1 /* 2 * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved. 3 * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org> 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: 8 * * Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * * Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <linux/module.h> 28 #include <linux/random.h> 29 #include <linux/slab.h> 30 #include <linux/swab.h> 31 #include <linux/fips.h> 32 #include <crypto/ecdh.h> 33 #include <crypto/rng.h> 34 #include <asm/unaligned.h> 35 #include <linux/ratelimit.h> 36 37 #include "ecc.h" 38 #include "ecc_curve_defs.h" 39 40 typedef struct { 41 u64 m_low; 42 u64 m_high; 43 } uint128_t; 44 45 static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id) 46 { 47 switch (curve_id) { 48 /* In FIPS mode only allow P256 and higher */ 49 case ECC_CURVE_NIST_P192: 50 return fips_enabled ? NULL : &nist_p192; 51 case ECC_CURVE_NIST_P256: 52 return &nist_p256; 53 default: 54 return NULL; 55 } 56 } 57 58 static u64 *ecc_alloc_digits_space(unsigned int ndigits) 59 { 60 size_t len = ndigits * sizeof(u64); 61 62 if (!len) 63 return NULL; 64 65 return kmalloc(len, GFP_KERNEL); 66 } 67 68 static void ecc_free_digits_space(u64 *space) 69 { 70 kfree_sensitive(space); 71 } 72 73 static struct ecc_point *ecc_alloc_point(unsigned int ndigits) 74 { 75 struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL); 76 77 if (!p) 78 return NULL; 79 80 p->x = ecc_alloc_digits_space(ndigits); 81 if (!p->x) 82 goto err_alloc_x; 83 84 p->y = ecc_alloc_digits_space(ndigits); 85 if (!p->y) 86 goto err_alloc_y; 87 88 p->ndigits = ndigits; 89 90 return p; 91 92 err_alloc_y: 93 ecc_free_digits_space(p->x); 94 err_alloc_x: 95 kfree(p); 96 return NULL; 97 } 98 99 static void ecc_free_point(struct ecc_point *p) 100 { 101 if (!p) 102 return; 103 104 kfree_sensitive(p->x); 105 kfree_sensitive(p->y); 106 kfree_sensitive(p); 107 } 108 109 static void vli_clear(u64 *vli, unsigned int ndigits) 110 { 111 int i; 112 113 for (i = 0; i < ndigits; i++) 114 vli[i] = 0; 115 } 116 117 /* Returns true if vli == 0, false otherwise. */ 118 bool vli_is_zero(const u64 *vli, unsigned int ndigits) 119 { 120 int i; 121 122 for (i = 0; i < ndigits; i++) { 123 if (vli[i]) 124 return false; 125 } 126 127 return true; 128 } 129 EXPORT_SYMBOL(vli_is_zero); 130 131 /* Returns nonzero if bit bit of vli is set. */ 132 static u64 vli_test_bit(const u64 *vli, unsigned int bit) 133 { 134 return (vli[bit / 64] & ((u64)1 << (bit % 64))); 135 } 136 137 static bool vli_is_negative(const u64 *vli, unsigned int ndigits) 138 { 139 return vli_test_bit(vli, ndigits * 64 - 1); 140 } 141 142 /* Counts the number of 64-bit "digits" in vli. */ 143 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits) 144 { 145 int i; 146 147 /* Search from the end until we find a non-zero digit. 148 * We do it in reverse because we expect that most digits will 149 * be nonzero. 150 */ 151 for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--); 152 153 return (i + 1); 154 } 155 156 /* Counts the number of bits required for vli. */ 157 static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits) 158 { 159 unsigned int i, num_digits; 160 u64 digit; 161 162 num_digits = vli_num_digits(vli, ndigits); 163 if (num_digits == 0) 164 return 0; 165 166 digit = vli[num_digits - 1]; 167 for (i = 0; digit; i++) 168 digit >>= 1; 169 170 return ((num_digits - 1) * 64 + i); 171 } 172 173 /* Set dest from unaligned bit string src. */ 174 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits) 175 { 176 int i; 177 const u64 *from = src; 178 179 for (i = 0; i < ndigits; i++) 180 dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]); 181 } 182 EXPORT_SYMBOL(vli_from_be64); 183 184 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits) 185 { 186 int i; 187 const u64 *from = src; 188 189 for (i = 0; i < ndigits; i++) 190 dest[i] = get_unaligned_le64(&from[i]); 191 } 192 EXPORT_SYMBOL(vli_from_le64); 193 194 /* Sets dest = src. */ 195 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits) 196 { 197 int i; 198 199 for (i = 0; i < ndigits; i++) 200 dest[i] = src[i]; 201 } 202 203 /* Returns sign of left - right. */ 204 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits) 205 { 206 int i; 207 208 for (i = ndigits - 1; i >= 0; i--) { 209 if (left[i] > right[i]) 210 return 1; 211 else if (left[i] < right[i]) 212 return -1; 213 } 214 215 return 0; 216 } 217 EXPORT_SYMBOL(vli_cmp); 218 219 /* Computes result = in << c, returning carry. Can modify in place 220 * (if result == in). 0 < shift < 64. 221 */ 222 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift, 223 unsigned int ndigits) 224 { 225 u64 carry = 0; 226 int i; 227 228 for (i = 0; i < ndigits; i++) { 229 u64 temp = in[i]; 230 231 result[i] = (temp << shift) | carry; 232 carry = temp >> (64 - shift); 233 } 234 235 return carry; 236 } 237 238 /* Computes vli = vli >> 1. */ 239 static void vli_rshift1(u64 *vli, unsigned int ndigits) 240 { 241 u64 *end = vli; 242 u64 carry = 0; 243 244 vli += ndigits; 245 246 while (vli-- > end) { 247 u64 temp = *vli; 248 *vli = (temp >> 1) | carry; 249 carry = temp << 63; 250 } 251 } 252 253 /* Computes result = left + right, returning carry. Can modify in place. */ 254 static u64 vli_add(u64 *result, const u64 *left, const u64 *right, 255 unsigned int ndigits) 256 { 257 u64 carry = 0; 258 int i; 259 260 for (i = 0; i < ndigits; i++) { 261 u64 sum; 262 263 sum = left[i] + right[i] + carry; 264 if (sum != left[i]) 265 carry = (sum < left[i]); 266 267 result[i] = sum; 268 } 269 270 return carry; 271 } 272 273 /* Computes result = left + right, returning carry. Can modify in place. */ 274 static u64 vli_uadd(u64 *result, const u64 *left, u64 right, 275 unsigned int ndigits) 276 { 277 u64 carry = right; 278 int i; 279 280 for (i = 0; i < ndigits; i++) { 281 u64 sum; 282 283 sum = left[i] + carry; 284 if (sum != left[i]) 285 carry = (sum < left[i]); 286 else 287 carry = !!carry; 288 289 result[i] = sum; 290 } 291 292 return carry; 293 } 294 295 /* Computes result = left - right, returning borrow. Can modify in place. */ 296 u64 vli_sub(u64 *result, const u64 *left, const u64 *right, 297 unsigned int ndigits) 298 { 299 u64 borrow = 0; 300 int i; 301 302 for (i = 0; i < ndigits; i++) { 303 u64 diff; 304 305 diff = left[i] - right[i] - borrow; 306 if (diff != left[i]) 307 borrow = (diff > left[i]); 308 309 result[i] = diff; 310 } 311 312 return borrow; 313 } 314 EXPORT_SYMBOL(vli_sub); 315 316 /* Computes result = left - right, returning borrow. Can modify in place. */ 317 static u64 vli_usub(u64 *result, const u64 *left, u64 right, 318 unsigned int ndigits) 319 { 320 u64 borrow = right; 321 int i; 322 323 for (i = 0; i < ndigits; i++) { 324 u64 diff; 325 326 diff = left[i] - borrow; 327 if (diff != left[i]) 328 borrow = (diff > left[i]); 329 330 result[i] = diff; 331 } 332 333 return borrow; 334 } 335 336 static uint128_t mul_64_64(u64 left, u64 right) 337 { 338 uint128_t result; 339 #if defined(CONFIG_ARCH_SUPPORTS_INT128) 340 unsigned __int128 m = (unsigned __int128)left * right; 341 342 result.m_low = m; 343 result.m_high = m >> 64; 344 #else 345 u64 a0 = left & 0xffffffffull; 346 u64 a1 = left >> 32; 347 u64 b0 = right & 0xffffffffull; 348 u64 b1 = right >> 32; 349 u64 m0 = a0 * b0; 350 u64 m1 = a0 * b1; 351 u64 m2 = a1 * b0; 352 u64 m3 = a1 * b1; 353 354 m2 += (m0 >> 32); 355 m2 += m1; 356 357 /* Overflow */ 358 if (m2 < m1) 359 m3 += 0x100000000ull; 360 361 result.m_low = (m0 & 0xffffffffull) | (m2 << 32); 362 result.m_high = m3 + (m2 >> 32); 363 #endif 364 return result; 365 } 366 367 static uint128_t add_128_128(uint128_t a, uint128_t b) 368 { 369 uint128_t result; 370 371 result.m_low = a.m_low + b.m_low; 372 result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); 373 374 return result; 375 } 376 377 static void vli_mult(u64 *result, const u64 *left, const u64 *right, 378 unsigned int ndigits) 379 { 380 uint128_t r01 = { 0, 0 }; 381 u64 r2 = 0; 382 unsigned int i, k; 383 384 /* Compute each digit of result in sequence, maintaining the 385 * carries. 386 */ 387 for (k = 0; k < ndigits * 2 - 1; k++) { 388 unsigned int min; 389 390 if (k < ndigits) 391 min = 0; 392 else 393 min = (k + 1) - ndigits; 394 395 for (i = min; i <= k && i < ndigits; i++) { 396 uint128_t product; 397 398 product = mul_64_64(left[i], right[k - i]); 399 400 r01 = add_128_128(r01, product); 401 r2 += (r01.m_high < product.m_high); 402 } 403 404 result[k] = r01.m_low; 405 r01.m_low = r01.m_high; 406 r01.m_high = r2; 407 r2 = 0; 408 } 409 410 result[ndigits * 2 - 1] = r01.m_low; 411 } 412 413 /* Compute product = left * right, for a small right value. */ 414 static void vli_umult(u64 *result, const u64 *left, u32 right, 415 unsigned int ndigits) 416 { 417 uint128_t r01 = { 0 }; 418 unsigned int k; 419 420 for (k = 0; k < ndigits; k++) { 421 uint128_t product; 422 423 product = mul_64_64(left[k], right); 424 r01 = add_128_128(r01, product); 425 /* no carry */ 426 result[k] = r01.m_low; 427 r01.m_low = r01.m_high; 428 r01.m_high = 0; 429 } 430 result[k] = r01.m_low; 431 for (++k; k < ndigits * 2; k++) 432 result[k] = 0; 433 } 434 435 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits) 436 { 437 uint128_t r01 = { 0, 0 }; 438 u64 r2 = 0; 439 int i, k; 440 441 for (k = 0; k < ndigits * 2 - 1; k++) { 442 unsigned int min; 443 444 if (k < ndigits) 445 min = 0; 446 else 447 min = (k + 1) - ndigits; 448 449 for (i = min; i <= k && i <= k - i; i++) { 450 uint128_t product; 451 452 product = mul_64_64(left[i], left[k - i]); 453 454 if (i < k - i) { 455 r2 += product.m_high >> 63; 456 product.m_high = (product.m_high << 1) | 457 (product.m_low >> 63); 458 product.m_low <<= 1; 459 } 460 461 r01 = add_128_128(r01, product); 462 r2 += (r01.m_high < product.m_high); 463 } 464 465 result[k] = r01.m_low; 466 r01.m_low = r01.m_high; 467 r01.m_high = r2; 468 r2 = 0; 469 } 470 471 result[ndigits * 2 - 1] = r01.m_low; 472 } 473 474 /* Computes result = (left + right) % mod. 475 * Assumes that left < mod and right < mod, result != mod. 476 */ 477 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right, 478 const u64 *mod, unsigned int ndigits) 479 { 480 u64 carry; 481 482 carry = vli_add(result, left, right, ndigits); 483 484 /* result > mod (result = mod + remainder), so subtract mod to 485 * get remainder. 486 */ 487 if (carry || vli_cmp(result, mod, ndigits) >= 0) 488 vli_sub(result, result, mod, ndigits); 489 } 490 491 /* Computes result = (left - right) % mod. 492 * Assumes that left < mod and right < mod, result != mod. 493 */ 494 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, 495 const u64 *mod, unsigned int ndigits) 496 { 497 u64 borrow = vli_sub(result, left, right, ndigits); 498 499 /* In this case, p_result == -diff == (max int) - diff. 500 * Since -x % d == d - x, we can get the correct result from 501 * result + mod (with overflow). 