xref: /openbmc/linux/crypto/lrw.c (revision 2b8232ce)
1 /* LRW: as defined by Cyril Guyot in
2  *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
3  *
4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based om ecb.c
7  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  */
14 /* This implementation is checked against the test vectors in the above
15  * document and by a test vector provided by Ken Buchanan at
16  * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
17  *
18  * The test vectors are included in the testing module tcrypt.[ch] */
19 #include <crypto/algapi.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/slab.h>
26 
27 #include <crypto/b128ops.h>
28 #include <crypto/gf128mul.h>
29 
30 struct priv {
31 	struct crypto_cipher *child;
32 	/* optimizes multiplying a random (non incrementing, as at the
33 	 * start of a new sector) value with key2, we could also have
34 	 * used 4k optimization tables or no optimization at all. In the
35 	 * latter case we would have to store key2 here */
36 	struct gf128mul_64k *table;
37 	/* stores:
38 	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
39 	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
40 	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
41 	 * needed for optimized multiplication of incrementing values
42 	 * with key2 */
43 	be128 mulinc[128];
44 };
45 
46 static inline void setbit128_bbe(void *b, int bit)
47 {
48 	__set_bit(bit ^ 0x78, b);
49 }
50 
51 static int setkey(struct crypto_tfm *parent, const u8 *key,
52 		  unsigned int keylen)
53 {
54 	struct priv *ctx = crypto_tfm_ctx(parent);
55 	struct crypto_cipher *child = ctx->child;
56 	int err, i;
57 	be128 tmp = { 0 };
58 	int bsize = crypto_cipher_blocksize(child);
59 
60 	crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
61 	crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
62 				       CRYPTO_TFM_REQ_MASK);
63 	if ((err = crypto_cipher_setkey(child, key, keylen - bsize)))
64 		return err;
65 	crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
66 				     CRYPTO_TFM_RES_MASK);
67 
68 	if (ctx->table)
69 		gf128mul_free_64k(ctx->table);
70 
71 	/* initialize multiplication table for Key2 */
72 	ctx->table = gf128mul_init_64k_bbe((be128 *)(key + keylen - bsize));
73 	if (!ctx->table)
74 		return -ENOMEM;
75 
76 	/* initialize optimization table */
77 	for (i = 0; i < 128; i++) {
78 		setbit128_bbe(&tmp, i);
79 		ctx->mulinc[i] = tmp;
80 		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
81 	}
82 
83 	return 0;
84 }
85 
86 struct sinfo {
87 	be128 t;
88 	struct crypto_tfm *tfm;
89 	void (*fn)(struct crypto_tfm *, u8 *, const u8 *);
90 };
91 
92 static inline void inc(be128 *iv)
93 {
94 	if (!(iv->b = cpu_to_be64(be64_to_cpu(iv->b) + 1)))
95 		iv->a = cpu_to_be64(be64_to_cpu(iv->a) + 1);
96 }
97 
98 static inline void lrw_round(struct sinfo *s, void *dst, const void *src)
99 {
100 	be128_xor(dst, &s->t, src);		/* PP <- T xor P */
101 	s->fn(s->tfm, dst, dst);		/* CC <- E(Key2,PP) */
102 	be128_xor(dst, dst, &s->t);		/* C <- T xor CC */
103 }
104 
105 /* this returns the number of consequative 1 bits starting
106  * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
107 static inline int get_index128(be128 *block)
108 {
109 	int x;
110 	__be32 *p = (__be32 *) block;
111 
112 	for (p += 3, x = 0; x < 128; p--, x += 32) {
113 		u32 val = be32_to_cpup(p);
114 
115 		if (!~val)
116 			continue;
117 
118 		return x + ffz(val);
119 	}
120 
121 	return x;
122 }
123 
124 static int crypt(struct blkcipher_desc *d,
125 		 struct blkcipher_walk *w, struct priv *ctx,
126 		 void (*fn)(struct crypto_tfm *, u8 *, const u8 *))
127 {
128 	int err;
129 	unsigned int avail;
130 	const int bs = crypto_cipher_blocksize(ctx->child);
131 	struct sinfo s = {
132 		.tfm = crypto_cipher_tfm(ctx->child),
133 		.fn = fn
134 	};
135 	be128 *iv;
136 	u8 *wsrc;
137 	u8 *wdst;
138 
139 	err = blkcipher_walk_virt(d, w);
140 	if (!(avail = w->nbytes))
141 		return err;
142 
143 	wsrc = w->src.virt.addr;
144 	wdst = w->dst.virt.addr;
145 
146 	/* calculate first value of T */
147 	iv = (be128 *)w->iv;
148 	s.t = *iv;
149 
150 	/* T <- I*Key2 */
151 	gf128mul_64k_bbe(&s.t, ctx->table);
152 
153 	goto first;
154 
155 	for (;;) {
156 		do {
