xref: /openbmc/linux/crypto/lrw.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /* LRW: as defined by Cyril Guyot in
2  *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
3  *
4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based on ecb.c
7  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  */
14 /* This implementation is checked against the test vectors in the above
15  * document and by a test vector provided by Ken Buchanan at
16  * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
17  *
18  * The test vectors are included in the testing module tcrypt.[ch] */
19 
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/slab.h>
28 
29 #include <crypto/b128ops.h>
30 #include <crypto/gf128mul.h>
31 #include <crypto/lrw.h>
32 
33 #define LRW_BUFFER_SIZE 128u
34 
35 struct priv {
36 	struct crypto_skcipher *child;
37 	struct lrw_table_ctx table;
38 };
39 
40 struct rctx {
41 	be128 buf[LRW_BUFFER_SIZE / sizeof(be128)];
42 
43 	be128 t;
44 
45 	be128 *ext;
46 
47 	struct scatterlist srcbuf[2];
48 	struct scatterlist dstbuf[2];
49 	struct scatterlist *src;
50 	struct scatterlist *dst;
51 
52 	unsigned int left;
53 
54 	struct skcipher_request subreq;
55 };
56 
57 static inline void setbit128_bbe(void *b, int bit)
58 {
59 	__set_bit(bit ^ (0x80 -
60 #ifdef __BIG_ENDIAN
61 			 BITS_PER_LONG
62 #else
63 			 BITS_PER_BYTE
64 #endif
65 			), b);
66 }
67 
68 int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
69 {
70 	be128 tmp = { 0 };
71 	int i;
72 
73 	if (ctx->table)
74 		gf128mul_free_64k(ctx->table);
75 
76 	/* initialize multiplication table for Key2 */
77 	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
78 	if (!ctx->table)
79 		return -ENOMEM;
80 
81 	/* initialize optimization table */
82 	for (i = 0; i < 128; i++) {
83 		setbit128_bbe(&tmp, i);
84 		ctx->mulinc[i] = tmp;
85 		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
86 	}
87 
88 	return 0;
89 }
90 EXPORT_SYMBOL_GPL(lrw_init_table);
91 
92 void lrw_free_table(struct lrw_table_ctx *ctx)
93 {
94 	if (ctx->table)
95 		gf128mul_free_64k(ctx->table);
96 }
97 EXPORT_SYMBOL_GPL(lrw_free_table);
98 
99 static int setkey(struct crypto_skcipher *parent, const u8 *key,
100 		  unsigned int keylen)
101 {
102 	struct priv *ctx = crypto_skcipher_ctx(parent);
103 	struct crypto_skcipher *child = ctx->child;
104 	int err, bsize = LRW_BLOCK_SIZE;
105 	const u8 *tweak = key + keylen - bsize;
106 
107 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
108 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
109 					 CRYPTO_TFM_REQ_MASK);
110 	err = crypto_skcipher_setkey(child, key, keylen - bsize);
111 	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
112 					  CRYPTO_TFM_RES_MASK);
113 	if (err)
114 		return err;
115 
116 	return lrw_init_table(&ctx->table, tweak);
117 }
118 
119 static inline void inc(be128 *iv)
120 {
121 	be64_add_cpu(&iv->b, 1);
122 	if (!iv->b)
123 		be64_add_cpu(&iv->a, 1);
124 }
125 
126 /* this returns the number of consequative 1 bits starting
127  * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
128 static inline int get_index128(be128 *block)
129 {
130 	int x;
131 	__be32 *p = (__be32 *) block;
132 
133 	for (p += 3, x = 0; x < 128; p--, x += 32) {
134 		u32 val = be32_to_cpup(p);
135 
136 		if (!~val)
137 			continue;
138 
139 		return x + ffz(val);
140 	}
141 
142 	return x;
143 }
144 
145 static int post_crypt(struct skcipher_request *req)