502 */ 503 if (borrow) 504 vli_add(result, result, mod, ndigits); 505 } 506 507 /* 508 * Computes result = product % mod 509 * for special form moduli: p = 2^k-c, for small c (note the minus sign) 510 * 511 * References: 512 * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective. 513 * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form 514 * Algorithm 9.2.13 (Fast mod operation for special-form moduli). 515 */ 516 static void vli_mmod_special(u64 *result, const u64 *product, 517 const u64 *mod, unsigned int ndigits) 518 { 519 u64 c = -mod[0]; 520 u64 t[ECC_MAX_DIGITS * 2]; 521 u64 r[ECC_MAX_DIGITS * 2]; 522 523 vli_set(r, product, ndigits * 2); 524 while (!vli_is_zero(r + ndigits, ndigits)) { 525 vli_umult(t, r + ndigits, c, ndigits); 526 vli_clear(r + ndigits, ndigits); 527 vli_add(r, r, t, ndigits * 2); 528 } 529 vli_set(t, mod, ndigits); 530 vli_clear(t + ndigits, ndigits); 531 while (vli_cmp(r, t, ndigits * 2) >= 0) 532 vli_sub(r, r, t, ndigits * 2); 533 vli_set(result, r, ndigits); 534 } 535 536 /* 537 * Computes result = product % mod 538 * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign) 539 * where k-1 does not fit into qword boundary by -1 bit (such as 255). 540 541 * References (loosely based on): 542 * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography. 543 * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47. 544 * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf 545 * 546 * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren. 547 * Handbook of Elliptic and Hyperelliptic Curve Cryptography. 548 * Algorithm 10.25 Fast reduction for special form moduli 549 */ 550 static void vli_mmod_special2(u64 *result, const u64 *product, 551 const u64 *mod, unsigned int ndigits) 552 { 553 u64 c2 = mod[0] * 2; 554 u64 q[ECC_MAX_DIGITS]; 555 u64 r[ECC_MAX_DIGITS * 2]; 556 u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */ 557 int carry; /* last bit that doesn't fit into q */ 558 int i; 559 560 vli_set(m, mod, ndigits); 561 vli_clear(m + ndigits, ndigits); 562 563 vli_set(r, product, ndigits); 564 /* q and carry are top bits */ 565 vli_set(q, product + ndigits, ndigits); 566 vli_clear(r + ndigits, ndigits); 567 carry = vli_is_negative(r, ndigits); 568 if (carry) 569 r[ndigits - 1] &= (1ull << 63) - 1; 570 for (i = 1; carry || !vli_is_zero(q, ndigits); i++) { 571 u64 qc[ECC_MAX_DIGITS * 2]; 572 573 vli_umult(qc, q, c2, ndigits); 574 if (carry) 575 vli_uadd(qc, qc, mod[0], ndigits * 2); 576 vli_set(q, qc + ndigits, ndigits); 577 vli_clear(qc + ndigits, ndigits); 578 carry = vli_is_negative(qc, ndigits); 579 if (carry) 580 qc[ndigits - 1] &= (1ull << 63) - 1; 581 if (i & 1) 582 vli_sub(r, r, qc, ndigits * 2); 583 else 584 vli_add(r, r, qc, ndigits * 2); 585 } 586 while (vli_is_negative(r, ndigits * 2)) 587 vli_add(r, r, m, ndigits * 2); 588 while (vli_cmp(r, m, ndigits * 2) >= 0) 589 vli_sub(r, r, m, ndigits * 2); 590 591 vli_set(result, r, ndigits); 592 } 593 594 /* 595 * Computes result = product % mod, where product is 2N words long. 596 * Reference: Ken MacKay's micro-ecc. 597 * Currently only designed to work for curve_p or curve_n. 598 */ 599 static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod, 600 unsigned int ndigits) 601 { 602 u64 mod_m[2 * ECC_MAX_DIGITS]; 603 u64 tmp[2 * ECC_MAX_DIGITS]; 604 u64 *v[2] = { tmp, product }; 605 u64 carry = 0; 606 unsigned int i; 607 /* Shift mod so its highest set bit is at the maximum position. */ 608 int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits); 609 int word_shift = shift / 64; 610 int bit_shift = shift % 64; 611 612 vli_clear(mod_m, word_shift); 613 if (bit_shift > 0) { 614 for (i = 0; i < ndigits; ++i) { 615 mod_m[word_shift + i] = (mod[i] << bit_shift) | carry; 616 carry = mod[i] >> (64 - bit_shift); 617 } 618 } else 619 vli_set(mod_m + word_shift, mod, ndigits); 620 621 for (i = 1; shift >= 0; --shift) { 622 u64 borrow = 0; 623 unsigned int j; 624 625 for (j = 0; j < ndigits * 2; ++j) { 626 u64 diff = v[i][j] - mod_m[j] - borrow; 627 628 if (diff != v[i][j]) 629 borrow = (diff > v[i][j]); 630 v[1 - i][j] = diff; 631 } 632 i = !(i ^ borrow); /* Swap the index if there was no borrow */ 633 vli_rshift1(mod_m, ndigits); 634 mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1); 635 vli_rshift1(mod_m + ndigits, ndigits); 636 } 637 vli_set(result, v[i], ndigits); 638 } 639 640 /* Computes result = product % mod using Barrett's reduction with precomputed 641 * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have 642 * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits 643 * boundary. 644 * 645 * Reference: 646 * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010. 647 * 2.4.1 Barrett's algorithm. Algorithm 2.5. 