xref: /openbmc/linux/crypto/ecc.c (revision 05911c5d)
1 /*
2  * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
3  * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met:
8  *  * Redistributions of source code must retain the above copyright
9  *   notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <crypto/ecc_curve.h>
28 #include <linux/module.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/swab.h>
32 #include <linux/fips.h>
33 #include <crypto/ecdh.h>
34 #include <crypto/rng.h>
35 #include <asm/unaligned.h>
36 #include <linux/ratelimit.h>
37 
38 #include "ecc.h"
39 #include "ecc_curve_defs.h"
40 
41 typedef struct {
42 	u64 m_low;
43 	u64 m_high;
44 } uint128_t;
45 
46 /* Returns curv25519 curve param */
47 const struct ecc_curve *ecc_get_curve25519(void)
48 {
49 	return &ecc_25519;
50 }
51 EXPORT_SYMBOL(ecc_get_curve25519);
52 
53 const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
54 {
55 	switch (curve_id) {
56 	/* In FIPS mode only allow P256 and higher */
57 	case ECC_CURVE_NIST_P192:
58 		return fips_enabled ? NULL : &nist_p192;
59 	case ECC_CURVE_NIST_P256:
60 		return &nist_p256;
61 	case ECC_CURVE_NIST_P384:
62 		return &nist_p384;
63 	default:
64 		return NULL;
65 	}
66 }
67 EXPORT_SYMBOL(ecc_get_curve);
68 
69 static u64 *ecc_alloc_digits_space(unsigned int ndigits)
70 {
71 	size_t len = ndigits * sizeof(u64);
72 
73 	if (!len)
74 		return NULL;
75 
76 	return kmalloc(len, GFP_KERNEL);
77 }
78 
79 static void ecc_free_digits_space(u64 *space)
80 {
81 	kfree_sensitive(space);
82 }
83 
84 static struct ecc_point *ecc_alloc_point(unsigned int ndigits)
85 {
86 	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
87 
88 	if (!p)
89 		return NULL;
90 
91 	p->x = ecc_alloc_digits_space(ndigits);
92 	if (!p->x)
93 		goto err_alloc_x;
94 
95 	p->y = ecc_alloc_digits_space(ndigits);
96 	if (!p->y)
97 		goto err_alloc_y;
98 
99 	p->ndigits = ndigits;
100 
101 	return p;
102 
103 err_alloc_y:
104 	ecc_free_digits_space(p->x);
105 err_alloc_x:
106 	kfree(p);
107 	return NULL;
108 }
109 
110 static void ecc_free_point(struct ecc_point *p)
111 {
112 	if (!p)
113 		return;
114 
115 	kfree_sensitive(p->x);
116 	kfree_sensitive(p->y);
117 	kfree_sensitive(p);
118 }
119 
120 static void vli_clear(u64 *vli, unsigned int ndigits)
121 {
122 	int i;
123 
124 	for (i = 0; i < ndigits; i++)
125 		vli[i] = 0;
126 }
127 
128 /* Returns true if vli == 0, false otherwise. */
129 bool vli_is_zero(const u64 *vli, unsigned int ndigits)
130 {
131 	int i;
132 
133 	for (i = 0; i < ndigits; i++) {
134 		if (vli[i])
135 			return false;
136 	}
137 
138 	return true;
139 }
140 EXPORT_SYMBOL(vli_is_zero);
141 
142 /* Returns nonzero if bit of vli is set. */
143 static u64 vli_test_bit(const u64 *vli, unsigned int bit)
144 {
145 	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
146 }
147 
148 static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
149 {
150 	return vli_test_bit(vli, ndigits * 64 - 1);
151 }
152 
153 /* Counts the number of 64-bit "digits" in vli. */
154 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
155 {
156 	int i;
157 
158 	/* Search from the end until we find a non-zero digit.
159 	 * We do it in reverse because we expect that most digits will
160 	 * be nonzero.
161 	 */
162 	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
163 
164 	return (i + 1);
165 }
166 
167 /* Counts the number of bits required for vli. */
168 static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
169 {
170 	unsigned int i, num_digits;
171 	u64 digit;
172 
173 	num_digits = vli_num_digits(vli, ndigits);
174 	if (num_digits == 0)
175 		return 0;
176 
177 	digit = vli[num_digits - 1];
178 	for (i = 0; digit; i++)
179 		digit >>= 1;
180 
181 	return ((num_digits - 1) * 64 + i);
182 }
183 
184 /* Set dest from unaligned bit string src. */
185 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
186 {
187 	int i;
188 	const u64 *from = src;
189 
190 	for (i = 0; i < ndigits; i++)
191 		dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
192 }
193 EXPORT_SYMBOL(vli_from_be64);
194 
195 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
196 {
197 	int i;
198 	const u64 *from = src;
199 
200 	for (i = 0; i < ndigits; i++)
201 		dest[i] = get_unaligned_le64(&from[i]);
202 }
203 EXPORT_SYMBOL(vli_from_le64);
204 
205 /* Sets dest = src. */
206 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
207 {
208 	int i;
209 
210 	for (i = 0; i < ndigits; i++)
211 		dest[i] = src[i];
212 }
213 
214 /* Returns sign of left - right. */
215 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
216 {
217 	int i;
218 
219 	for (i = ndigits - 1; i >= 0; i--) {
220 		if (left[i] > right[i])
221 			return 1;
222 		else if (left[i] < right[i])
223 			return -1;
224 	}
225 
226 	return 0;
227 }
228 EXPORT_SYMBOL(vli_cmp);
229 
230 /* Computes result = in << c, returning carry. Can modify in place
231  * (if result == in). 0 < shift < 64.