157 			/* T <- I*Key2, using the optimization
158 			 * discussed in the specification */
159 			be128_xor(&s.t, &s.t, &ctx->mulinc[get_index128(iv)]);
160 			inc(iv);
161 
162 first:
163 			lrw_round(&s, wdst, wsrc);
164 
165 			wsrc += bs;
166 			wdst += bs;
167 		} while ((avail -= bs) >= bs);
168 
169 		err = blkcipher_walk_done(d, w, avail);
170 		if (!(avail = w->nbytes))
171 			break;
172 
173 		wsrc = w->src.virt.addr;
174 		wdst = w->dst.virt.addr;
175 	}
176 
177 	return err;
178 }
179 
180 static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
181 		   struct scatterlist *src, unsigned int nbytes)
182 {
183 	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
184 	struct blkcipher_walk w;
185 
186 	blkcipher_walk_init(&w, dst, src, nbytes);
187 	return crypt(desc, &w, ctx,
188 		     crypto_cipher_alg(ctx->child)->cia_encrypt);
189 }
190 
191 static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
192 		   struct scatterlist *src, unsigned int nbytes)
193 {
194 	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
195 	struct blkcipher_walk w;
196 
197 	blkcipher_walk_init(&w, dst, src, nbytes);
198 	return crypt(desc, &w, ctx,
199 		     crypto_cipher_alg(ctx->child)->cia_decrypt);
200 }
201 
202 static int init_tfm(struct crypto_tfm *tfm)
203 {
204 	struct crypto_cipher *cipher;
205 	struct crypto_instance *inst = (void *)tfm->__crt_alg;
206 	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
207 	struct priv *ctx = crypto_tfm_ctx(tfm);
208 	u32 *flags = &tfm->crt_flags;
209 
210 	cipher = crypto_spawn_cipher(spawn);
211 	if (IS_ERR(cipher))
212 		return PTR_ERR(cipher);
213 
214 	if (crypto_cipher_blocksize(cipher) != 16) {
215 		*flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
216 		return -EINVAL;
217 	}
218 
219 	ctx->child = cipher;
220 	return 0;
221 }
222 
223 static void exit_tfm(struct crypto_tfm *tfm)
224 {
225 	struct priv *ctx = crypto_tfm_ctx(tfm);
226 	if (ctx->table)
227 		gf128mul_free_64k(ctx->table);
228 	crypto_free_cipher(ctx->child);
229 }
230 
231 static struct crypto_instance *alloc(struct rtattr **tb)
232 {
233 	struct crypto_instance *inst;
234 	struct crypto_alg *alg;
235 	int err;
236 
237 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
238 	if (err)
239 		return ERR_PTR(err);
240 
241 	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
242 				  CRYPTO_ALG_TYPE_MASK);
243 	if (IS_ERR(alg))
244 		return ERR_PTR(PTR_ERR(alg));
245 
246 	inst = crypto_alloc_instance("lrw", alg);
247 	if (IS_ERR(inst))
248 		goto out_put_alg;
249 
250 	inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
251 	inst->alg.cra_priority = alg->cra_priority;
252 	inst->alg.cra_blocksize = alg->cra_blocksize;
253 
254 	if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7;
255 	else inst->alg.cra_alignmask = alg->cra_alignmask;
256 	inst->alg.cra_type = &crypto_blkcipher_type;
257 
258 	if (!(alg->cra_blocksize % 4))
259 		inst->alg.cra_alignmask |= 3;
260 	inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize;
261 	inst->alg.cra_blkcipher.min_keysize =
262 		alg->cra_cipher.cia_min_keysize + alg->cra_blocksize;
263 	inst->alg.cra_blkcipher.max_keysize =
264 		alg->cra_cipher.cia_max_keysize + alg->cra_blocksize;
265 
266 	inst->alg.cra_ctxsize = sizeof(struct priv);
267 
268 	inst->alg.cra_init = init_tfm;
269 	inst->alg.cra_exit = exit_tfm;
270 
271 	inst->alg.cra_blkcipher.setkey = setkey;
272 	inst->alg.cra_blkcipher.encrypt = encrypt;
273 	inst->alg.cra_blkcipher.decrypt = decrypt;
274 
275 out_put_alg:
276 	crypto_mod_put(alg);
277 	return inst;
278 }
279 
280 static void free(struct crypto_instance *inst)
281 {
282 	crypto_drop_spawn(crypto_instance_ctx(inst));
283 	kfree(inst);
284 }
285 
286 static struct crypto_template crypto_tmpl = {
287 	.name = "lrw",
288 	.alloc = alloc,
289 	.free = free,
290 	.module = THIS_MODULE,
291 };
292 
293 static int __init crypto_module_init(void)
294 {
295 	return crypto_register_template(&crypto_tmpl);
296 }
297 
298 static void __exit crypto_module_exit(void)
299 {
300 	crypto_unregister_template(&crypto_tmpl);
301 }
302 
303 module_init(crypto_module_init);
304 module_exit(crypto_module_exit);
305 
306 MODULE_LICENSE("GPL");
307 MODULE_DESCRIPTION("LRW block cipher mode");
308