648 */ 649 static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod, 650 unsigned int ndigits) 651 { 652 u64 q[ECC_MAX_DIGITS * 2]; 653 u64 r[ECC_MAX_DIGITS * 2]; 654 const u64 *mu = mod + ndigits; 655 656 vli_mult(q, product + ndigits, mu, ndigits); 657 if (mu[ndigits]) 658 vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits); 659 vli_mult(r, mod, q + ndigits, ndigits); 660 vli_sub(r, product, r, ndigits * 2); 661 while (!vli_is_zero(r + ndigits, ndigits) || 662 vli_cmp(r, mod, ndigits) != -1) { 663 u64 carry; 664 665 carry = vli_sub(r, r, mod, ndigits); 666 vli_usub(r + ndigits, r + ndigits, carry, ndigits); 667 } 668 vli_set(result, r, ndigits); 669 } 670 671 /* Computes p_result = p_product % curve_p. 672 * See algorithm 5 and 6 from 673 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf 674 */ 675 static void vli_mmod_fast_192(u64 *result, const u64 *product, 676 const u64 *curve_prime, u64 *tmp) 677 { 678 const unsigned int ndigits = 3; 679 int carry; 680 681 vli_set(result, product, ndigits); 682 683 vli_set(tmp, &product[3], ndigits); 684 carry = vli_add(result, result, tmp, ndigits); 685 686 tmp[0] = 0; 687 tmp[1] = product[3]; 688 tmp[2] = product[4]; 689 carry += vli_add(result, result, tmp, ndigits); 690 691 tmp[0] = tmp[1] = product[5]; 692 tmp[2] = 0; 693 carry += vli_add(result, result, tmp, ndigits); 694 695 while (carry || vli_cmp(curve_prime, result, ndigits) != 1) 696 carry -= vli_sub(result, result, curve_prime, ndigits); 697 } 698 699 /* Computes result = product % curve_prime 700 * from http://www.nsa.gov/ia/_files/nist-routines.pdf 701 */ 702 static void vli_mmod_fast_256(u64 *result, const u64 *product, 703 const u64 *curve_prime, u64 *tmp) 704 { 705 int carry; 706 const unsigned int ndigits = 4; 707 708 /* t */ 709 vli_set(result, product, ndigits); 710 711 /* s1 */ 712 tmp[0] = 0; 713 tmp[1] = product[5] & 0xffffffff00000000ull; 714 tmp[2] = product[6]; 715 tmp[3] = product[7]; 716 carry = vli_lshift(tmp, tmp, 1, ndigits); 717 carry += vli_add(result, result, tmp, ndigits); 718 719 /* s2 */ 720 tmp[1] = product[6] << 32; 721 tmp[2] = (product[6] >> 32) | (product[7] << 32); 722 tmp[3] = product[7] >> 32; 723 carry += vli_lshift(tmp, tmp, 1, ndigits); 724 carry += vli_add(result, result, tmp, ndigits); 725 726 /* s3 */ 727 tmp[0] = product[4]; 728 tmp[1] = product[5] & 0xffffffff; 729 tmp[2] = 0; 730 tmp[3] = product[7]; 731 carry += vli_add(result, result, tmp, ndigits); 732 733 /* s4 */ 734 tmp[0] = (product[4] >> 32) | (product[5] << 32); 735 tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); 736 tmp[2] = product[7]; 737 tmp[3] = (product[6] >> 32) | (product[4] << 32); 738 carry += vli_add(result, result, tmp, ndigits); 739 740 /* d1 */ 741 tmp[0] = (product[5] >> 32) | (product[6] << 32); 742 tmp[1] = (product[6] >> 32); 743 tmp[2] = 0; 744 tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); 745 carry -= vli_sub(result, result, tmp, ndigits); 746 747 /* d2 */ 748 tmp[0] = product[6]; 749 tmp[1] = product[7]; 750 tmp[2] = 0; 751 tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); 752 carry -= vli_sub(result, result, tmp, ndigits); 753 754 /* d3 */ 755 tmp[0] = (product[6] >> 32) | (product[7] << 32); 756 tmp[1] = (product[7] >> 32) | (product[4] << 32); 757 tmp[2] = (product[4] >> 32) | (product[5] << 32); 758 tmp[3] = (product[6] << 32); 759 carry -= vli_sub(result, result, tmp, ndigits); 760 761 /* d4 */ 762 tmp[0] = product[7]; 763 tmp[1] = product[4] & 0xffffffff00000000ull; 764 tmp[2] = product[5]; 765 tmp[3] = product[6] & 0xffffffff00000000ull; 766 carry -= vli_sub(result, result, tmp, ndigits); 767 768 if (carry < 0) { 769 do { 770 carry += vli_add(result, result, curve_prime, ndigits); 771 } while (carry < 0); 772 } else { 773 while (carry || vli_cmp(curve_prime, result, ndigits) != 1) 774 carry -= vli_sub(result, result, curve_prime, ndigits); 775 } 776 } 777 778 /* Computes result = product % curve_prime for different curve_primes. 779 * 780 * Note that curve_primes are distinguished just by heuristic check and 781 * not by complete conformance check. 782 */ 783 static bool vli_mmod_fast(u64 *result, u64 *product, 784 const u64 *curve_prime, unsigned int ndigits) 785 { 786 u64 tmp[2 * ECC_MAX_DIGITS]; 787 788 /* Currently, both NIST primes have -1 in lowest qword. */ 789 if (curve_prime[0] != -1ull) { 790 /* Try to handle Pseudo-Marsenne primes. */ 791 if (curve_prime[ndigits - 1] == -1ull) { 792 vli_mmod_special(result, product, curve_prime, 793 ndigits); 794 return true; 795 } else if (curve_prime[ndigits - 1] == 1ull << 63 && 796 curve_prime[ndigits - 2] == 0) { 797 vli_mmod_special2(result, product, curve_prime, 798 ndigits); 799 return true; 800 } 801 vli_mmod_barrett(result, product, curve_prime, ndigits); 802 return true; 803 } 804 805 switch (ndigits) { 806 case 3: 807 vli_mmod_fast_192(result, product, curve_prime, tmp); 808 break; 809 case 4: 810 vli_mmod_fast_256(result, product, curve_prime, tmp); 811 break; 812 default: 813 pr_err_ratelimited("ecc: unsupported digits size!\n"); 814 return false; 815 } 816 817 return true; 818 } 819 820 /* Computes result = (left * right) % mod. 821 * Assumes that mod is big enough curve order. 822 */ 823 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, 824 const u64 *mod, unsigned int ndigits) 825 { 826 u64 product[ECC_MAX_DIGITS * 2]; 827 828 vli_mult(product, left, right, ndigits); 829 vli_mmod_slow(result, product, mod, ndigits); 830 } 831 EXPORT_SYMBOL(vli_mod_mult_slow); 832 833 /* Computes result = (left * right) % curve_prime. */ 834 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right, 835 const u64 *curve_prime, unsigned int ndigits) 836 { 837 u64 product[2 * ECC_MAX_DIGITS]; 838 839 vli_mult(product, left, right, ndigits); 840 vli_mmod_fast(result, product, curve_prime, ndigits); 841 } 842 843 /* Computes result = left^2 % curve_prime. */ 844 static void vli_mod_square_fast(u64 *result, const u64 *left, 845 const u64 *curve_prime, unsigned int ndigits) 846 { 847 u64 product[2 * ECC_MAX_DIGITS]; 848 849 vli_square(product, left, ndigits); 850 vli_mmod_fast(result, product, curve_prime, ndigits); 851 } 852 853 #define EVEN(vli) (!