146 {
147 	struct rctx *rctx = skcipher_request_ctx(req);
148 	be128 *buf = rctx->ext ?: rctx->buf;
149 	struct skcipher_request *subreq;
150 	const int bs = LRW_BLOCK_SIZE;
151 	struct skcipher_walk w;
152 	struct scatterlist *sg;
153 	unsigned offset;
154 	int err;
155 
156 	subreq = &rctx->subreq;
157 	err = skcipher_walk_virt(&w, subreq, false);
158 
159 	while (w.nbytes) {
160 		unsigned int avail = w.nbytes;
161 		be128 *wdst;
162 
163 		wdst = w.dst.virt.addr;
164 
165 		do {
166 			be128_xor(wdst, buf++, wdst);
167 			wdst++;
168 		} while ((avail -= bs) >= bs);
169 
170 		err = skcipher_walk_done(&w, avail);
171 	}
172 
173 	rctx->left -= subreq->cryptlen;
174 
175 	if (err || !rctx->left)
176 		goto out;
177 
178 	rctx->dst = rctx->dstbuf;
179 
180 	scatterwalk_done(&w.out, 0, 1);
181 	sg = w.out.sg;
182 	offset = w.out.offset;
183 
184 	if (rctx->dst != sg) {
185 		rctx->dst[0] = *sg;
186 		sg_unmark_end(rctx->dst);
187 		scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 0, 2);
188 	}
189 	rctx->dst[0].length -= offset - sg->offset;
190 	rctx->dst[0].offset = offset;
191 
192 out:
193 	return err;
194 }
195 
196 static int pre_crypt(struct skcipher_request *req)
197 {
198 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
199 	struct rctx *rctx = skcipher_request_ctx(req);
200 	struct priv *ctx = crypto_skcipher_ctx(tfm);
201 	be128 *buf = rctx->ext ?: rctx->buf;
202 	struct skcipher_request *subreq;
203 	const int bs = LRW_BLOCK_SIZE;
204 	struct skcipher_walk w;
205 	struct scatterlist *sg;
206 	unsigned cryptlen;
207 	unsigned offset;
208 	be128 *iv;
209 	bool more;
210 	int err;
211 
212 	subreq = &rctx->subreq;
213 	skcipher_request_set_tfm(subreq, tfm);
214 
215 	cryptlen = subreq->cryptlen;
216 	more = rctx->left > cryptlen;
217 	if (!more)
218 		cryptlen = rctx->left;
219 
220 	skcipher_request_set_crypt(subreq, rctx->src, rctx->dst,
221 				   cryptlen, req->iv);
222 
223 	err = skcipher_walk_virt(&w, subreq, false);
224 	iv = w.iv;
225 
226 	while (w.nbytes) {
227 		unsigned int avail = w.nbytes;
228 		be128 *wsrc;
229 		be128 *wdst;
230 
231 		wsrc = w.src.virt.addr;
232 		wdst = w.dst.virt.addr;
233 
234 		do {
235 			*buf++ = rctx->t;
236 			be128_xor(wdst++, &rctx->t, wsrc++);
237 
238 			/* T <- I*Key2, using the optimization
239 			 * discussed in the specification */
240 			be128_xor(&rctx->t, &rctx->t,
241 				  &ctx->table.mulinc[get_index128(iv)]);
242 			inc(iv);
243 		} while ((avail -= bs) >= bs);
244 
245 		err = skcipher_walk_done(&w, avail);
246 	}
247 
248 	skcipher_request_set_tfm(subreq, ctx->child);
249 	skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst,
250 				   cryptlen, NULL);
251 
252 	if (err || !more)
253 		goto out;
254 
255 	rctx->src = rctx->srcbuf;
256 
257 	scatterwalk_done(&w.in, 0, 1);
258 	sg = w.in.sg;
259 	offset = w.in.offset;
260 
261 	if (rctx->src != sg) {
262 		rctx->src[0] = *sg;
263 		sg_unmark_end(rctx->src);
264 		scatterwalk_crypto_chain(rctx->src, sg_next(sg), 0, 2);
265 	}
266 	rctx->src[0].length -= offset - sg->offset;
267 	rctx->src[0].offset = offset;
268 
269 out:
270 	return err;
271 }
272 
273 static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
274 {
275 	struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
276 	struct rctx *rctx = skcipher_request_ctx(req);
277 	struct skcipher_request *subreq;
278 	gfp_t gfp;
279 
280 	subreq = &rctx->subreq;
