xref: /openbmc/linux/crypto/keywrap.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * Key Wrapping: RFC3394 / NIST SP800-38F
3  *
4  * Copyright (C) 2015, Stephan Mueller <smueller@chronox.de>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, and the entire permission notice in its entirety,
11  *    including the disclaimer of warranties.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote
16  *    products derived from this software without specific prior
17  *    written permission.
18  *
19  * ALTERNATIVELY, this product may be distributed under the terms of
20  * the GNU General Public License, in which case the provisions of the GPL2
21  * are required INSTEAD OF the above restrictions.  (This clause is
22  * necessary due to a potential bad interaction between the GPL and
23  * the restrictions contained in a BSD-style copyright.)
24  *
25  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
28  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
29  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
31  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
36  * DAMAGE.
37  */
38 
39 /*
40  * Note for using key wrapping:
41  *
42  *	* The result of the encryption operation is the ciphertext starting
43  *	  with the 2nd semiblock. The first semiblock is provided as the IV.
44  *	  The IV used to start the encryption operation is the default IV.
45  *
46  *	* The input for the decryption is the first semiblock handed in as an
47  *	  IV. The ciphertext is the data starting with the 2nd semiblock. The
48  *	  return code of the decryption operation will be EBADMSG in case an
49  *	  integrity error occurs.
50  *
51  * To obtain the full result of an encryption as expected by SP800-38F, the
52  * caller must allocate a buffer of plaintext + 8 bytes:
53  *
54  *	unsigned int datalen = ptlen + crypto_skcipher_ivsize(tfm);
55  *	u8 data[datalen];
56  *	u8 *iv = data;
57  *	u8 *pt = data + crypto_skcipher_ivsize(tfm);
58  *		<ensure that pt contains the plaintext of size ptlen>
59  *	sg_init_one(&sg, ptdata, ptlen);
60  *	skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv);
61  *
62  *	==> After encryption, data now contains full KW result as per SP800-38F.
63  *
64  * In case of decryption, ciphertext now already has the expected length
65  * and must be segmented appropriately:
66  *
67  *	unsigned int datalen = CTLEN;
68  *	u8 data[datalen];
69  *		<ensure that data contains full ciphertext>
70  *	u8 *iv = data;
71  *	u8 *ct = data + crypto_skcipher_ivsize(tfm);
72  *	unsigned int ctlen = datalen - crypto_skcipher_ivsize(tfm);
73  *	sg_init_one(&sg, ctdata, ctlen);
74  *	skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv);
75  *
76  *	==> After decryption (which hopefully does not return EBADMSG), the ct
77  *	pointer now points to the plaintext of size ctlen.
78  *
79  * Note 2: KWP is not implemented as this would defy in-place operation.
80  *	   If somebody wants to wrap non-aligned data, he should simply pad
81  *	   the input with zeros to fill it up to the 8 byte boundary.
82  */
83 
84 #include <linux/module.h>
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87 #include <crypto/scatterwalk.h>
88 #include <crypto/internal/skcipher.h>
89 
90 struct crypto_kw_ctx {
91 	struct crypto_cipher *child;
92 };
93 
94 struct crypto_kw_block {
95 #define SEMIBSIZE 8
96 	u8 A[SEMIBSIZE];
97 	u8 R[SEMIBSIZE];
98 };
99 
100 /* convert 64 bit integer into its string representation */
101 static inline void crypto_kw_cpu_to_be64(u64 val, u8 *buf)
102 {
103 	__be64 *a = (__be64 *)buf;
104 
105 	*a = cpu_to_be64(val);
106 }
107 
108 /*
109  * Fast forward the SGL to the "end" length minus SEMIBSIZE.