(vli[0] & 1)) 854 /* Computes result = (1 / p_input) % mod. All VLIs are the same size. 855 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" 856 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf 857 */ 858 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, 859 unsigned int ndigits) 860 { 861 u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS]; 862 u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS]; 863 u64 carry; 864 int cmp_result; 865 866 if (vli_is_zero(input, ndigits)) { 867 vli_clear(result, ndigits); 868 return; 869 } 870 871 vli_set(a, input, ndigits); 872 vli_set(b, mod, ndigits); 873 vli_clear(u, ndigits); 874 u[0] = 1; 875 vli_clear(v, ndigits); 876 877 while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) { 878 carry = 0; 879 880 if (EVEN(a)) { 881 vli_rshift1(a, ndigits); 882 883 if (!EVEN(u)) 884 carry = vli_add(u, u, mod, ndigits); 885 886 vli_rshift1(u, ndigits); 887 if (carry) 888 u[ndigits - 1] |= 0x8000000000000000ull; 889 } else if (EVEN(b)) { 890 vli_rshift1(b, ndigits); 891 892 if (!EVEN(v)) 893 carry = vli_add(v, v, mod, ndigits); 894 895 vli_rshift1(v, ndigits); 896 if (carry) 897 v[ndigits - 1] |= 0x8000000000000000ull; 898 } else if (cmp_result > 0) { 899 vli_sub(a, a, b, ndigits); 900 vli_rshift1(a, ndigits); 901 902 if (vli_cmp(u, v, ndigits) < 0) 903 vli_add(u, u, mod, ndigits); 904 905 vli_sub(u, u, v, ndigits); 906 if (!EVEN(u)) 907 carry = vli_add(u, u, mod, ndigits); 908 909 vli_rshift1(u, ndigits); 910 if (carry) 911 u[ndigits - 1] |= 0x8000000000000000ull; 912 } else { 913 vli_sub(b, b, a, ndigits); 914 vli_rshift1(b, ndigits); 915 916 if (vli_cmp(v, u, ndigits) < 0) 917 vli_add(v, v, mod, ndigits); 918 919 vli_sub(v, v, u, ndigits); 920 if (!EVEN(v)) 921 carry = vli_add(v, v, mod, ndigits); 922 923 vli_rshift1(v, ndigits); 924 if (carry) 925 v[ndigits - 1] |= 0x8000000000000000ull; 926 } 927 } 928 929 vli_set(result, u, ndigits); 930 } 931 EXPORT_SYMBOL(vli_mod_inv); 932 933 /* ------ Point operations ------ */ 934 935 /* Returns true if p_point is the point at infinity, false otherwise. */ 936 static bool ecc_point_is_zero(const struct ecc_point *point) 937 { 938 return (vli_is_zero(point->x, point->ndigits) && 939 vli_is_zero(point->y, point->ndigits)); 940 } 941 942 /* Point multiplication algorithm using Montgomery's ladder with co-Z 943 * coordinates. From https://eprint.iacr.org/2011/338.pdf 944 */ 945 946 /* Double in place */ 947 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1, 948 u64 *curve_prime, unsigned int ndigits) 949 { 950 /* t1 = x, t2 = y, t3 = z */ 951 u64 t4[ECC_MAX_DIGITS]; 952 u64 t5[ECC_MAX_DIGITS]; 953 954 if (vli_is_zero(z1, ndigits)) 955 return; 956 957 /* t4 = y1^2 */ 958 vli_mod_square_fast(t4, y1, curve_prime, ndigits); 959 /* t5 = x1*y1^2 = A */ 960 vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits); 961 /* t4 = y1^4 */ 962 vli_mod_square_fast(t4, t4, curve_prime, ndigits); 963 /* t2 = y1*z1 = z3 */ 964 vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits); 965 /* t3 = z1^2 */ 966 vli_mod_square_fast(z1, z1, curve_prime, ndigits); 967 968 /* t1 = x1 + z1^2 */ 969 vli_mod_add(x1, x1, z1, curve_prime, ndigits); 970 /* t3 = 2*z1^2 */ 971 vli_mod_add(z1, z1, z1, curve_prime, ndigits); 972 /* t3 = x1 - z1^2 */ 973 vli_mod_sub(z1, x1, z1, curve_prime, ndigits); 974 /* t1 = x1^2 - z1^4 */ 975 vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits); 976 977 /* t3 = 2*(x1^2 - z1^4) */ 978 vli_mod_add(z1, x1, x1, curve_prime, ndigits); 979 /* t1 = 3*(x1^2 - z1^4) */ 980 vli_mod_add(x1, x1, z1, curve_prime, ndigits); 981 if (vli_test_bit(x1, 0)) { 982 u64 carry = vli_add(x1, x1, curve_prime, ndigits); 983 984 vli_rshift1(x1, ndigits); 985 x1[ndigits - 1] |= carry << 63; 986 } else { 987 vli_rshift1(x1, ndigits); 988 } 989 /* t1 = 3/2*(x1^2 - z1^4) = B */ 990 991 /* t3 = B^2 */ 992 vli_mod_square_fast(z1, x1, curve_prime, ndigits); 993 /* t3 = B^2 - A */ 994 vli_mod_sub(z1, z1, t5, curve_prime, ndigits); 995 /* t3 = B^2 - 2A = x3 */ 996 vli_mod_sub(z1, z1, t5, curve_prime, ndigits); 997 /* t5 = A - x3 */ 998 vli_mod_sub(t5, t5, z1, curve_prime, ndigits); 999 /* t1 = B * (A - x3) */ 1000 vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); 1001 /* t4 = B * (A - x3) - y1^4 = y3 */ 1002 vli_mod_sub(t4, x1, t4, curve_prime, ndigits); 1003 1004 vli_set(x1, z1, ndigits); 1005 vli_set(z1, y1, ndigits); 1006 vli_set(y1, t4, ndigits); 1007 } 1008 1009 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ 1010 static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime, 1011 unsigned int ndigits) 1012 { 1013 u64 t1[ECC_MAX_DIGITS]; 1014 1015 vli_mod_square_fast(t1, z, curve_prime, ndigits); /* z^2 */ 1016 vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */ 1017 vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits); /* z^3 */ 1018 vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */ 1019 } 1020 1021 /* P = (x1, y1) => 2P, (x2, y2) => P' */ 1022 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2, 1023 u64 *p_initial_z, u64 *curve_prime, 1024 unsigned int ndigits) 1025 { 1026 u64 