	crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
326 	err = crypto_grab_skcipher(spawn, cipher_name, 0,
327 				   crypto_requires_sync(algt->type,
328 							algt->mask));
329 	if (err == -ENOENT) {
330 		err = -ENAMETOOLONG;
331 		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
332 			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
333 			goto err_free_inst;
334 
335 		err = crypto_grab_skcipher(spawn, ecb_name, 0,
336 					   crypto_requires_sync(algt->type,
337 								algt->mask));
338 	}
339 
340 	if (err)
341 		goto err_free_inst;
342 
343 	alg = crypto_skcipher_spawn_alg(spawn);
344 
345 	err = -EINVAL;
346 	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
347 		goto err_drop_spawn;
348 
349 	if (crypto_skcipher_alg_ivsize(alg))
350 		goto err_drop_spawn;
351 
352 	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
353 				  &alg->base);
354 	if (err)
355 		goto err_drop_spawn;
356 
357 	err = -EINVAL;
358 	cipher_name = alg->base.cra_name;
359 
360 	/* Alas we screwed up the naming so we have to mangle the
361 	 * cipher name.
362 	 */
363 	if (!strncmp(cipher_name, "ecb(", 4)) {
364 		unsigned len;
365 
366 		len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
367 		if (len < 2 || len >= sizeof(ecb_name))
368 			goto err_drop_spawn;
369 
370 		if (ecb_name[len - 1] != ')')
371 			goto err_drop_spawn;
372 
373 		ecb_name[len - 1] = 0;
374 
375 		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
376 			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
377 			err = -ENAMETOOLONG;
378 			goto err_drop_spawn;
379 		}
380 	} else
381 		goto err_drop_spawn;
382 
383 	inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
384 	inst->alg.base.cra_priority = alg->base.cra_priority;
385 	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
386 	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
387 				       (__alignof__(be128) - 1);
388 
389 	inst->alg.ivsize = LRW_BLOCK_SIZE;
390 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
391 				LRW_BLOCK_SIZE;
392 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
393 				LRW_BLOCK_SIZE;
394 
395 	inst->alg.base.cra_ctxsize = sizeof(struct priv);
396 
397 	inst->alg.init = init_tfm;
398 	inst->alg.exit = exit_tfm;
399 
400 	inst->alg.setkey = setkey;
401 	inst->alg.encrypt = encrypt;
402 	inst->alg.decrypt = decrypt;
403 
404 	inst->free = free;
405 
406 	err = skcipher_register_instance(tmpl, inst);
407 	if (err)
408 		goto err_drop_spawn;
409 
410 out:
411 	return err;
412 
413 err_drop_spawn:
414 	crypto_drop_skcipher(spawn);
415 err_free_inst:
416 	kfree(inst);
417 	goto out;
418 }
419 
420 static struct crypto_template crypto_tmpl = {
421 	.name = "lrw",
422 	.create = create,
423 	.module = THIS_MODULE,
424 };
425 
426 static int __init crypto_module_init(void)
427 {
428 	return crypto_register_template(&crypto_tmpl);
429 }
430 
431 static void __exit crypto_module_exit(void)
432 {
433 	crypto_unregister_template(&crypto_tmpl);
434 }
435 
436 subsys_initcall(crypto_module_init);
437 module_exit(crypto_module_exit);
438 
439 MODULE_LICENSE("GPL");
440 MODULE_DESCRIPTION("LRW block cipher mode");
441 MODULE_ALIAS_CRYPTO("lrw");
442