281 	skcipher_request_set_callback(subreq, req->base.flags, done, req);
282 
283 	gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
284 							   GFP_ATOMIC;
285 	rctx->ext = NULL;
286 
287 	subreq->cryptlen = LRW_BUFFER_SIZE;
288 	if (req->cryptlen > LRW_BUFFER_SIZE) {
289 		unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE);
290 
291 		rctx->ext = kmalloc(n, gfp);
292 		if (rctx->ext)
293 			subreq->cryptlen = n;
294 	}
295 
296 	rctx->src = req->src;
297 	rctx->dst = req->dst;
298 	rctx->left = req->cryptlen;
299 
300 	/* calculate first value of T */
301 	memcpy(&rctx->t, req->iv, sizeof(rctx->t));
302 
303 	/* T <- I*Key2 */
304 	gf128mul_64k_bbe(&rctx->t, ctx->table.table);
305 
306 	return 0;
307 }
308 
309 static void exit_crypt(struct skcipher_request *req)
310 {
311 	struct rctx *rctx = skcipher_request_ctx(req);
312 
313 	rctx->left = 0;
314 
315 	if (rctx->ext)
316 		kfree(rctx->ext);
317 }
318 
319 static int do_encrypt(struct skcipher_request *req, int err)
320 {
321 	struct rctx *rctx = skcipher_request_ctx(req);
322 	struct skcipher_request *subreq;
323 
324 	subreq = &rctx->subreq;
325 
326 	while (!err && rctx->left) {
327 		err = pre_crypt(req) ?:
328 		      crypto_skcipher_encrypt(subreq) ?:
329 		      post_crypt(req);
330 
331 		if (err == -EINPROGRESS || err == -EBUSY)
332 			return err;
333 	}
334 
335 	exit_crypt(req);
336 	return err;
337 }
338 
339 static void encrypt_done(struct crypto_async_request *areq, int err)
340 {
341 	struct skcipher_request *req = areq->data;
342 	struct skcipher_request *subreq;
343 	struct rctx *rctx;
344 
345 	rctx = skcipher_request_ctx(req);
346 
347 	if (err == -EINPROGRESS) {
348 		if (rctx->left != req->cryptlen)
349 			return;
350 		goto out;
351 	}
352 
353 	subreq = &rctx->subreq;
354 	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
355 
356 	err = do_encrypt(req, err ?: post_crypt(req));
357 	if (rctx->left)
358 		return;
359 
360 out:
361 	skcipher_request_complete(req, err);
362 }
363 
364 static int encrypt(struct skcipher_request *req)
365 {
366 	return do_encrypt(req, init_crypt(req, encrypt_done));
367 }
368 
369 static int do_decrypt(struct skcipher_request *req, int err)
370 {
371 	struct rctx *rctx = skcipher_request_ctx(req);
372 	struct skcipher_request *subreq;
373 
374 	subreq = &rctx->subreq;
375 
376 	while (!err && rctx->left) {
377 		err = pre_crypt(req) ?:
378 		      crypto_skcipher_decrypt(subreq) ?:
379 		      post_crypt(req);
380 
381 		if (err == -EINPROGRESS || err == -EBUSY)
382 			return err;
383 	}
384 
385 	exit_crypt(req);
386 	return err;
387 }
388 
389 static void decrypt_done(struct crypto_async_request *areq, int err)
390 {
391 	struct skcipher_request *req = areq->data;
392 	struct skcipher_request *subreq;
393 	struct rctx *rctx;
394 
395 	rctx = skcipher_request_ctx(req);
396 
397 	if (err == -EINPROGRESS) {
398 		if (rctx->left != req->cryptlen)
399 			return;
400 		goto out;
401 	}
402 
403 	subreq = &rctx->subreq;
404 	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
405 
406 	err = do_decrypt(req, err ?: post_crypt(req));
407 	if (rctx->left)
408 		return;
409 
410 out:
411 	skcipher_request_complete(req, err);
412 }
413 
414 static int decrypt(struct skcipher_request *req)
415 {
416 	return do_decrypt(req, init_crypt(req, decrypt_done));
417 }
418 
419 int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *sdst,