z[ECC_MAX_DIGITS]; 1027 1028 vli_set(x2, x1, ndigits); 1029 vli_set(y2, y1, ndigits); 1030 1031 vli_clear(z, ndigits); 1032 z[0] = 1; 1033 1034 if (p_initial_z) 1035 vli_set(z, p_initial_z, ndigits); 1036 1037 apply_z(x1, y1, z, curve_prime, ndigits); 1038 1039 ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits); 1040 1041 apply_z(x2, y2, z, curve_prime, ndigits); 1042 } 1043 1044 /* Input P = (x1, y1, Z), Q = (x2, y2, Z) 1045 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) 1046 * or P => P', Q => P + Q 1047 */ 1048 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime, 1049 unsigned int ndigits) 1050 { 1051 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ 1052 u64 t5[ECC_MAX_DIGITS]; 1053 1054 /* t5 = x2 - x1 */ 1055 vli_mod_sub(t5, x2, x1, curve_prime, ndigits); 1056 /* t5 = (x2 - x1)^2 = A */ 1057 vli_mod_square_fast(t5, t5, curve_prime, ndigits); 1058 /* t1 = x1*A = B */ 1059 vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); 1060 /* t3 = x2*A = C */ 1061 vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits); 1062 /* t4 = y2 - y1 */ 1063 vli_mod_sub(y2, y2, y1, curve_prime, ndigits); 1064 /* t5 = (y2 - y1)^2 = D */ 1065 vli_mod_square_fast(t5, y2, curve_prime, ndigits); 1066 1067 /* t5 = D - B */ 1068 vli_mod_sub(t5, t5, x1, curve_prime, ndigits); 1069 /* t5 = D - B - C = x3 */ 1070 vli_mod_sub(t5, t5, x2, curve_prime, ndigits); 1071 /* t3 = C - B */ 1072 vli_mod_sub(x2, x2, x1, curve_prime, ndigits); 1073 /* t2 = y1*(C - B) */ 1074 vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits); 1075 /* t3 = B - x3 */ 1076 vli_mod_sub(x2, x1, t5, curve_prime, ndigits); 1077 /* t4 = (y2 - y1)*(B - x3) */ 1078 vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits); 1079 /* t4 = y3 */ 1080 vli_mod_sub(y2, y2, y1, curve_prime, ndigits); 1081 1082 vli_set(x2, t5, ndigits); 1083 } 1084 1085 /* Input P = (x1, y1, Z), Q = (x2, y2, Z) 1086 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) 1087 * or P => P - Q, Q => P + Q 1088 */ 1089 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime, 1090 unsigned int ndigits) 1091 { 1092 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ 1093 u64 t5[ECC_MAX_DIGITS]; 1094 u64 t6[ECC_MAX_DIGITS]; 1095 u64 t7[ECC_MAX_DIGITS]; 1096 1097 /* t5 = x2 - x1 */ 1098 vli_mod_sub(t5, x2, x1, curve_prime, ndigits); 1099 /* t5 = (x2 - x1)^2 = A */ 1100 vli_mod_square_fast(t5, t5, curve_prime, ndigits); 1101 /* t1 = x1*A = B */ 1102 vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); 1103 /* t3 = x2*A = C */ 1104 vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits); 1105 /* t4 = y2 + y1 */ 1106 vli_mod_add(t5, y2, y1, curve_prime, ndigits); 1107 /* t4 = y2 - y1 */ 1108 vli_mod_sub(y2, y2, y1, curve_prime, ndigits); 1109 1110 /* t6 = C - B */ 1111 vli_mod_sub(t6, x2, x1, curve_prime, ndigits); 1112 /* t2 = y1 * (C - B) */ 1113 vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits); 1114 /* t6 = B + C */ 1115 vli_mod_add(t6, x1, x2, curve_prime, ndigits); 1116 /* t3 = (y2 - y1)^2 */ 1117 vli_mod_square_fast(x2, y2, curve_prime, ndigits); 1118 /* t3 = x3 */ 1119 vli_mod_sub(x2, x2, t6, curve_prime, ndigits); 1120 1121 /* t7 = B - x3 */ 1122 vli_mod_sub(t7, x1, x2, curve_prime, ndigits); 1123 /* t4 = (y2 - y1)*(B - x3) */ 1124 vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits); 1125 /* t4 = y3 */ 1126 vli_mod_sub(y2, y2, y1, curve_prime, ndigits); 1127 1128 /* t7 = (y2 + y1)^2 = F */ 1129 vli_mod_square_fast(t7, t5, curve_prime, ndigits); 1130 /* t7 = x3' */ 1131 vli_mod_sub(t7, t7, t6, curve_prime, ndigits); 1132 /* t6 = x3' - B */ 1133 vli_mod_sub(t6, t7, x1, curve_prime, ndigits); 1134 /* t6 = (y2 + y1)*(x3' - B) */ 1135 vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits); 1136 /* t2 = y3' */ 1137 vli_mod_sub(y1, t6, y1, curve_prime, ndigits); 1138 1139 vli_set(x1, t7, ndigits); 1140 } 1141 1142 static void ecc_point_mult(struct ecc_point *result, 1143 const struct ecc_point *point, const u64 *scalar, 1144 u64 *initial_z, const struct ecc_curve *curve, 1145 unsigned int ndigits) 1146 { 1147 /* R0 and R1 */ 1148 u64 rx[2][ECC_MAX_DIGITS]; 1149 u64 ry[2][ECC_MAX_DIGITS]; 1150 u64 z[ECC_MAX_DIGITS]; 1151 u64 sk[2][ECC_MAX_DIGITS]; 1152 u64 *curve_prime = curve->p; 1153 int i, nb; 1154 int num_bits; 1155 int carry; 1156 1157 carry = vli_add(sk[0], scalar, curve->n, ndigits); 1158 vli_add(sk[1], sk[0], curve->n, ndigits); 1159 scalar = sk[!carry]; 1160 num_bits = sizeof(u64) * ndigits * 8 + 1; 1161 1162 vli_set(rx[1], point->x, ndigits); 1163 vli_set(ry[1], point->y, ndigits); 1164 1165 xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime, 1166 ndigits); 1167 1168 for (i = num_bits - 2; i > 0; i--) { 1169 nb = !vli_test_bit(scalar, i); 1170 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime, 1171 ndigits); 1172 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, 1173 ndigits); 1174 } 1175 1176 nb = !vli_test_bit(scalar, 0); 1177 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime, 1178 ndigits); 1179 1180 /* Find final 1/Z value. */ 1181 /* X1 - X0 */ 1182 vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits); 1183 /* Yb * (X1 - X0) */ 1184 vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits); 1185 /* xP * Yb * (X1 - X0) */ 1186 vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits); 1187 1188 /* 1 / (xP * Yb * (X1 - X0)) */ 1189 vli_mod_inv(z, z, curve_prime, point->ndigits); 