110  * The start in the SGL defined by the fast-forward is returned with
111  * the walk variable
112  */
113 static void crypto_kw_scatterlist_ff(struct scatter_walk *walk,
114 				     struct scatterlist *sg,
115 				     unsigned int end)
116 {
117 	unsigned int skip = 0;
118 
119 	/* The caller should only operate on full SEMIBLOCKs. */
120 	BUG_ON(end < SEMIBSIZE);
121 
122 	skip = end - SEMIBSIZE;
123 	while (sg) {
124 		if (sg->length > skip) {
125 			scatterwalk_start(walk, sg);
126 			scatterwalk_advance(walk, skip);
127 			break;
128 		} else
129 			skip -= sg->length;
130 
131 		sg = sg_next(sg);
132 	}
133 }
134 
135 static int crypto_kw_decrypt(struct blkcipher_desc *desc,
136 			     struct scatterlist *dst, struct scatterlist *src,
137 			     unsigned int nbytes)
138 {
139 	struct crypto_blkcipher *tfm = desc->tfm;
140 	struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm);
141 	struct crypto_cipher *child = ctx->child;
142 
143 	unsigned long alignmask = max_t(unsigned long, SEMIBSIZE,
144 					crypto_cipher_alignmask(child));
145 	unsigned int i;
146 
147 	u8 blockbuf[sizeof(struct crypto_kw_block) + alignmask];
148 	struct crypto_kw_block *block = (struct crypto_kw_block *)
149 					PTR_ALIGN(blockbuf + 0, alignmask + 1);
150 
151 	u64 t = 6 * ((nbytes) >> 3);
152 	struct scatterlist *lsrc, *ldst;
153 	int ret = 0;
154 
155 	/*
156 	 * Require at least 2 semiblocks (note, the 3rd semiblock that is
157 	 * required by SP800-38F is the IV.
158 	 */
159 	if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE)
160 		return -EINVAL;
161 
162 	/* Place the IV into block A */
163 	memcpy(block->A, desc->info, SEMIBSIZE);
164 
165 	/*
166 	 * src scatterlist is read-only. dst scatterlist is r/w. During the
167 	 * first loop, lsrc points to src and ldst to dst. For any
168 	 * subsequent round, the code operates on dst only.
169 	 */
170 	lsrc = src;
171 	ldst = dst;
172 
173 	for (i = 0; i < 6; i++) {
174 		u8 tbe_buffer[SEMIBSIZE + alignmask];
175 		/* alignment for the crypto_xor and the _to_be64 operation */
176 		u8 *tbe = PTR_ALIGN(tbe_buffer + 0, alignmask + 1);
177 		unsigned int tmp_nbytes = nbytes;
178 		struct scatter_walk src_walk, dst_walk;
179 
180 		while (tmp_nbytes) {
181 			/* move pointer by tmp_nbytes in the SGL */
182 			crypto_kw_scatterlist_ff(&src_walk, lsrc, tmp_nbytes);
183 			/* get the source block */
184 			scatterwalk_copychunks(block->R, &src_walk, SEMIBSIZE,
185 					       false);
186 
187 			/* perform KW operation: get counter as byte string */
188 			crypto_kw_cpu_to_be64(t, tbe);
189 			/* perform KW operation: modify IV with counter */
190 			crypto_xor(block->A, tbe, SEMIBSIZE);
191 			t--;
192 			/* perform KW operation: decrypt block */
193 			crypto_cipher_decrypt_one(child, (u8*)block,
194 						  (u8*)block);
195 
196 			/* move pointer by tmp_nbytes in the SGL */
197 			crypto_kw_scatterlist_ff(&dst_walk, ldst, tmp_nbytes);
198 			/* Copy block->R into place */
199 			scatterwalk_copychunks(block->R, &dst_walk, SEMIBSIZE,
200 					       true);
201 
202 			tmp_nbytes -= SEMIBSIZE;
203 		}
204 
205 		/* we now start to operate on the dst SGL only */
206 		lsrc = dst;
207 		ldst = dst;
208 	}
209 
210 	/* Perform authentication check */
