xref: /openbmc/linux/crypto/ghash-generic.c (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GHASH: hash function for GCM (Galois/Counter Mode).
4  *
5  * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen <mh1@iki.fi>
6  * Copyright (c) 2009 Intel Corp.
7  *   Author: Huang Ying <ying.huang@intel.com>
8  */
9 
10 /*
11  * GHASH is a keyed hash function used in GCM authentication tag generation.
12  *
13  * The original GCM paper [1] presents GHASH as a function GHASH(H, A, C) which
14  * takes a 16-byte hash key H, additional authenticated data A, and a ciphertext
15  * C.  It formats A and C into a single byte string X, interprets X as a
16  * polynomial over GF(2^128), and evaluates this polynomial at the point H.
17  *
18  * However, the NIST standard for GCM [2] presents GHASH as GHASH(H, X) where X
19  * is the already-formatted byte string containing both A and C.
20  *
21  * "ghash" in the Linux crypto API uses the 'X' (pre-formatted) convention,
22  * since the API supports only a single data stream per hash.  Thus, the
23  * formatting of 'A' and 'C' is done in the "gcm" template, not in "ghash".
24  *
25  * The reason "ghash" is separate from "gcm" is to allow "gcm" to use an
26  * accelerated "ghash" when a standalone accelerated "gcm(aes)" is unavailable.
27  * It is generally inappropriate to use "ghash" for other purposes, since it is
28  * an "ε-almost-XOR-universal hash function", not a cryptographic hash function.
29  * It can only be used securely in crypto modes specially designed to use it.
30  *
31  * [1] The Galois/Counter Mode of Operation (GCM)
32  *     (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.694.695&rep=rep1&type=pdf)
33  * [2] Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC
34  *     (https://csrc.nist.gov/publications/detail/sp/800-38d/final)
35  */
36 
37 #include <crypto/algapi.h>
38 #include <crypto/gf128mul.h>
39 #include <crypto/ghash.h>
40 #include <crypto/internal/hash.h>
41 #include <linux/crypto.h>
42 #include <linux/init.h>
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 
46 static int ghash_init(struct shash_desc *desc)
47 {
48 	struct ghash_desc_ctx *dctx = shash_desc_ctx(desc);
49 
50 	memset(dctx, 0, sizeof(*dctx));
51 
52 	return 0;
53 }
54 
55 static int ghash_setkey(struct crypto_shash *tfm,
56 			const u8 *key, unsigned int keylen)
57 {
58 	struct ghash_ctx *ctx = crypto_shash_ctx(tfm);
59 	be128 k;
60 
61 	if (keylen != GHASH_BLOCK_SIZE) {
62 		crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
63 		return -EINVAL;
64 	}
65 
66 	if (ctx->gf128)
67 		gf128mul_free_4k(ctx->gf128);
68 
69 	BUILD_BUG_ON(sizeof(k) != GHASH_BLOCK_SIZE);
70 	memcpy(&k, key, GHASH_BLOCK_SIZE); /* avoid violating alignment rules */
71 	ctx->gf128 = gf128mul_init_4k_lle(&k);
72 	memzero_explicit(&k, GHASH_BLOCK_SIZE);
73 
74 	if (!ctx->gf128)
75 		return -ENOMEM;
76 
77 	return 0;
78 }
79 
80 static int ghash_update(struct shash_desc *desc,
81 			 const u8 *src, unsigned int srclen)
82 {
83 	struct ghash_desc_ctx *dctx = shash_desc_ctx(desc);
84 	struct ghash_ctx *ctx = crypto_shash_ctx(desc->tfm);
85 	u8 *dst = dctx->buffer;
86 
87 	if (dctx->bytes) {
88 		int n = min(srclen, dctx->bytes);
89 		u8 *pos = dst + (GHASH_BLOCK_SIZE - dctx->bytes);
90 
91 		dctx->bytes -= n;
92 		srclen -= n;
93 
94 		while (n--)
95 			*pos++ ^= *src++;
96 
97 		if (!dctx->bytes)
98 			gf128mul_4k_lle((be128 *)dst, ctx->gf128);
99 	}
100 
101 	while (srclen >= GHASH_BLOCK_SIZE) {
102 		crypto_xor(dst, src, GHASH_BLOCK_SIZE);
103 		gf128mul_4k_lle((be128 *)dst, ctx->gf128);
104 		src += GHASH_BLOCK_SIZE;
105 		srclen -= GHASH_BLOCK_SIZE;
106 	}
107 
108 	if (srclen) {
109 		dctx->bytes = GHASH_BLOCK_SIZE - srclen;
110 		while (srclen--)
111 			*dst++ ^= *src++;
112 	}
113 
114 	return 0;
115 }
116 
117 static void ghash_flush(struct ghash_ctx *ctx, struct ghash_desc_ctx *dctx)
118 {
119 	u8 *dst = dctx->buffer;
120 
121 	if (dctx->bytes) {
122 		u8 *tmp = dst + (GHASH_BLOCK_SIZE - dctx->bytes);
123 
124 		while (dctx->bytes--)
125 			*tmp++ ^= 0;
126 
127 		gf128mul_4k_lle((be128 *)dst, ctx->gf128);
128 	}
129 
130 	dctx->bytes = 0;
131 }
132 
133 static int ghash_final(struct shash_desc *desc, u8 *dst)
134 {
135 	struct ghash_desc_ctx *dctx = shash_desc_ctx(desc);
136 	struct ghash_ctx *ctx = crypto_shash_ctx(desc->tfm);
137 	u8 *buf = dctx->buffer;
138 
139 	ghash_flush(ctx, dctx);
140 	memcpy(dst, buf, GHASH_BLOCK_SIZE);
141 
142 	return 0;
143 }
144 
145 static void ghash_exit_tfm(struct crypto_tfm *tfm)
146 {
147 	struct ghash_ctx *ctx = crypto_tfm_ctx(tfm);
148 	if (ctx->gf128)
149 		gf128mul_free_4k(ctx->gf128);
150 }
151 
152 static struct shash_alg ghash_alg = {
153 	.digestsize	= GHASH_DIGEST_SIZE,
154 	.init		= ghash_init,
155 	.update		= ghash_update,
156 	.final		= ghash_final,
157 	.setkey		= ghash_setkey,
158 	.descsize	= sizeof(struct ghash_desc_ctx),
159 	.base		= {
160 		.cra_name		= "ghash",
161 		.cra_driver_name	= "ghash-generic",
162 		.cra_priority		= 100,
163 		.cra_blocksize		= GHASH_BLOCK_SIZE,
164 		.cra_ctxsize		= sizeof(struct ghash_ctx),
165 		.cra_module		= THIS_MODULE,
166 		.cra_exit		= ghash_exit_tfm,
167 	},
168 };
169 
170 static int __init ghash_mod_init(void)
171 {
172 	return crypto_register_shash(&ghash_alg);
173 }
174 
175 static void __exit ghash_mod_exit(void)
176 {
177 	crypto_unregister_shash(&ghash_alg);
178 }
179 
180 subsys_initcall(ghash_mod_init);
181 module_exit(ghash_mod_exit);
182 
183 MODULE_LICENSE("GPL");
184 MODULE_DESCRIPTION("GHASH hash function");
185 MODULE_ALIAS_CRYPTO("ghash");
186 MODULE_ALIAS_CRYPTO("ghash-generic");
187