1190 1191 /* yP / (xP * Yb * (X1 - X0)) */ 1192 vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits); 1193 /* Xb * yP / (xP * Yb * (X1 - X0)) */ 1194 vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits); 1195 /* End 1/Z calculation */ 1196 1197 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits); 1198 1199 apply_z(rx[0], ry[0], z, curve_prime, ndigits); 1200 1201 vli_set(result->x, rx[0], ndigits); 1202 vli_set(result->y, ry[0], ndigits); 1203 } 1204 1205 /* Computes R = P + Q mod p */ 1206 static void ecc_point_add(const struct ecc_point *result, 1207 const struct ecc_point *p, const struct ecc_point *q, 1208 const struct ecc_curve *curve) 1209 { 1210 u64 z[ECC_MAX_DIGITS]; 1211 u64 px[ECC_MAX_DIGITS]; 1212 u64 py[ECC_MAX_DIGITS]; 1213 unsigned int ndigits = curve->g.ndigits; 1214 1215 vli_set(result->x, q->x, ndigits); 1216 vli_set(result->y, q->y, ndigits); 1217 vli_mod_sub(z, result->x, p->x, curve->p, ndigits); 1218 vli_set(px, p->x, ndigits); 1219 vli_set(py, p->y, ndigits); 1220 xycz_add(px, py, result->x, result->y, curve->p, ndigits); 1221 vli_mod_inv(z, z, curve->p, ndigits); 1222 apply_z(result->x, result->y, z, curve->p, ndigits); 1223 } 1224 1225 /* Computes R = u1P + u2Q mod p using Shamir's trick. 1226 * Based on: Kenneth MacKay's micro-ecc (2014). 1227 */ 1228 void ecc_point_mult_shamir(const struct ecc_point *result, 1229 const u64 *u1, const struct ecc_point *p, 1230 const u64 *u2, const struct ecc_point *q, 1231 const struct ecc_curve *curve) 1232 { 1233 u64 z[ECC_MAX_DIGITS]; 1234 u64 sump[2][ECC_MAX_DIGITS]; 1235 u64 *rx = result->x; 1236 u64 *ry = result->y; 1237 unsigned int ndigits = curve->g.ndigits; 1238 unsigned int num_bits; 1239 struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits); 1240 const struct ecc_point *points[4]; 1241 const struct ecc_point *point; 1242 unsigned int idx; 1243 int i; 1244 1245 ecc_point_add(&sum, p, q, curve); 1246 points[0] = NULL; 1247 points[1] = p; 1248 points[2] = q; 1249 points[3] = ∑ 1250 1251 num_bits = max(vli_num_bits(u1, ndigits), 1252 vli_num_bits(u2, ndigits)); 1253 i = num_bits - 1; 1254 idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); 1255 point = points[idx]; 1256 1257 vli_set(rx, point->x, ndigits); 1258 vli_set(ry, point->y, ndigits); 1259 vli_clear(z + 1, ndigits - 1); 1260 z[0] = 1; 1261 1262 for (--i; i >= 0; i--) { 1263 ecc_point_double_jacobian(rx, ry, z, curve->p, ndigits); 1264 idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); 1265 point = points[idx]; 1266 if (point) { 1267 u64 tx[ECC_MAX_DIGITS]; 1268 u64 ty[ECC_MAX_DIGITS]; 1269 u64 tz[ECC_MAX_DIGITS]; 1270 1271 vli_set(tx, point->x, ndigits); 1272 vli_set(ty, point->y, ndigits); 1273 apply_z(tx, ty, z, curve->p, ndigits); 1274 vli_mod_sub(tz, rx, tx, curve->p, ndigits); 1275 xycz_add(tx, ty, rx, ry, curve->p, ndigits); 1276 vli_mod_mult_fast(z, z, tz, curve->p, ndigits); 1277 } 1278 } 1279 vli_mod_inv(z, z, curve->p, ndigits); 1280 apply_z(rx, ry, z, curve->p, ndigits); 1281 } 1282 EXPORT_SYMBOL(ecc_point_mult_shamir); 1283 1284 static inline void ecc_swap_digits(const u64 *in, u64 *out, 1285 unsigned int ndigits) 1286 { 1287 const __be64 *src = (__force __be64 *)in; 1288 int i; 1289 1290 for (i = 0; i < ndigits; i++) 1291 out[i] = be64_to_cpu(src[ndigits - 1 - i]); 1292 } 1293 1294 static int __ecc_is_key_valid(const struct ecc_curve *curve, 1295 const u64 *private_key, unsigned int ndigits) 1296 { 1297 u64 one[ECC_MAX_DIGITS] = { 1, }; 1298 u64 res[ECC_MAX_DIGITS]; 1299 1300 if (!private_key) 1301 return -EINVAL; 1302 1303 if (curve->g.ndigits != ndigits) 1304 return -EINVAL; 1305 1306 /* Make sure the private key is in the range [2, n-3]. */ 1307 if (vli_cmp(one, private_key, ndigits) != -1) 1308 return -EINVAL; 1309 vli_sub(res, curve->n, one, ndigits); 1310 vli_sub(res, res, one, ndigits); 1311 if (vli_cmp(res, private_key, ndigits) != 1) 1312 return -EINVAL; 1313 1314 return 0; 1315 } 1316 1317 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, 1318 const u64 *private_key, unsigned int private_key_len) 1319 { 1320 int nbytes; 1321 const struct ecc_curve *curve = ecc_get_curve(curve_id); 1322 1323 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; 1324 1325 if (private_key_len != nbytes) 1326 return -EINVAL; 1327 1328 return __ecc_is_key_valid(curve, private_key, ndigits); 1329 } 1330 EXPORT_SYMBOL(ecc_is_key_valid); 1331 1332 /* 1333 * ECC private keys are generated using the method of extra random bits, 1334 * equivalent to that described in FIPS 186-4, Appendix B.4.1. 1335 * 1336 * d = (c mod(n–1)) + 1 where c is a string of random bits, 64 bits longer 1337 * than requested 1338 * 0 <= c mod(n-1) <= n-2 and implies that 1339 * 1 <= d <= n-1 1340 * 1341 * This method generates a private key uniformly distributed in the range 1342 * [1, n-1]. 1343 */ 1344 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey) 1345 { 1346 const struct ecc_curve *curve = ecc_get_curve(curve_id); 1347 u64 priv[ECC_MAX_DIGITS]; 1348 unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; 1349 unsigned int nbits = vli_num_bits(curve->n, ndigits); 1350 int err; 1351 1352 /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */ 1353 if (nbits < 160 || ndigits > ARRAY_SIZE(priv)) 1354 return -EINVAL; 1355 1356 /* 1357 * FIPS 186-4 recommends that the private key should be obtained from a 1358 * RBG with a security strength equal to or greater than the security 1359 * strength associated with N. 1360 * 1361 * The maximum security strength identified by NIST SP800-57pt1r4 for 1362 * ECC is 256 (N >= 512). 