xref: /openbmc/linux/crypto/lrw.c (revision 93dc544c)
1 /* LRW: as defined by Cyril Guyot in
2  *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
3  *
4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based om ecb.c
7  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  */
14 /* This implementation is checked against the test vectors in the above
15  * document and by a test vector provided by Ken Buchanan at
16  * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
17  *
18  * The test vectors are included in the testing module tcrypt.[ch] */
19 #include <crypto/algapi.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/slab.h>
26 
27 #include <crypto/b128ops.h>
28 #include <crypto/gf128mul.h>
29 
30 struct priv {
31 	struct crypto_cipher *child;
32 	/* optimizes multiplying a random (non incrementing, as at the
33 	 * start of a new sector) value with key2, we could also have
34 	 * used 4k optimization tables or no optimization at all. In the
35 	 * latter case we would have to store key2 here */
36 	struct gf128mul_64k *table;
37 	/* stores:
38 	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
39 	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
40 	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
41 	 * needed for optimized multiplication of incrementing values
42 	 * with key2 */
43 	be128 mulinc[128];
44 };
45 
46 static inline void setbit128_bbe(void *b, int bit)
47 {
48 	__set_bit(bit ^ 0x78, b);
49 }
50 
51 static int setkey(struct crypto_tfm *parent, const u8 *key,
52 		  unsigned int keylen)
53 {
54 	struct priv *ctx = crypto_tfm_ctx(parent);
55 	struct crypto_cipher *child = ctx->child;
56 	int err, i;
57 	be128 tmp = { 0 };
58 	int bsize = crypto_cipher_blocksize(child);
59 
60 	crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
61 	crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
62 				       CRYPTO_TFM_REQ_MASK);
63 	if ((err = crypto_cipher_setkey(child, key, keylen - bsize)))
64 		return err;
65 	crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
66 				     CRYPTO_TFM_RES_MASK);
67 
68 	if (ctx->table)
69 		gf128mul_free_64k(ctx->table);
70 
71 	/* initialize multiplication table for Key2 */
72 	ctx->table = gf128mul_init_64k_bbe((be128 *)(key + keylen - bsize));
73 	if (!ctx->table)
74 		return -ENOMEM;
75 
76 	/* initialize optimization table */
77 	for (i = 0; i < 128; i++) {
78 		setbit128_bbe(&tmp, i);
79 		ctx->mulinc[i] = tmp;
80 		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
81 	}
82 
83 	return 0;
84 }
85 
86 struct sinfo {
87 	be128 t;
88 	struct crypto_tfm *tfm;
89 	void (*fn)(struct crypto_tfm *, u8 *, const u8 *);
90 };
91 
92 static inline void inc(be128 *iv)
93 {
94 	be64_add_cpu(&iv->b, 1);
95 	if (!iv->b)
96 		be64_add_cpu(&iv->a, 1);
97 }
98 
99 static inline void lrw_round(struct sinfo *s, void *dst, const void *src)
100 {
101 	be128_xor(dst, &s->t, src);		/* PP <- T xor P */
102 	s->fn(s->tfm, dst, dst);		/* CC <- E(Key2,PP) */
103 	be128_xor(dst, dst, &s->t);		/* C <- T xor CC */
104 }
105 
106 /* this returns the number of consequative 1 bits starting
107  * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
108 static inline int get_index128(be128 *block)
109 {
110 	int x;
111 	__be32 *p = (__be32 *) block;
112 
113 	for (p += 3, x = 0; x < 128; p--, x += 32) {
114 		u32 val = be32_to_cpup(p);
115 
116 		if (!~val)
117 			continue;
118 
119 		return x + ffz(val);
120 	}
121 
122 	return x;
123 }
124 
125 static int crypt(struct blkcipher_desc *d,
126 		 struct blkcipher_walk *w, struct priv *ctx,
127 		 void (*fn)(struct crypto_tfm *, u8 *, const u8 *))
128 {
129 	int err;
130 	unsigned int avail;
131 	const int bs = crypto_cipher_blocksize(ctx->child);
132 	struct sinfo s = {
133 		.tfm = crypto_cipher_tfm(ctx->child),
134 		.fn = fn
135 	};
136 	be128 *iv;
137 	u8 *wsrc;
138 	u8 *wdst;
139 
140 	err = blkcipher_walk_virt(d, w);
141 	if (!(avail = w->nbytes))
142 		return err;
143 
144 	wsrc = w->src.virt.addr;
145 	wdst = w->dst.virt.addr;
146 
147 	/* calculate first value of T */
148 	iv = (be128 *)w->iv;
149 	s.t = *iv;
150 
151 	/* T <- I*Key2 */
152 	gf128mul_64k_bbe(&s.t, ctx->table);
153 
154 	goto first;
155 
156 	for (;;) {
157 		do {