232  */
233 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
234 		      unsigned int ndigits)
235 {
236 	u64 carry = 0;
237 	int i;
238 
239 	for (i = 0; i < ndigits; i++) {
240 		u64 temp = in[i];
241 
242 		result[i] = (temp << shift) | carry;
243 		carry = temp >> (64 - shift);
244 	}
245 
246 	return carry;
247 }
248 
249 /* Computes vli = vli >> 1. */
250 static void vli_rshift1(u64 *vli, unsigned int ndigits)
251 {
252 	u64 *end = vli;
253 	u64 carry = 0;
254 
255 	vli += ndigits;
256 
257 	while (vli-- > end) {
258 		u64 temp = *vli;
259 		*vli = (temp >> 1) | carry;
260 		carry = temp << 63;
261 	}
262 }
263 
264 /* Computes result = left + right, returning carry. Can modify in place. */
265 static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
266 		   unsigned int ndigits)
267 {
268 	u64 carry = 0;
269 	int i;
270 
271 	for (i = 0; i < ndigits; i++) {
272 		u64 sum;
273 
274 		sum = left[i] + right[i] + carry;
275 		if (sum != left[i])
276 			carry = (sum < left[i]);
277 
278 		result[i] = sum;
279 	}
280 
281 	return carry;
282 }
283 
284 /* Computes result = left + right, returning carry. Can modify in place. */
285 static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
286 		    unsigned int ndigits)
287 {
288 	u64 carry = right;
289 	int i;
290 
291 	for (i = 0; i < ndigits; i++) {
292 		u64 sum;
293 
294 		sum = left[i] + carry;
295 		if (sum != left[i])
296 			carry = (sum < left[i]);
297 		else
298 			carry = !!carry;
299 
300 		result[i] = sum;
301 	}
302 
303 	return carry;
304 }
305 
306 /* Computes result = left - right, returning borrow. Can modify in place. */
307 u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
308 		   unsigned int ndigits)
309 {
310 	u64 borrow = 0;
311 	int i;
312 
313 	for (i = 0; i < ndigits; i++) {
314 		u64 diff;
315 
316 		diff = left[i] - right[i] - borrow;
317 		if (diff != left[i])
318 			borrow = (diff > left[i]);
319 
320 		result[i] = diff;
321 	}
322 
323 	return borrow;
324 }
325 EXPORT_SYMBOL(vli_sub);
326 
327 /* Computes result = left - right, returning borrow. Can modify in place. */
328 static u64 vli_usub(u64 *result, const u64 *left, u64 right,
329 	     unsigned int ndigits)
330 {
331 	u64 borrow = right;
332 	int i;
333 
334 	for (i = 0; i < ndigits; i++) {
335 		u64 diff;
336 
337 		diff = left[i] - borrow;
338 		if (diff != left[i])
339 			borrow = (diff > left[i]);
340 
341 		result[i] = diff;
342 	}
343 
344 	return borrow;
345 }
346 
347 static uint128_t mul_64_64(u64 left, u64 right)
348 {
349 	uint128_t result;
350 #if defined(CONFIG_ARCH_SUPPORTS_INT128)
351 	unsigned __int128 m = (unsigned __int128)left * right;
352 
353 	result.m_low  = m;
354 	result.m_high = m >> 64;
355 #else
356 	u64 a0 = left & 0xffffffffull;
357 	u64 a1 = left >> 32;
358 	u64 b0 = right & 0xffffffffull;
359 	u64 b1 = right >> 32;
360 	u64 m0 = a0 * b0;
361 	u64 m1 = a0 * b1;
362 	u64 m2 = a1 * b0;
363 	u64 m3 = a1 * b1;
364 
365 	m2 += (m0 >> 32);
366 	m2 += m1;
367 
368 	/* Overflow */
369 	if (m2 < m1)
370 		m3 += 0x100000000ull;
371 
372 	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
373 	result.m_high = m3 + (m2 >> 32);
374 #endif
375 	return result;
376 }
377 
378 static uint128_t add_128_128(uint128_t a, uint128_t b)
379 {
380 	uint128_t result;
381 
382 	result.m_low = a.m_low + b.m_low;
383 	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
384 
385 	return result;
386 }
387 
388 static void vli_mult(u64 *result, const u64 *left, const u64 *right,
389 		     unsigned int ndigits)
390 {
391 	uint128_t r01 = { 0, 0 };
392 	u64 r2 = 0;
393 	unsigned int i, k;
394 
395 	/* Compute each digit of result in sequence, maintaining the
396 	 * carries.
397 	 */
398 	for (k = 0; k < ndigits * 2 - 1; k++) {
399 		unsigned int min;
400 
401 		if (k < ndigits)
402 			min = 0;
403 		else
404 			min = (k + 1) - ndigits;
405 
406 		for (i = min; i <= k && i < ndigits; i++) {
407 			uint128_t product;
408 
409 			product = mul_64_64(left[i], right[k - i]);
410 
411 			r01 = add_128_128(r01, product);
412 			r2 += (r01.m_high < product.m_high);
413 		}
414 
415 		result[k] = r01.m_low;
416 		r01.m_low = r01.m_high;
417 		r01.m_high = r2;
418 		r2 = 0;
419 	}
420 
421 	result[ndigits * 2 - 1] = r01.m_low;
422 }
423 
424 /* Compute product = left * right, for a small right value. */
425 static void vli_umult(u64 *result, const u64 *left, u32 right,
426 		      unsigned int ndigits)
427 {
428 	uint128_t r01 = { 0 };
429 	unsigned int k;
430 
431 	for (k = 0; k < ndigits; k++) {
432 		uint128_t product;
433 
434 		product = mul_64_64(left[k], right);
435 		r01 = add_128_128(r01, product);
436 		/* no carry */
437 		result[k] = r01.m_low;
438 		r01.m_low = r01.m_high;
439 		r01.m_high = 0;
440 	}
441 	result[k] = r01.m_low;
442 	for (++k; k < ndigits * 2; k++)
443 		result[k] = 0;
444 }
445 
446 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
447 {
448 	uint128_t r01 = { 0, 0 };
449 	u64 r2 = 0;
450 	int i, k;
451 
452 	for (k = 0; k < ndigits * 2 - 1; k++) {
453 		unsigned int min;
454 
455 		if (k < ndigits)
456 			min = 0;
457 		else
458 			min = (k + 1) - ndigits;
459 
460 		for (i = min; i <= k && i <= k - i; i++) {
461 			uint128_t product;
462 
463 			product = mul_64_64(left[i], left[k - i]);
464 
465 			if (i < k - i) {
466 				r2 += product.m_high >> 63;
467 				product.m_high = (product.m_high << 1) |
468 						 (product.m_low >> 63);
469 				product.m_low <<= 1;
470 			}
471 
472 			r01 = add_128_128(r01, product);
473 			r2 += (r01.m_high < product.m_high);
474 		}
475 
476 		result[k] = r01.m_low;
477 		r01.m_low = r01.m_high;
478 		r01.m_high = r2;
479 		r2 = 0;
480 	}
481 
482 	result[ndigits * 2 - 1] = r01.m_low;
483 }
484 
485 /* Computes result = (left + right) % mod.
486  * Assumes that left < mod and right < mod, result != mod.
487  */
488 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
489 			const u64 *mod, unsigned int ndigits)
490 {
491 	u64 carry;
492 
493 	carry = vli_add(result, left, right, ndigits);
494 
495 	/* result > mod (result = mod + remainder), so subtract mod to
496 	 * get remainder.
497 	 */
498 	if (carry || vli_cmp(result, mod, ndigits) >= 0)
499 		vli_sub(result, result, mod, ndigits);
500 }
501 
502 /* Computes result = (left - right) % mod.
503  * Assumes that left < mod and right < mod, result != mod.
504  */
505 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
506 			const u64 *mod, unsigned int ndigits)
507 {
508 	u64 borrow = vli_sub(result, left, right, ndigits);
509 
510 	/* In this case, p_result == -diff == (max int) - diff.
511 	 * Since -x % d == d - x, we can get the correct result from
512 	 * result + mod (with overflow).