420 	      struct scatterlist *ssrc, unsigned int nbytes,
421 	      struct lrw_crypt_req *req)
422 {
423 	const unsigned int bsize = LRW_BLOCK_SIZE;
424 	const unsigned int max_blks = req->tbuflen / bsize;
425 	struct lrw_table_ctx *ctx = req->table_ctx;
426 	struct blkcipher_walk walk;
427 	unsigned int nblocks;
428 	be128 *iv, *src, *dst, *t;
429 	be128 *t_buf = req->tbuf;
430 	int err, i;
431 
432 	BUG_ON(max_blks < 1);
433 
434 	blkcipher_walk_init(&walk, sdst, ssrc, nbytes);
435 
436 	err = blkcipher_walk_virt(desc, &walk);
437 	nbytes = walk.nbytes;
438 	if (!nbytes)
439 		return err;
440 
441 	nblocks = min(walk.nbytes / bsize, max_blks);
442 	src = (be128 *)walk.src.virt.addr;
443 	dst = (be128 *)walk.dst.virt.addr;
444 
445 	/* calculate first value of T */
446 	iv = (be128 *)walk.iv;
447 	t_buf[0] = *iv;
448 
449 	/* T <- I*Key2 */
450 	gf128mul_64k_bbe(&t_buf[0], ctx->table);
451 
452 	i = 0;
453 	goto first;
454 
455 	for (;;) {
456 		do {
457 			for (i = 0; i < nblocks; i++) {
458 				/* T <- I*Key2, using the optimization
459 				 * discussed in the specification */
460 				be128_xor(&t_buf[i], t,
461 						&ctx->mulinc[get_index128(iv)]);
462 				inc(iv);
463 first:
464 				t = &t_buf[i];
465 
466 				/* PP <- T xor P */
467 				be128_xor(dst + i, t, src + i);
468 			}
469 
470 			/* CC <- E(Key2,PP) */
471 			req->crypt_fn(req->crypt_ctx, (u8 *)dst,
472 				      nblocks * bsize);
473 
474 			/* C <- T xor CC */
475 			for (i = 0; i < nblocks; i++)
476 				be128_xor(dst + i, dst + i, &t_buf[i]);
477 
478 			src += nblocks;
479 			dst += nblocks;
480 			nbytes -= nblocks * bsize;
481 			nblocks = min(nbytes / bsize, max_blks);
482 		} while (nblocks > 0);
483 
484 		err = blkcipher_walk_done(desc, &walk, nbytes);
485 		nbytes = walk.nbytes;
486 		if (!nbytes)
487 			break;
488 
489 		nblocks = min(nbytes / bsize, max_blks);
490 		src = (be128 *)walk.src.virt.addr;
491 		dst = (be128 *)walk.dst.virt.addr;
492 	}
493 
494 	return err;
495 }
496 EXPORT_SYMBOL_GPL(lrw_crypt);
497 
498 static int init_tfm(struct crypto_skcipher *tfm)
499 {
500 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
501 	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
502 	struct priv *ctx = crypto_skcipher_ctx(tfm);
503 	struct crypto_skcipher *cipher;
504 
505 	cipher = crypto_spawn_skcipher(spawn);
506 	if (IS_ERR(cipher))
507 		return PTR_ERR(cipher);
508 
509 	ctx->child = cipher;
510 
511 	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
512 					 sizeof(struct rctx));
513 
514 	return 0;
515 }
516 
517 static void exit_tfm(struct crypto_skcipher *tfm)
518 {
519 	struct priv *ctx = crypto_skcipher_ctx(tfm);
520 
521 	lrw_free_table(&ctx->table);
522 	crypto_free_skcipher(ctx->child);
523 }
524 
525 static void free(struct skcipher_instance *inst)
526 {
527 	crypto_drop_skcipher(skcipher_instance_ctx(inst));
528 	kfree(inst);
529 }
530 
531 static int create(struct crypto_template *tmpl, struct rtattr **tb)
532 {
533 	struct crypto_skcipher_spawn *spawn;
534 	struct skcipher_instance *inst;
535 	struct crypto_attr_type *algt;
536 	struct skcipher_alg *alg;
537 	const char *cipher_name;
538 	char ecb_name[CRYPTO_MAX_ALG_NAME];
539 	int err;
540 
541 	algt = crypto_get_attr_type(tb);
542 	if (IS_ERR(algt))
543 		return PTR_ERR(algt);
544 
545 	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
546 		return -EINVAL;
547 
548 	cipher_name = crypto_attr_alg_name(tb[1]);