1363 * 1364 * This condition is met by the default RNG because it selects a favored 1365 * DRBG with a security strength of 256. 1366 */ 1367 if (crypto_get_default_rng()) 1368 return -EFAULT; 1369 1370 err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes); 1371 crypto_put_default_rng(); 1372 if (err) 1373 return err; 1374 1375 /* Make sure the private key is in the valid range. */ 1376 if (__ecc_is_key_valid(curve, priv, ndigits)) 1377 return -EINVAL; 1378 1379 ecc_swap_digits(priv, privkey, ndigits); 1380 1381 return 0; 1382 } 1383 EXPORT_SYMBOL(ecc_gen_privkey); 1384 1385 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits, 1386 const u64 *private_key, u64 *public_key) 1387 { 1388 int ret = 0; 1389 struct ecc_point *pk; 1390 u64 priv[ECC_MAX_DIGITS]; 1391 const struct ecc_curve *curve = ecc_get_curve(curve_id); 1392 1393 if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) { 1394 ret = -EINVAL; 1395 goto out; 1396 } 1397 1398 ecc_swap_digits(private_key, priv, ndigits); 1399 1400 pk = ecc_alloc_point(ndigits); 1401 if (!pk) { 1402 ret = -ENOMEM; 1403 goto out; 1404 } 1405 1406 ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits); 1407 1408 /* SP800-56A rev 3 5.6.2.1.3 key check */ 1409 if (ecc_is_pubkey_valid_full(curve, pk)) { 1410 ret = -EAGAIN; 1411 goto err_free_point; 1412 } 1413 1414 ecc_swap_digits(pk->x, public_key, ndigits); 1415 ecc_swap_digits(pk->y, &public_key[ndigits], ndigits); 1416 1417 err_free_point: 1418 ecc_free_point(pk); 1419 out: 1420 return ret; 1421 } 1422 EXPORT_SYMBOL(ecc_make_pub_key); 1423 1424 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */ 1425 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, 1426 struct ecc_point *pk) 1427 { 1428 u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS]; 1429 1430 if (WARN_ON(pk->ndigits != curve->g.ndigits)) 1431 return -EINVAL; 1432 1433 /* Check 1: Verify key is not the zero point. */ 1434 if (ecc_point_is_zero(pk)) 1435 return -EINVAL; 1436 1437 /* Check 2: Verify key is in the range [1, p-1]. */ 1438 if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1) 1439 return -EINVAL; 1440 if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1) 1441 return -EINVAL; 1442 1443 /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ 1444 vli_mod_square_fast(yy, pk->y, curve->p, pk->ndigits); /* y^2 */ 1445 vli_mod_square_fast(xxx, pk->x, curve->p, pk->ndigits); /* x^2 */ 1446 vli_mod_mult_fast(xxx, xxx, pk->x, curve->p, pk->ndigits); /* x^3 */ 1447 vli_mod_mult_fast(w, curve->a, pk->x, curve->p, pk->ndigits); /* a·x */ 1448 vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */ 1449 vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */ 1450 if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */ 1451 return -EINVAL; 1452 1453 return 0; 1454 } 1455 EXPORT_SYMBOL(ecc_is_pubkey_valid_partial); 1456 1457 /* SP800-56A section 5.6.2.3.3 full verification */ 1458 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve, 1459 struct ecc_point *pk) 1460 { 1461 struct ecc_point *nQ; 1462 1463 /* Checks 1 through 3 */ 1464 int ret = ecc_is_pubkey_valid_partial(curve, pk); 1465 1466 if (ret) 1467 return ret; 1468 1469 /* Check 4: Verify that nQ is the zero point. */ 1470 nQ = ecc_alloc_point(pk->ndigits); 1471 if (!nQ) 1472 return -ENOMEM; 1473 1474 ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits); 1475 if (!ecc_point_is_zero(nQ)) 1476 ret = -EINVAL; 1477 1478 ecc_free_point(nQ); 1479 1480 return ret; 1481 } 1482 EXPORT_SYMBOL(ecc_is_pubkey_valid_full); 1483 1484 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, 1485 const u64 *private_key, const u64 *public_key, 1486 u64 *secret) 1487 { 1488 int ret = 0; 1489 struct ecc_point *product, *pk; 1490 u64 priv[ECC_MAX_DIGITS]; 1491 u64 rand_z[ECC_MAX_DIGITS]; 1492 unsigned int nbytes; 1493 const struct ecc_curve *curve = ecc_get_curve(curve_id); 1494 1495 if (!private_key || !public_key || !curve || 1496 ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) { 1497 ret = -EINVAL; 1498 goto out; 1499 } 1500 1501 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; 1502 1503 get_random_bytes(rand_z, nbytes); 1504 1505 pk = ecc_alloc_point(ndigits); 1506 if (!pk) { 1507 ret = -ENOMEM; 1508 goto out; 1509 } 1510 1511 ecc_swap_digits(public_key, pk->x, ndigits); 1512 ecc_swap_digits(&public_key[ndigits], pk->y, ndigits); 1513 ret = ecc_is_pubkey_valid_partial(curve, pk); 1514 if (ret) 1515 goto err_alloc_product; 1516 1517 ecc_swap_digits(private_key, priv, ndigits); 1518 1519 product = ecc_alloc_point(ndigits); 1520 if (!product) { 1521 ret = -ENOMEM; 1522 goto err_alloc_product; 1523 } 1524 1525 ecc_point_mult(product, pk, priv, rand_z, curve, ndigits); 1526 1527 if (ecc_point_is_zero(product)) { 1528 ret = -EFAULT; 1529 goto err_validity; 1530 } 1531 1532 ecc_swap_digits(product->x, secret, ndigits); 1533 1534 err_validity: 1535 memzero_explicit(priv, sizeof(priv)); 1536 memzero_explicit(rand_z, sizeof(rand_z)); 1537 ecc_free_point(product); 1538 err_alloc_product: 1539 ecc_free_point(pk); 1540 out: 1541 return ret; 1542 } 1543 EXPORT_SYMBOL(crypto_ecdh_shared_secret); 1544 1545 MODULE_LICENSE("Dual BSD/GPL"); 1546