513 	 */
514 	if (borrow)
515 		vli_add(result, result, mod, ndigits);
516 }
517 
518 /*
519  * Computes result = product % mod
520  * for special form moduli: p = 2^k-c, for small c (note the minus sign)
521  *
522  * References:
523  * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
524  * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
525  * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
526  */
527 static void vli_mmod_special(u64 *result, const u64 *product,
528 			      const u64 *mod, unsigned int ndigits)
529 {
530 	u64 c = -mod[0];
531 	u64 t[ECC_MAX_DIGITS * 2];
532 	u64 r[ECC_MAX_DIGITS * 2];
533 
534 	vli_set(r, product, ndigits * 2);
535 	while (!vli_is_zero(r + ndigits, ndigits)) {
536 		vli_umult(t, r + ndigits, c, ndigits);
537 		vli_clear(r + ndigits, ndigits);
538 		vli_add(r, r, t, ndigits * 2);
539 	}
540 	vli_set(t, mod, ndigits);
541 	vli_clear(t + ndigits, ndigits);
542 	while (vli_cmp(r, t, ndigits * 2) >= 0)
543 		vli_sub(r, r, t, ndigits * 2);
544 	vli_set(result, r, ndigits);
545 }
546 
547 /*
548  * Computes result = product % mod
549  * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
550  * where k-1 does not fit into qword boundary by -1 bit (such as 255).
551 
552  * References (loosely based on):
553  * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
554  * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
555  * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
556  *
557  * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
558  * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
559  * Algorithm 10.25 Fast reduction for special form moduli
560  */
561 static void vli_mmod_special2(u64 *result, const u64 *product,
562 			       const u64 *mod, unsigned int ndigits)
563 {
564 	u64 c2 = mod[0] * 2;
565 	u64 q[ECC_MAX_DIGITS];
566 	u64 r[ECC_MAX_DIGITS * 2];
567 	u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
568 	int carry; /* last bit that doesn't fit into q */
569 	int i;
570 
571 	vli_set(m, mod, ndigits);
572 	vli_clear(m + ndigits, ndigits);
573 
574 	vli_set(r, product, ndigits);
575 	/* q and carry are top bits */
576 	vli_set(q, product + ndigits, ndigits);
577 	vli_clear(r + ndigits, ndigits);
578 	carry = vli_is_negative(r, ndigits);
579 	if (carry)
580 		r[ndigits - 1] &= (1ull << 63) - 1;
581 	for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
582 		u64 qc[ECC_MAX_DIGITS * 2];
583 
584 		vli_umult(qc, q, c2, ndigits);
585 		if (carry)
586 			vli_uadd(qc, qc, mod[0], ndigits * 2);
587 		vli_set(q, qc + ndigits, ndigits);
588 		vli_clear(qc + ndigits, ndigits);
589 		carry = vli_is_negative(qc, ndigits);
590 		if (carry)
591 			qc[ndigits - 1] &= (1ull << 63) - 1;
592 		if (i & 1)
593 			vli_sub(r, r, qc, ndigits * 2);
594 		else
595 			vli_add(r, r, qc, ndigits * 2);
596 	}
597 	while (vli_is_negative(r, ndigits * 2))
598 		vli_add(r, r, m, ndigits * 2);
599 	while (vli_cmp(r, m, ndigits * 2) >= 0)
600 		vli_sub(r, r, m, ndigits * 2);
601 
602 	vli_set(result, r, ndigits);
603 }
604 
605 /*
606  * Computes result = product % mod, where product is 2N words long.
607  * Reference: Ken MacKay's micro-ecc.
608  * Currently only designed to work for curve_p or curve_n.
609  */
610 static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
611 			  unsigned int ndigits)
612 {
613 	u64 mod_m[2 * ECC_MAX_DIGITS];
614 	u64 tmp[2 * ECC_MAX_DIGITS];
615 	u64 *v[2] = { tmp, product };
616 	u64 carry = 0;
617 	unsigned int i;
618 	/* Shift mod so its highest set bit is at the maximum position. */
619 	int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
620 	int word_shift = shift / 64;
621 	int bit_shift = shift % 64;
622 
623 	vli_clear(mod_m, word_shift);
624 	if (bit_shift > 0) {
625 		for (i = 0; i < ndigits; ++i) {
626 			mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
627 			carry = mod[i] >> (64 - bit_shift);
628 		}
629 	} else
630 		vli_set(mod_m + word_shift, mod, ndigits);
631 
632 	for (i = 1; shift >= 0; --shift) {
633 		u64 borrow = 0;
634 		unsigned int j;
635 
636 		for (j = 0; j < ndigits * 2; ++j) {
637 			u64 diff = v[i][j] - mod_m[j] - borrow;
638 
639 			if (diff != v[i][j])
640 				borrow = (diff > v[i][j]);
641 			v[1 - i][j] = diff;
642 		}
643 		i = !(i ^ borrow); /* Swap the index if there was no borrow */
644 		vli_rshift1(mod_m, ndigits);
645 		mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
646 		vli_rshift1(mod_m + ndigits, ndigits);
647 	}
648 	vli_set(result, v[i], ndigits);
649 }
650 
651 /* Computes result = product % mod using Barrett's reduction with precomputed
652  * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
653  * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
654  * boundary.
655  *
656  * Reference:
657  * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
658  * 2.4.1 Barrett's algorithm. Algorithm 2.5.
659  */
660 static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
661 			     unsigned int ndigits)
662 {
663 	u64 q[ECC_MAX_DIGITS * 2];
664 	u64 r[ECC_MAX_DIGITS * 2];
665 	const u64 *mu = mod + ndigits;
666 
667 	vli_mult(q, product + ndigits, mu, ndigits);
668 	if (mu[ndigits])
669 		vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
670 	vli_mult(r, mod, q + ndigits, ndigits);
671 	vli_sub(r, product, r, ndigits * 2);
672 	while (!vli_is_zero(r + ndigits, ndigits) ||
673 	       vli_cmp(r, mod, ndigits) != -1) {
674 		u64 carry;
675 
676 		carry = vli_sub(r, r, mod, ndigits);
677 		vli_usub(r + ndigits, r + ndigits, carry, ndigits);
678 	}
679 	vli_set(result, r, ndigits);
680 }
681 
682 /* Computes p_result = p_product % curve_p.