158 			/* T <- I*Key2, using the optimization
159 			 * discussed in the specification */
160 			be128_xor(&s.t, &s.t, &ctx->mulinc[get_index128(iv)]);
161 			inc(iv);
162 
163 first:
164 			lrw_round(&s, wdst, wsrc);
165 
166 			wsrc += bs;
167 			wdst += bs;
168 		} while ((avail -= bs) >= bs);
169 
170 		err = blkcipher_walk_done(d, w, avail);
171 		if (!(avail = w->nbytes))
172 			break;
173 
174 		wsrc = w->src.virt.addr;
175 		wdst = w->dst.virt.addr;
176 	}
177 
178 	return err;
179 }
180 
181 static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
182 		   struct scatterlist *src, unsigned int nbytes)
183 {
184 	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
185 	struct blkcipher_walk w;
186 
187 	blkcipher_walk_init(&w, dst, src, nbytes);
188 	return crypt(desc, &w, ctx,
189 		     crypto_cipher_alg(ctx->child)->cia_encrypt);
190 }
191 
192 static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
193 		   struct scatterlist *src, unsigned int nbytes)
194 {
195 	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
196 	struct blkcipher_walk w;
197 
198 	blkcipher_walk_init(&w, dst, src, nbytes);
199 	return crypt(desc, &w, ctx,
200 		     crypto_cipher_alg(ctx->child)->cia_decrypt);
201 }
202 
203 static int init_tfm(struct crypto_tfm *tfm)
204 {
205 	struct crypto_cipher *cipher;
206 	struct crypto_instance *inst = (void *)tfm->__crt_alg;
207 	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
208 	struct priv *ctx = crypto_tfm_ctx(tfm);
209 	u32 *flags = &tfm->crt_flags;
210 
211 	cipher = crypto_spawn_cipher(spawn);
212 	if (IS_ERR(cipher))
213 		return PTR_ERR(cipher);
214 
215 	if (crypto_cipher_blocksize(cipher) != 16) {
216 		*flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
217 		return -EINVAL;
218 	}
219 
220 	ctx->child = cipher;
221 	return 0;
222 }
223 
224 static void exit_tfm(struct crypto_tfm *tfm)
225 {
226 	struct priv *ctx = crypto_tfm_ctx(tfm);
227 	if (ctx->table)
228 		gf128mul_free_64k(ctx->table);
229 	crypto_free_cipher(ctx->child);
230 }
231 
232 static struct crypto_instance *alloc(struct rtattr **tb)
233 {
234 	struct crypto_instance *inst;
235 	struct crypto_alg *alg;
236 	int err;
237 
238 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
239 	if (err)
240 		return ERR_PTR(err);
241 
242 	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
243 				  CRYPTO_ALG_TYPE_MASK);
244 	if (IS_ERR(alg))
245 		return ERR_CAST(alg);
246 
247 	inst = crypto_alloc_instance("lrw", alg);
248 	if (IS_ERR(inst))
249 		goto out_put_alg;
250 
251 	inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
252 	inst->alg.cra_priority = alg->cra_priority;
253 	inst->alg.cra_blocksize = alg->cra_blocksize;
254 
255 	if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7;
256 	else inst->alg.cra_alignmask = alg->cra_alignmask;
257 	inst->alg.cra_type = &crypto_blkcipher_type;
258 
259 	if (!(alg->cra_blocksize % 4))
260 		inst->alg.cra_alignmask |= 3;
261 	inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize;
262 	inst->alg.cra_blkcipher.min_keysize =
263 		alg->cra_cipher.cia_min_keysize + alg->cra_blocksize;
264 	inst->alg.cra_blkcipher.max_keysize =
265 		alg->cra_cipher.cia_max_keysize + alg->cra_blocksize;
266 
267 	inst->alg.cra_ctxsize = sizeof(struct priv);
268 
269 	inst->alg.cra_init = init_tfm;
270 	inst->alg.cra_exit = exit_tfm;
271 
272 	inst->alg.cra_blkcipher.setkey = setkey;
273 	inst->alg.cra_blkcipher.encrypt = encrypt;
274 	inst->alg.cra_blkcipher.decrypt = decrypt;
275 
276 out_put_alg:
277 	crypto_mod_put(alg);
278 	return inst;
279 }
280 
281 static void free(struct crypto_instance *inst)
282 {
283 	crypto_drop_spawn(crypto_instance_ctx(inst));
284 	kfree(inst);
285 }
286 
287 static struct crypto_template crypto_tmpl = {
288 	.name = "lrw",
289 	.alloc = alloc,
290 	.free = free,
291 	.module = THIS_MODULE,
292 };
293 
294 static int __init crypto_module_init(void)
295 {
296 	return crypto_register_template(&crypto_tmpl);
297 }
298 
299 static void __exit crypto_module_exit(void)
300 {
301 	crypto_unregister_template(&crypto_tmpl);
302 }
303 
304 module_init(crypto_module_init);
305 module_exit(crypto_module_exit);
306 
307 MODULE_LICENSE("GPL");
308 MODULE_DESCRIPTION("LRW block cipher mode");
309