211 	if (crypto_memneq("\xA6\xA6\xA6\xA6\xA6\xA6\xA6\xA6", block->A,
212 			  SEMIBSIZE))
213 		ret = -EBADMSG;
214 
215 	memzero_explicit(&block, sizeof(struct crypto_kw_block));
216 
217 	return ret;
218 }
219 
220 static int crypto_kw_encrypt(struct blkcipher_desc *desc,
221 			     struct scatterlist *dst, struct scatterlist *src,
222 			     unsigned int nbytes)
223 {
224 	struct crypto_blkcipher *tfm = desc->tfm;
225 	struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm);
226 	struct crypto_cipher *child = ctx->child;
227 
228 	unsigned long alignmask = max_t(unsigned long, SEMIBSIZE,
229 					crypto_cipher_alignmask(child));
230 	unsigned int i;
231 
232 	u8 blockbuf[sizeof(struct crypto_kw_block) + alignmask];
233 	struct crypto_kw_block *block = (struct crypto_kw_block *)
234 					PTR_ALIGN(blockbuf + 0, alignmask + 1);
235 
236 	u64 t = 1;
237 	struct scatterlist *lsrc, *ldst;
238 
239 	/*
240 	 * Require at least 2 semiblocks (note, the 3rd semiblock that is
241 	 * required by SP800-38F is the IV that occupies the first semiblock.
242 	 * This means that the dst memory must be one semiblock larger than src.
243 	 * Also ensure that the given data is aligned to semiblock.
244 	 */
245 	if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE)
246 		return -EINVAL;
247 
248 	/*
249 	 * Place the predefined IV into block A -- for encrypt, the caller
250 	 * does not need to provide an IV, but he needs to fetch the final IV.
251 	 */
252 	memcpy(block->A, "\xA6\xA6\xA6\xA6\xA6\xA6\xA6\xA6", SEMIBSIZE);
253 
254 	/*
255 	 * src scatterlist is read-only. dst scatterlist is r/w. During the
256 	 * first loop, lsrc points to src and ldst to dst. For any
257 	 * subsequent round, the code operates on dst only.
258 	 */
259 	lsrc = src;
260 	ldst = dst;
261 
262 	for (i = 0; i < 6; i++) {
263 		u8 tbe_buffer[SEMIBSIZE + alignmask];
264 		u8 *tbe = PTR_ALIGN(tbe_buffer + 0, alignmask + 1);
265 		unsigned int tmp_nbytes = nbytes;
266 		struct scatter_walk src_walk, dst_walk;
267 
268 		scatterwalk_start(&src_walk, lsrc);
269 		scatterwalk_start(&dst_walk, ldst);
270 
271 		while (tmp_nbytes) {
272 			/* get the source block */
273 			scatterwalk_copychunks(block->R, &src_walk, SEMIBSIZE,
274 					       false);
275 
276 			/* perform KW operation: encrypt block */
277 			crypto_cipher_encrypt_one(child, (u8 *)block,
278 						  (u8 *)block);
279 			/* perform KW operation: get counter as byte string */
280 			crypto_kw_cpu_to_be64(t, tbe);
281 			/* perform KW operation: modify IV with counter */
282 			crypto_xor(block->A, tbe, SEMIBSIZE);
283 			t++;
284 
285 			/* Copy block->R into place */
286 			scatterwalk_copychunks(block->R, &dst_walk, SEMIBSIZE,
287 					       true);
288 
289 			tmp_nbytes -= SEMIBSIZE;
290 		}
291 
292 		/* we now start to operate on the dst SGL only */
293 		lsrc = dst;
294 		ldst = dst;
295 	}
296 
297 	/* establish the IV for the caller to pick up */
298 	memcpy(desc->info, block->A, SEMIBSIZE);
299 
300 	memzero_explicit(&block, sizeof(struct crypto_kw_block));
301 
302 	return 0;
303 }
304 
305 static int crypto_kw_setkey(struct crypto_tfm *parent, const u8 *key,
306 			    unsigned int keylen)
307 {
308 	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(parent);
309 	struct crypto_cipher *child = ctx->child;
310 	int err;