683  * See algorithm 5 and 6 from
684  * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
685  */
686 static void vli_mmod_fast_192(u64 *result, const u64 *product,
687 			      const u64 *curve_prime, u64 *tmp)
688 {
689 	const unsigned int ndigits = 3;
690 	int carry;
691 
692 	vli_set(result, product, ndigits);
693 
694 	vli_set(tmp, &product[3], ndigits);
695 	carry = vli_add(result, result, tmp, ndigits);
696 
697 	tmp[0] = 0;
698 	tmp[1] = product[3];
699 	tmp[2] = product[4];
700 	carry += vli_add(result, result, tmp, ndigits);
701 
702 	tmp[0] = tmp[1] = product[5];
703 	tmp[2] = 0;
704 	carry += vli_add(result, result, tmp, ndigits);
705 
706 	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
707 		carry -= vli_sub(result, result, curve_prime, ndigits);
708 }
709 
710 /* Computes result = product % curve_prime
711  * from http://www.nsa.gov/ia/_files/nist-routines.pdf
712  */
713 static void vli_mmod_fast_256(u64 *result, const u64 *product,
714 			      const u64 *curve_prime, u64 *tmp)
715 {
716 	int carry;
717 	const unsigned int ndigits = 4;
718 
719 	/* t */
720 	vli_set(result, product, ndigits);
721 
722 	/* s1 */
723 	tmp[0] = 0;
724 	tmp[1] = product[5] & 0xffffffff00000000ull;
725 	tmp[2] = product[6];
726 	tmp[3] = product[7];
727 	carry = vli_lshift(tmp, tmp, 1, ndigits);
728 	carry += vli_add(result, result, tmp, ndigits);
729 
730 	/* s2 */
731 	tmp[1] = product[6] << 32;
732 	tmp[2] = (product[6] >> 32) | (product[7] << 32);
733 	tmp[3] = product[7] >> 32;
734 	carry += vli_lshift(tmp, tmp, 1, ndigits);
735 	carry += vli_add(result, result, tmp, ndigits);
736 
737 	/* s3 */
738 	tmp[0] = product[4];
739 	tmp[1] = product[5] & 0xffffffff;
740 	tmp[2] = 0;
741 	tmp[3] = product[7];
742 	carry += vli_add(result, result, tmp, ndigits);
743 
744 	/* s4 */
745 	tmp[0] = (product[4] >> 32) | (product[5] << 32);
746 	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
747 	tmp[2] = product[7];
748 	tmp[3] = (product[6] >> 32) | (product[4] << 32);
749 	carry += vli_add(result, result, tmp, ndigits);
750 
751 	/* d1 */
752 	tmp[0] = (product[5] >> 32) | (product[6] << 32);
753 	tmp[1] = (product[6] >> 32);
754 	tmp[2] = 0;
755 	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
756 	carry -= vli_sub(result, result, tmp, ndigits);
757 
758 	/* d2 */
759 	tmp[0] = product[6];
760 	tmp[1] = product[7];
761 	tmp[2] = 0;
762 	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
763 	carry -= vli_sub(result, result, tmp, ndigits);
764 
765 	/* d3 */
766 	tmp[0] = (product[6] >> 32) | (product[7] << 32);
767 	tmp[1] = (product[7] >> 32) | (product[4] << 32);
768 	tmp[2] = (product[4] >> 32) | (product[5] << 32);
769 	tmp[3] = (product[6] << 32);
770 	carry -= vli_sub(result, result, tmp, ndigits);
771 
772 	/* d4 */
773 	tmp[0] = product[7];
774 	tmp[1] = product[4] & 0xffffffff00000000ull;
775 	tmp[2] = product[5];
776 	tmp[3] = product[6] & 0xffffffff00000000ull;
777 	carry -= vli_sub(result, result, tmp, ndigits);
778 
779 	if (carry < 0) {
780 		do {
781 			carry += vli_add(result, result, curve_prime, ndigits);
782 		} while (carry < 0);
783 	} else {
784 		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
785 			carry -= vli_sub(result, result, curve_prime, ndigits);
786 	}
787 }
788 
789 #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
790 #define AND64H(x64)  (x64 & 0xffFFffFF00000000ull)
791 #define AND64L(x64)  (x64 & 0x00000000ffFFffFFull)
792 
793 /* Computes result = product % curve_prime
794  * from "Mathematical routines for the NIST prime elliptic curves"
795  */
796 static void vli_mmod_fast_384(u64 *result, const u64 *product,
797 				const u64 *curve_prime, u64 *tmp)
798 {
799 	int carry;
800 	const unsigned int ndigits = 6;
801 
802 	/* t */
803 	vli_set(result, product, ndigits);
804 
805 	/* s1 */
806 	tmp[0] = 0;		// 0 || 0
807 	tmp[1] = 0;		// 0 || 0
808 	tmp[2] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
809 	tmp[3] = product[11]>>32;	// 0 ||a23
810 	tmp[4] = 0;		// 0 || 0
811 	tmp[5] = 0;		// 0 || 0
812 	carry = vli_lshift(tmp, tmp, 1, ndigits);
813 	carry += vli_add(result, result, tmp, ndigits);
814 
815 	/* s2 */
816 	tmp[0] = product[6];	//a13||a12
817 	tmp[1] = product[7];	//a15||a14
818 	tmp[2] = product[8];	//a17||a16
819 	tmp[3] = product[9];	//a19||a18
820 	tmp[4] = product[10];	//a21||a20
821 	tmp[5] = product[11];	//a23||a22
822 	carry += vli_add(result, result, tmp, ndigits);
823 
824 	/* s3 */
825 	tmp[0] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
826 	tmp[1] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
827 	tmp[2] = SL32OR32(product[7], (product[6])>>32);	//a14||a13
828 	tmp[3] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
829 	tmp[4] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
830 	tmp[5] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
831 	carry += vli_add(result, result, tmp, ndigits);
832 
833 	/* s4 */
834 	tmp[0] = AND64H(product[11]);	//a23|| 0
835 	tmp[1] = (product[10]<<32);	//a20|| 0
836 	tmp[2] = product[6];	//a13||a12
837 	tmp[3] = product[7];	//a15||a14
838 	tmp[4] = product[8];	//a17||a16
839 	tmp[5] = product[9];	//a19||a18
840 	carry += vli_add(result, result, tmp, ndigits);
841 
842 	/* s5 */
843 	tmp[0] = 0;		//  0|| 0
844 	tmp[1] = 0;		//  0|| 0
845 	tmp[2] = product[10];	//a21||a20
846 	tmp[3] = product[11];	//a23||a22
847 	tmp[4] = 0;		//  0|| 0
848 	tmp[5] = 0;		//  0|| 0
849 	carry += vli_add(result, result, tmp, ndigits);
850 
851 	/* s6 */
852 	tmp[0] = AND64L(product[10]);	// 0 ||a20
853 	tmp[1] = AND64H(product[10]);	//a21|| 0
854 	tmp[2] = product[11];	//a23||a22
855 	tmp[3] = 0;		// 0 || 0
856 	tmp[4] = 0;		// 0 || 0
857 	tmp[5] = 0;		// 0 || 0
858 	carry += vli_add(result, result, tmp, ndigits);
859 
860 	/* d1 */
861 	tmp[0] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
862 	tmp[1] = SL32OR32(product[7], (product[6]>>32));	//a14||a13
863 	tmp[2] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
864 	tmp[3] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
865 	tmp[4] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
866 	tmp[5] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
867 	carry -= vli_sub(result, result, tmp, ndigits);
868 
869 	/* d2 */
870 	tmp[0] = (product[10]<<32);	//a20|| 0
871 	tmp[1] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
872 	tmp[2] = (product[11]>>32);	// 0 ||a23
873 	tmp[3] = 0;		// 0 || 0
874 	tmp[4] = 0;		// 0 || 0
875 	tmp[5] = 0;		// 0 || 0
876 	carry -= vli_sub(result, result, tmp, ndigits);
877 
878 	/* d3 */
879 	tmp[0] = 0;		// 0 || 0
880 	tmp[1] = AND64H(product[11]);	//a23|| 0
881 	tmp[2] = product[11]>>32;	// 0 ||a23
882 	tmp[3] = 0;		// 0 || 0
883 	tmp[4] = 0;		// 0 || 0
884 	tmp[5] = 0;		// 0 || 0
885 	carry -= vli_sub(result, result, tmp, ndigits);
886 
887 	if (carry < 0) {
888 		do {
889 			carry += vli_add(result, result, curve_prime, ndigits);
890 		} while (carry < 0);
891 	} else {
892 		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
893 			carry -= vli_sub(result, result, curve_prime, ndigits);
894 	}
895 
896 }
897 
898 #undef SL32OR32
899 #undef AND64H
900 #undef AND64L
901 
902 /* Computes result = product % curve_prime for different curve_primes.