549 	if (IS_ERR(cipher_name))
550 		return PTR_ERR(cipher_name);
551 
552 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
553 	if (!inst)
554 		return -ENOMEM;
555 
556 	spawn = skcipher_instance_ctx(inst);
557 
558 	crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
559 	err = crypto_grab_skcipher(spawn, cipher_name, 0,
560 				   crypto_requires_sync(algt->type,
561 							algt->mask));
562 	if (err == -ENOENT) {
563 		err = -ENAMETOOLONG;
564 		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
565 			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
566 			goto err_free_inst;
567 
568 		err = crypto_grab_skcipher(spawn, ecb_name, 0,
569 					   crypto_requires_sync(algt->type,
570 								algt->mask));
571 	}
572 
573 	if (err)
574 		goto err_free_inst;
575 
576 	alg = crypto_skcipher_spawn_alg(spawn);
577 
578 	err = -EINVAL;
579 	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
580 		goto err_drop_spawn;
581 
582 	if (crypto_skcipher_alg_ivsize(alg))
583 		goto err_drop_spawn;
584 
585 	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
586 				  &alg->base);
587 	if (err)
588 		goto err_drop_spawn;
589 
590 	err = -EINVAL;
591 	cipher_name = alg->base.cra_name;
592 
593 	/* Alas we screwed up the naming so we have to mangle the
594 	 * cipher name.
595 	 */
596 	if (!strncmp(cipher_name, "ecb(", 4)) {
597 		unsigned len;
598 
599 		len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
600 		if (len < 2 || len >= sizeof(ecb_name))
601 			goto err_drop_spawn;
602 
603 		if (ecb_name[len - 1] != ')')
604 			goto err_drop_spawn;
605 
606 		ecb_name[len - 1] = 0;
607 
608 		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
609 			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
610 			err = -ENAMETOOLONG;
611 			goto err_drop_spawn;
612 		}
613 	} else
614 		goto err_drop_spawn;
615 
616 	inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
617 	inst->alg.base.cra_priority = alg->base.cra_priority;
618 	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
619 	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
620 				       (__alignof__(u64) - 1);
621 
622 	inst->alg.ivsize = LRW_BLOCK_SIZE;
623 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
624 				LRW_BLOCK_SIZE;
625 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
626 				LRW_BLOCK_SIZE;
627 
628 	inst->alg.base.cra_ctxsize = sizeof(struct priv);
629 
630 	inst->alg.init = init_tfm;
631 	inst->alg.exit = exit_tfm;
632 
633 	inst->alg.setkey = setkey;
634 	inst->alg.encrypt = encrypt;
635 	inst->alg.decrypt = decrypt;
636 
637 	inst->free = free;
638 
639 	err = skcipher_register_instance(tmpl, inst);
640 	if (err)
641 		goto err_drop_spawn;
642 
643 out:
644 	return err;
645 
646 err_drop_spawn:
647 	crypto_drop_skcipher(spawn);
648 err_free_inst:
649 	kfree(inst);
650 	goto out;
651 }
652 
653 static struct crypto_template crypto_tmpl = {
654 	.name = "lrw",
655 	.create = create,
656 	.module = THIS_MODULE,
657 };
658 
659 static int __init crypto_module_init(void)
660 {
661 	return crypto_register_template(&crypto_tmpl);
662 }
663 
664 static void __exit crypto_module_exit(void)
665 {
666 	crypto_unregister_template(&crypto_tmpl);
667 }
668 
669 module_init(crypto_module_init);
670 module_exit(crypto_module_exit);
671 
672 MODULE_LICENSE("GPL");
673 MODULE_DESCRIPTION("LRW block cipher mode");
674 MODULE_ALIAS_CRYPTO("lrw");
675