311 
312 	crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
313 	crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
314 				       CRYPTO_TFM_REQ_MASK);
315 	err = crypto_cipher_setkey(child, key, keylen);
316 	crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
317 				     CRYPTO_TFM_RES_MASK);
318 	return err;
319 }
320 
321 static int crypto_kw_init_tfm(struct crypto_tfm *tfm)
322 {
323 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
324 	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
325 	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm);
326 	struct crypto_cipher *cipher;
327 
328 	cipher = crypto_spawn_cipher(spawn);
329 	if (IS_ERR(cipher))
330 		return PTR_ERR(cipher);
331 
332 	ctx->child = cipher;
333 	return 0;
334 }
335 
336 static void crypto_kw_exit_tfm(struct crypto_tfm *tfm)
337 {
338 	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm);
339 
340 	crypto_free_cipher(ctx->child);
341 }
342 
343 static struct crypto_instance *crypto_kw_alloc(struct rtattr **tb)
344 {
345 	struct crypto_instance *inst = NULL;
346 	struct crypto_alg *alg = NULL;
347 	int err;
348 
349 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
350 	if (err)
351 		return ERR_PTR(err);
352 
353 	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
354 				  CRYPTO_ALG_TYPE_MASK);
355 	if (IS_ERR(alg))
356 		return ERR_CAST(alg);
357 
358 	inst = ERR_PTR(-EINVAL);
359 	/* Section 5.1 requirement for KW */
360 	if (alg->cra_blocksize != sizeof(struct crypto_kw_block))
361 		goto err;
362 
363 	inst = crypto_alloc_instance("kw", alg);
364 	if (IS_ERR(inst))
365 		goto err;
366 
367 	inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
368 	inst->alg.cra_priority = alg->cra_priority;
369 	inst->alg.cra_blocksize = SEMIBSIZE;
370 	inst->alg.cra_alignmask = 0;
371 	inst->alg.cra_type = &crypto_blkcipher_type;
372 	inst->alg.cra_blkcipher.ivsize = SEMIBSIZE;
373 	inst->alg.cra_blkcipher.min_keysize = alg->cra_cipher.cia_min_keysize;
374 	inst->alg.cra_blkcipher.max_keysize = alg->cra_cipher.cia_max_keysize;
375 
376 	inst->alg.cra_ctxsize = sizeof(struct crypto_kw_ctx);
377 
378 	inst->alg.cra_init = crypto_kw_init_tfm;
379 	inst->alg.cra_exit = crypto_kw_exit_tfm;
380 
381 	inst->alg.cra_blkcipher.setkey = crypto_kw_setkey;
382 	inst->alg.cra_blkcipher.encrypt = crypto_kw_encrypt;
383 	inst->alg.cra_blkcipher.decrypt = crypto_kw_decrypt;
384 
385 err:
386 	crypto_mod_put(alg);
387 	return inst;
388 }
389 
390 static void crypto_kw_free(struct crypto_instance *inst)
391 {
392 	crypto_drop_spawn(crypto_instance_ctx(inst));
393 	kfree(inst);
394 }
395 
396 static struct crypto_template crypto_kw_tmpl = {
397 	.name = "kw",
398 	.alloc = crypto_kw_alloc,
399 	.free = crypto_kw_free,
400 	.module = THIS_MODULE,
401 };
402 
403 static int __init crypto_kw_init(void)
404 {
405 	return crypto_register_template(&crypto_kw_tmpl);
406 }
407 
408 static void __exit crypto_kw_exit(void)
409 {
410 	crypto_unregister_template(&crypto_kw_tmpl);
411 }
412 
413 module_init(crypto_kw_init);
414 module_exit(crypto_kw_exit);
415 
416 MODULE_LICENSE("Dual BSD/GPL");
417 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
418 MODULE_DESCRIPTION("Key Wrapping (RFC3394 / NIST SP800-38F)");
419 MODULE_ALIAS_CRYPTO("kw");
420