903  *
904  * Note that curve_primes are distinguished just by heuristic check and
905  * not by complete conformance check.
906  */
907 static bool vli_mmod_fast(u64 *result, u64 *product,
908 			  const struct ecc_curve *curve)
909 {
910 	u64 tmp[2 * ECC_MAX_DIGITS];
911 	const u64 *curve_prime = curve->p;
912 	const unsigned int ndigits = curve->g.ndigits;
913 
914 	/* All NIST curves have name prefix 'nist_' */
915 	if (strncmp(curve->name, "nist_", 5) != 0) {
916 		/* Try to handle Pseudo-Marsenne primes. */
917 		if (curve_prime[ndigits - 1] == -1ull) {
918 			vli_mmod_special(result, product, curve_prime,
919 					 ndigits);
920 			return true;
921 		} else if (curve_prime[ndigits - 1] == 1ull << 63 &&
922 			   curve_prime[ndigits - 2] == 0) {
923 			vli_mmod_special2(result, product, curve_prime,
924 					  ndigits);
925 			return true;
926 		}
927 		vli_mmod_barrett(result, product, curve_prime, ndigits);
928 		return true;
929 	}
930 
931 	switch (ndigits) {
932 	case 3:
933 		vli_mmod_fast_192(result, product, curve_prime, tmp);
934 		break;
935 	case 4:
936 		vli_mmod_fast_256(result, product, curve_prime, tmp);
937 		break;
938 	case 6:
939 		vli_mmod_fast_384(result, product, curve_prime, tmp);
940 		break;
941 	default:
942 		pr_err_ratelimited("ecc: unsupported digits size!\n");
943 		return false;
944 	}
945 
946 	return true;
947 }
948 
949 /* Computes result = (left * right) % mod.
950  * Assumes that mod is big enough curve order.
951  */
952 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
953 		       const u64 *mod, unsigned int ndigits)
954 {
955 	u64 product[ECC_MAX_DIGITS * 2];
956 
957 	vli_mult(product, left, right, ndigits);
958 	vli_mmod_slow(result, product, mod, ndigits);
959 }
960 EXPORT_SYMBOL(vli_mod_mult_slow);
961 
962 /* Computes result = (left * right) % curve_prime. */
963 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
964 			      const struct ecc_curve *curve)
965 {
966 	u64 product[2 * ECC_MAX_DIGITS];
967 
968 	vli_mult(product, left, right, curve->g.ndigits);
969 	vli_mmod_fast(result, product, curve);
970 }
971 
972 /* Computes result = left^2 % curve_prime. */
973 static void vli_mod_square_fast(u64 *result, const u64 *left,
974 				const struct ecc_curve *curve)
975 {
976 	u64 product[2 * ECC_MAX_DIGITS];
977 
978 	vli_square(product, left, curve->g.ndigits);
979 	vli_mmod_fast(result, product, curve);
980 }
981 
982 #define EVEN(vli) (!(vli[0] & 1))
983 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
984  * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
985  * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
986  */
987 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
988 			unsigned int ndigits)
989 {
990 	u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
991 	u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
992 	u64 carry;
993 	int cmp_result;
994 
995 	if (vli_is_zero(input, ndigits)) {
996 		vli_clear(result, ndigits);
997 		return;
998 	}
999 
1000 	vli_set(a, input, ndigits);
1001 	vli_set(b, mod, ndigits);
1002 	vli_clear(u, ndigits);
1003 	u[0] = 1;
1004 	vli_clear(v, ndigits);
1005 
1006 	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
1007 		carry = 0;
1008 
1009 		if (EVEN(a)) {
1010 			vli_rshift1(a, ndigits);
1011 
1012 			if (!EVEN(u))
1013 				carry = vli_add(u, u, mod, ndigits);
1014 
1015 			vli_rshift1(u, ndigits);
1016 			if (carry)
1017 				u[ndigits - 1] |= 0x8000000000000000ull;
1018 		} else if (EVEN(b)) {
1019 			vli_rshift1(b, ndigits);
1020 
1021 			if (!EVEN(v))
1022 				carry = vli_add(v, v, mod, ndigits);
1023 
1024 			vli_rshift1(v, ndigits);
1025 			if (carry)
1026 				v[ndigits - 1] |= 0x8000000000000000ull;
1027 		} else if (cmp_result > 0) {
1028 			vli_sub(a, a, b, ndigits);
1029 			vli_rshift1(a, ndigits);
1030 
1031 			if (vli_cmp(u, v, ndigits) < 0)
1032 				vli_add(u, u, mod, ndigits);
1033 
1034 			vli_sub(u, u, v, ndigits);
1035 			if (!EVEN(u))
1036 				carry = vli_add(u, u, mod, ndigits);
1037 
1038 			vli_rshift1(u, ndigits);
1039 			if (carry)
1040 				u[ndigits - 1] |= 0x8000000000000000ull;
1041 		} else {
1042 			vli_sub(b, b, a, ndigits);
1043 			vli_rshift1(b, ndigits);
1044 
1045 			if (vli_cmp(v, u, ndigits) < 0)
1046 				vli_add(v, v, mod, ndigits);
1047 
1048 			vli_sub(v, v, u, ndigits);
1049 			if (!EVEN(v))
1050 				carry = vli_add(v, v, mod, ndigits);
1051 
1052 			vli_rshift1(v, ndigits);
1053 			if (carry)
1054 				v[ndigits - 1] |= 0x8000000000000000ull;
1055 		}
1056 	}
1057 
1058 	vli_set(result, u, ndigits);
1059 }
1060 EXPORT_SYMBOL(vli_mod_inv);
1061 
1062 /* ------ Point operations ------ */
1063 
1064 /* Returns true if p_point is the point at infinity, false otherwise. */
1065 static bool ecc_point_is_zero(const struct ecc_point *point)
1066 {
1067 	return (vli_is_zero(point->x, point->ndigits) &&
1068 		vli_is_zero(point->y, point->ndigits));
1069 }
1070 
1071 /* Point multiplication algorithm using Montgomery's ladder with co-Z
1072  * coordinates. From https://eprint.iacr.org/2011/338.pdf
1073  */
1074 
1075 /* Double in place */
1076 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
1077 					const struct ecc_curve *curve)
1078 {
1079 	/* t1 = x, t2 = y, t3 = z */
1080 	u64 t4[ECC_MAX_DIGITS];
1081 	u64 t5[ECC_MAX_DIGITS];
1082 	const u64 *curve_prime = curve->p;
1083 	const unsigned int ndigits = curve->g.ndigits;
1084 
1085 	if (vli_is_zero(z1, ndigits))
1086 		return;
1087 
1088 	/* t4 = y1^2 */
1089 	vli_mod_square_fast(t4, y1, curve);
1090 	/* t5 = x1*y1^2 = A */
1091 	vli_mod_mult_fast(t5, x1, t4, curve);
1092 	/* t4 = y1^4 */
1093 	vli_mod_square_fast(t4, t4, curve);
1094 	/* t2 = y1*z1 = z3 */
1095 	vli_mod_mult_fast(y1, y1, z1, curve);
1096 	/* t3 = z1^2 */
1097 	vli_mod_square_fast(z1, z1, curve);
1098 
1099 	/* t1 = x1 + z1^2 */
1100 	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1101 	/* t3 = 2*z1^2 */
1102 	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1103 	/* t3 = x1 - z1^2 */
1104 	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1105 	/* t1 = x1^2 - z1^4 */
1106 	vli_mod_mult_fast(x1, x1, z1, curve);
1107 
1108 	/* t3 = 2*(x1^2 - z1^4) */
1109 	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1110 	/* t1 = 3*(x1^2 - z1^4) */
1111 	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1112 	if (vli_test_bit(x1, 0)) {
1113 		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1114 
1115 		vli_rshift1(x1, ndigits);
1116 		x1[ndigits - 1] |= carry << 63;
1117 	} else {
1118 		vli_rshift1(x1, ndigits);
1119 	}
1120 	/* t1 = 3/2*(x1^2 - z1^4) = B */
1121 
1122 	/* t3 = B^2 */
1123 	vli_mod_square_fast(z1, x1, curve);
1124 	/* t3 = B^2 - A */
1125 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1126 	/* t3 = B^2 - 2A = x3 */
1127 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1128 	/* t5 = A - x3 */
1129 	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1130 	/* t1 = B * (A - x3) */
1131 	vli_mod_mult_fast(x1, x1, t5, curve);
1132 	/* t4 = B * (A - x3) - y1^4 = y3 */
1133 	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1134 
1135 	vli_set(x1, z1, ndigits);
1136 	vli_set(z1, y1, ndigits);
1137 	vli_set(y1, t4, ndigits);
1138 }
1139 
1140 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
1141 static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
1142 {
1143 	u64 t1[ECC_MAX_DIGITS];
1144 
1145 	vli_mod_square_fast(t1, z, curve);		/* z^2 */
1146 	vli_mod_mult_fast(x1, x1, t1, curve);	/* x1 * z^2 */
1147 	vli_mod_mult_fast(t1, t1, z, curve);	/* z^3 */
1148 	vli_mod_mult_fast(y1, y1, t1, curve);	/* y1 * z^3 */
1149 }
1150 
1151 /* P = (x1, y1) => 2P, (x2, y2) => P' */
1152 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1153 				u64 *p_initial_z, const struct ecc_curve *curve)
1154 {
1155 	u64 z[ECC_MAX_DIGITS];
1156 	const unsigned int ndigits = curve->g.ndigits;
1157 
1158 	vli_set(x2, x1, ndigits);
1159 	vli_set(y2, y1, ndigits);
1160 
1161 	vli_clear(z, ndigits);
1162 	z[0] = 1;
1163 
1164 	if (p_initial_z)
1165 		vli_set(z, p_initial_z, ndigits);
1166 
1167 	apply_z(x1, y1, z, curve);
1168 
1169 	ecc_point_double_jacobian(x1, y1, z, curve);
1170 
1171 	apply_z(x2, y2, z, curve);
1172 }
1173 
1174 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1175  * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1176  * or P => P', Q => P + Q
1177  */
1178 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1179 			const struct ecc_curve *curve)
1180 {
1181 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1182 	u64 t5[ECC_MAX_DIGITS];
1183 	const u64 *curve_prime = curve->p;
1184 	const unsigned int ndigits = curve->g.ndigits;
1185 
1186 	/* t5 = x2 - x1 */
1187 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1188 	/* t5 = (x2 - x1)^2 = A */
1189 	vli_mod_square_fast(t5, t5, curve);
1190 	/* t1 = x1*A = B */
1191 	vli_mod_mult_fast(x1, x1, t5, curve);
1192 	/* t3 = x2*A = C */
1193 	vli_mod_mult_fast(x2, x2, t5, curve);
1194 	/* t4 = y2 - y1 */
1195 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1196 	/* t5 = (y2 - y1)^2 = D */
1197 	vli_mod_square_fast(t5, y2, curve);
1198 
1199 	/* t5 = D - B */
1200 	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1201 	/* t5 = D - B - C = x3 */
1202 	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1203 	/* t3 = C - B */
1204 	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1205 	/* t2 = y1*(C - B) */
1206 	vli_mod_mult_fast(y1, y1, x2, curve);
1207 	/* t3 = B - x3 */
1208 	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1209 	/* t4 = (y2 - y1)*(B - x3) */
1210 	vli_mod_mult_fast(y2, y2, x2, curve);
1211 	/* t4 = y3 */
1212 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1213 
1214 	vli_set(x2, t5, ndigits);
1215 }
1216 
1217 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1218  * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1219  * or P => P - Q, Q => P + Q
1220  */
1221 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1222 			const struct ecc_curve *curve)
1223 {
1224 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1225 	u64 t5[ECC_MAX_DIGITS];
1226 	u64 t6[ECC_MAX_DIGITS];
1227 	u64 t7[ECC_MAX_DIGITS];
1228 	const u64 *curve_prime = curve->p;
1229 	const unsigned int ndigits = curve->g.ndigits;
1230 
1231 	/* t5 = x2 - x1 */
1232 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1233 	/* t5 = (x2 - x1)^2 = A */
1234 	vli_mod_square_fast(t5, t5, curve);
1235 	/* t1 = x1*A = B */
1236 	vli_mod_mult_fast(x1, x1, t5, curve);
1237 	/* t3 = x2*A = C */
1238 	vli_mod_mult_fast(x2, x2, t5, curve);
1239 	/* t4 = y2 + y1 */
1240 	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1241 	/* t4 = y2 - y1 */
1242 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1243 
1244 	/* t6 = C - B */
1245 	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1246 	/* t2 = y1 * (C - B) */
1247 	vli_mod_mult_fast(y1, y1, t6, curve);
1248 	/* t6 = B + C */
1249 	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1250 	/* t3 = (y2 - y1)^2 */
1251 	vli_mod_square_fast(x2, y2, curve);
1252 	/* t3 = x3 */
1253 	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1254 
1255 	/* t7 = B - x3 */
1256 	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1257 	/* t4 = (y2 - y1)*(B - x3) */
1258 	vli_mod_mult_fast(y2, y2, t7, curve);
1259 	/* t4 = y3 */
1260 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1261 
1262 	/* t7 = (y2 + y1)^2 = F */
1263 	vli_mod_square_fast(t7, t5, curve);
1264 	/* t7 = x3' */
1265 	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1266 	/* t6 = x3' - B */
1267 	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1268 	/* t6 = (y2 + y1)*(x3' - B) */
1269 	vli_mod_mult_fast(t6, t6, t5, curve);
1270 	/* t2 = y3' */
1271 	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1272 
1273 	vli_set(x1, t7, ndigits);
1274 }
1275 
1276 static void ecc_point_mult(struct ecc_point *result,
1277 			   const struct ecc_point *point, const u64 *scalar,
1278 			   u64 *initial_z, const struct ecc_curve *curve,
1279 			   unsigned int ndigits)
1280 {
1281 	/* R0 and R1 */
1282 	u64 rx[2][ECC_MAX_DIGITS];
1283 	u64 ry[2][ECC_MAX_DIGITS];
1284 	u64 z[ECC_MAX_DIGITS];
1285 	u64 sk[2][ECC_MAX_DIGITS];
1286 	u64 *curve_prime = curve->p;
1287 	int i, nb;
1288 	int num_bits;
1289 	int carry;
1290 
1291 	carry = vli_add(sk[0], scalar, curve->n, ndigits);
1292 	vli_add(sk[1], sk[0], curve->n, ndigits);
1293 	scalar = sk[!carry];
1294 	num_bits = sizeof(u64) * ndigits * 8 + 1;
1295 
1296 	vli_set(rx[1], point->x, ndigits);
1297 	vli_set(ry[1], point->y, ndigits);
1298 
1299 	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
1300 
1301 	for (i = num_bits - 2; i > 0; i--) {
1302 		nb = !vli_test_bit(scalar, i);
1303 		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1304 		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1305 	}
1306 
1307 	nb = !vli_test_bit(scalar, 0);
1308 	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1309 
1310 	/* Find final 1/Z value. */
1311 	/* X1 - X0 */
1312 	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1313 	/* Yb * (X1 - X0) */
1314 	vli_mod_mult_fast(z, z, ry[1 - nb], curve);
1315 	/* xP * Yb * (X1 - X0) */
1316 	vli_mod_mult_fast(z, z, point->x, curve);
1317 
1318 	/* 1 / (xP * Yb * (X1 - X0)) */
1319 	vli_mod_inv(z, z, curve_prime, point->ndigits);
1320 
1321 	/* yP / (xP * Yb * (X1 - X0)) */
1322 	vli_mod_mult_fast(z, z, point->y, curve);
1323 	/* Xb * yP / (xP * Yb * (X1 - X0)) */
1324 	vli_mod_mult_fast(z, z, rx[1 - nb], curve);
1325 	/* End 1/Z calculation */
1326 
1327 	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1328 
1329 	apply_z(rx[0], ry[0], z, curve);
1330 
1331 	vli_set(result->x, rx[0], ndigits);
1332 	vli_set(result->y, ry[0], ndigits);
1333 }
1334 
1335 /* Computes R = P + Q mod p */
1336 static void ecc_point_add(const struct ecc_point *result,
1337 		   const struct ecc_point *p, const struct ecc_point *q,
1338 		   const struct ecc_curve *curve)
1339 {
1340 	u64 z[ECC_MAX_DIGITS];
1341 	u64 px[ECC_MAX_DIGITS];
1342 	u64 py[ECC_MAX_DIGITS];
1343 	unsigned int ndigits = curve->g.ndigits;
1344 
1345 	vli_set(result->x, q->x, ndigits);
1346 	vli_set(result->y, q->y, ndigits);
1347 	vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1348 	vli_set(px, p->x, ndigits);
1349 	vli_set(py, p->y, ndigits);
1350 	xycz_add(px, py, result->x, result->y, curve);
1351 	vli_mod_inv(z, z, curve->p, ndigits);
1352 	apply_z(result->x, result->y, z, curve);
1353 }
1354 
1355 /* Computes R = u1P + u2Q mod p using Shamir's trick.
1356  * Based on: Kenneth MacKay's micro-ecc (2014).
1357  */
1358 void ecc_point_mult_shamir(const struct ecc_point *result,
1359 			   const u64 *u1, const struct ecc_point *p,
1360 			   const u64 *u2, const struct ecc_point *q,
1361 			   const struct ecc_curve *curve)
1362 {
1363 	u64 z[ECC_MAX_DIGITS];
1364 	u64 sump[2][ECC_MAX_DIGITS];
1365 	u64 *rx = result->x;
1366 	u64 *ry = result->y;
1367 	unsigned int ndigits = curve->g.ndigits;
1368 	unsigned int num_bits;
1369 	struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1370 	const struct ecc_point *points[4];
1371 	const struct ecc_point *point;
1372 	unsigned int idx;
1373 	int i;
1374 
1375 	ecc_point_add(&sum, p, q, curve);
1376 	points[0] = NULL;
1377 	points[1] = p;
1378 	points[2] = q;
1379 	points[3] = &sum;
1380 
1381 	num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
1382 	i = num_bits - 1;
1383 	idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
1384 	point = points[idx];
1385 
1386 	vli_set(rx, point->x, ndigits);
1387 	vli_set(ry, point->y, ndigits);
1388 	vli_clear(z + 1, ndigits - 1);
1389 	z[0] = 1;
1390 
1391 	for (--i; i >= 0; i--) {
1392 		ecc_point_double_jacobian(rx, ry, z, curve);
1393 		idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
1394 		point = points[idx];
1395 		if (point) {
1396 			u64 tx[ECC_MAX_DIGITS];
1397 			u64 ty[ECC_MAX_DIGITS];
1398 			u64 tz[ECC_MAX_DIGITS];
1399 
1400 			vli_set(tx, point->x, ndigits);
1401 			vli_set(ty, point->y, ndigits);
1402 			apply_z(tx, ty, z, curve);
1403 			vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1404 			xycz_add(tx, ty, rx, ry, curve);
1405 			vli_mod_mult_fast(z, z, tz, curve);
1406 		}
1407 	}
1408 	vli_mod_inv(z, z, curve->p, ndigits);
1409 	apply_z(rx, ry, z, curve);
1410 }
1411 EXPORT_SYMBOL(ecc_point_mult_shamir);
1412 
1413 static int __ecc_is_key_valid(const struct ecc_curve *curve,
1414 			      const u64 *private_key, unsigned int ndigits)
1415 {
1416 	u64 one[ECC_MAX_DIGITS] = { 1, };
1417 	u64 res[ECC_MAX_DIGITS];
1418 
1419 	if (!private_key)
1420 		return -EINVAL;
1421 
1422 	if (curve->g.ndigits != ndigits)
1423 		return -EINVAL;
1424 
1425 	/* Make sure the private key is in the range [2, n-3]. */
1426 	if (vli_cmp(one, private_key, ndigits) != -1)
1427 		return -EINVAL;
1428 	vli_sub(res, curve->n, one, ndigits);
1429 	vli_sub(res, res, one, ndigits);
1430 	if (vli_cmp(res, private_key, ndigits) != 1)
1431 		return -EINVAL;
1432 
1433 	return 0;
1434 }
1435 
1436 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1437 		     const u64 *private_key, unsigned int private_key_len)
1438 {
1439 	int nbytes;
1440 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1441 
1442 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1443 
1444 	if (private_key_len != nbytes)
1445 		return -EINVAL;
1446 
1447 	return __ecc_is_key_valid(curve, private_key, ndigits);
1448 }
1449 EXPORT_SYMBOL(ecc_is_key_valid);
1450 
1451 /*
1452  * ECC private keys are generated using the method of extra random bits,
1453  * equivalent to that described in FIPS 186-4, Appendix B.4.1.
1454  *
1455  * d = (c mod(n–1)) + 1    where c is a string of random bits, 64 bits longer
1456  *                         than requested
1457  * 0 <= c mod(n-1) <= n-2  and implies that
1458  * 1 <= d <= n-1
1459  *
1460  * This method generates a private key uniformly distributed in the range
1461  * [1, n-1].
1462  */
1463 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
1464 {
1465 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1466 	u64 priv[ECC_MAX_DIGITS];
1467 	unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1468 	unsigned int nbits = vli_num_bits(curve->n, ndigits);
1469 	int err;
1470 
1471 	/* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
1472 	if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
1473 		return -EINVAL;
1474 
1475 	/*
1476 	 * FIPS 186-4 recommends that the private key should be obtained from a
1477 	 * RBG with a security strength equal to or greater than the security
1478 	 * strength associated with N.
1479 	 *
1480 	 * The maximum security strength identified by NIST SP800-57pt1r4 for
1481 	 * ECC is 256 (N >= 512).
1482 	 *
1483 	 * This condition is met by the default RNG because it selects a favored
1484 	 * DRBG with a security strength of 256.
1485 	 */
1486 	if (crypto_get_default_rng())
1487 		return -EFAULT;
1488 
1489 	err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
1490 	crypto_put_default_rng();
1491 	if (err)
1492 		return err;
1493 
1494 	/* Make sure the private key is in the valid range. */
1495 	if (__ecc_is_key_valid(curve, priv, ndigits))
1496 		return -EINVAL;
1497 
1498 	ecc_swap_digits(priv, privkey, ndigits);
1499 
1500 	return 0;
1501 }
1502 EXPORT_SYMBOL(ecc_gen_privkey);
1503 
1504 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1505 		     const u64 *private_key, u64 *public_key)
1506 {
1507 	int ret = 0;
1508 	struct ecc_point *pk;
1509 	u64 priv[ECC_MAX_DIGITS];
1510 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1511 
1512 	if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
1513 		ret = -EINVAL;
1514 		goto out;
1515 	}
1516 
1517 	ecc_swap_digits(private_key, priv, ndigits);
1518 
1519 	pk = ecc_alloc_point(ndigits);
1520 	if (!pk) {
1521 		ret = -ENOMEM;
1522 		goto out;
1523 	}
1524 
1525 	ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
1526 
1527 	/* SP800-56A rev 3 5.6.2.1.3 key check */
1528 	if (ecc_is_pubkey_valid_full(curve, pk)) {
1529 		ret = -EAGAIN;
1530 		goto err_free_point;
1531 	}
1532 
1533 	ecc_swap_digits(pk->x, public_key, ndigits);
1534 	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1535 
1536 err_free_point:
1537 	ecc_free_point(pk);
1538 out:
1539 	return ret;
1540 }
1541 EXPORT_SYMBOL(ecc_make_pub_key);
1542 
1543 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
1544 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1545 				struct ecc_point *pk)
1546 {
1547 	u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1548 
1549 	if (WARN_ON(pk->ndigits != curve->g.ndigits))
1550 		return -EINVAL;
1551 
1552 	/* Check 1: Verify key is not the zero point. */
1553 	if (ecc_point_is_zero(pk))
1554 		return -EINVAL;
1555 
1556 	/* Check 2: Verify key is in the range [1, p-1]. */
1557 	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1558 		return -EINVAL;
1559 	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1560 		return -EINVAL;
1561 
1562 	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1563 	vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1564 	vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1565 	vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1566 	vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
1567 	vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1568 	vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1569 	if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1570 		return -EINVAL;
1571 
1572 	return 0;
1573 }
1574 EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1575 
1576 /* SP800-56A section 5.6.2.3.3 full verification */
1577 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1578 			     struct ecc_point *pk)
1579 {
1580 	struct ecc_point *nQ;
1581 
1582 	/* Checks 1 through 3 */
1583 	int ret = ecc_is_pubkey_valid_partial(curve, pk);
1584 
1585 	if (ret)
1586 		return ret;
1587 
1588 	/* Check 4: Verify that nQ is the zero point. */
1589 	nQ = ecc_alloc_point(pk->ndigits);
1590 	if (!nQ)
1591 		return -ENOMEM;
1592 
1593 	ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1594 	if (!ecc_point_is_zero(nQ))
1595 		ret = -EINVAL;
1596 
1597 	ecc_free_point(nQ);
1598 
1599 	return ret;
1600 }
1601 EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1602 
1603 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1604 			      const u64 *private_key, const u64 *public_key,
1605 			      u64 *secret)
1606 {
1607 	int ret = 0;
1608 	struct ecc_point *product, *pk;
1609 	u64 priv[ECC_MAX_DIGITS];
1610 	u64 rand_z[ECC_MAX_DIGITS];
1611 	unsigned int nbytes;
1612 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1613 
1614 	if (!private_key || !public_key || !curve ||
1615 	    ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
1616 		ret = -EINVAL;
1617 		goto out;
1618 	}
1619 
1620 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1621 
1622 	get_random_bytes(rand_z, nbytes);
1623 
1624 	pk = ecc_alloc_point(ndigits);
1625 	if (!pk) {
1626 		ret = -ENOMEM;
1627 		goto out;
1628 	}
1629 
1630 	ecc_swap_digits(public_key, pk->x, ndigits);
1631 	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1632 	ret = ecc_is_pubkey_valid_partial(curve, pk);
1633 	if (ret)
1634 		goto err_alloc_product;
1635 
1636 	ecc_swap_digits(private_key, priv, ndigits);
1637 
1638 	product = ecc_alloc_point(ndigits);
1639 	if (!product) {
1640 		ret = -ENOMEM;
1641 		goto err_alloc_product;
1642 	}
1643 
1644 	ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
1645 
1646 	if (ecc_point_is_zero(product)) {
1647 		ret = -EFAULT;
1648 		goto err_validity;
1649 	}
1650 
1651 	ecc_swap_digits(product->x, secret, ndigits);
1652 
1653 err_validity:
1654 	memzero_explicit(priv, sizeof(priv));
1655 	memzero_explicit(rand_z, sizeof(rand_z));
1656 	ecc_free_point(product);
1657 err_alloc_product:
1658 	ecc_free_point(pk);
1659 out:
1660 	return ret;
1661 }
1662 EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1663 
1664 MODULE_LICENSE("Dual BSD/GPL");
1665