xref: /openbmc/linux/crypto/drbg.c (revision e6c81cce)
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *		* with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99 
100 #include <crypto/drbg.h>
101 
102 /***************************************************************
103  * Backend cipher definitions available to DRBG
104  ***************************************************************/
105 
106 /*
107  * The order of the DRBG definitions here matter: every DRBG is registered
108  * as stdrng. Each DRBG receives an increasing cra_priority values the later
109  * they are defined in this array (see drbg_fill_array).
110  *
111  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
112  * the SHA256 / AES 256 over other ciphers. Thus, the favored
113  * DRBGs are the latest entries in this array.
114  */
115 static const struct drbg_core drbg_cores[] = {
116 #ifdef CONFIG_CRYPTO_DRBG_CTR
117 	{
118 		.flags = DRBG_CTR | DRBG_STRENGTH128,
119 		.statelen = 32, /* 256 bits as defined in 10.2.1 */
120 		.blocklen_bytes = 16,
121 		.cra_name = "ctr_aes128",
122 		.backend_cra_name = "aes",
123 	}, {
124 		.flags = DRBG_CTR | DRBG_STRENGTH192,
125 		.statelen = 40, /* 320 bits as defined in 10.2.1 */
126 		.blocklen_bytes = 16,
127 		.cra_name = "ctr_aes192",
128 		.backend_cra_name = "aes",
129 	}, {
130 		.flags = DRBG_CTR | DRBG_STRENGTH256,
131 		.statelen = 48, /* 384 bits as defined in 10.2.1 */
132 		.blocklen_bytes = 16,
133 		.cra_name = "ctr_aes256",
134 		.backend_cra_name = "aes",
135 	},
136 #endif /* CONFIG_CRYPTO_DRBG_CTR */
137 #ifdef CONFIG_CRYPTO_DRBG_HASH
138 	{
139 		.flags = DRBG_HASH | DRBG_STRENGTH128,
140 		.statelen = 55, /* 440 bits */
141 		.blocklen_bytes = 20,
142 		.cra_name = "sha1",
143 		.backend_cra_name = "sha1",
144 	}, {
145 		.flags = DRBG_HASH | DRBG_STRENGTH256,
146 		.statelen = 111, /* 888 bits */
147 		.blocklen_bytes = 48,
148 		.cra_name = "sha384",
149 		.backend_cra_name = "sha384",
150 	}, {
151 		.flags = DRBG_HASH | DRBG_STRENGTH256,
152 		.statelen = 111, /* 888 bits */
153 		.blocklen_bytes = 64,
154 		.cra_name = "sha512",
155 		.backend_cra_name = "sha512",
156 	}, {
157 		.flags = DRBG_HASH | DRBG_STRENGTH256,
158 		.statelen = 55, /* 440 bits */
159 		.blocklen_bytes = 32,
160 		.cra_name = "sha256",
161 		.backend_cra_name = "sha256",
162 	},
163 #endif /* CONFIG_CRYPTO_DRBG_HASH */
164 #ifdef CONFIG_CRYPTO_DRBG_HMAC
165 	{
166 		.flags = DRBG_HMAC | DRBG_STRENGTH128,
167 		.statelen = 20, /* block length of cipher */
168 		.blocklen_bytes = 20,
169 		.cra_name = "hmac_sha1",
170 		.backend_cra_name = "hmac(sha1)",
171 	}, {
172 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
173 		.statelen = 48, /* block length of cipher */
174 		.blocklen_bytes = 48,
175 		.cra_name = "hmac_sha384",
176 		.backend_cra_name = "hmac(sha384)",
177 	}, {
178 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
179 		.statelen = 64, /* block length of cipher */
180 		.blocklen_bytes = 64,
181 		.cra_name = "hmac_sha512",
182 		.backend_cra_name = "hmac(sha512)",
183 	}, {
184 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
185 		.statelen = 32, /* block length of cipher */
186 		.blocklen_bytes = 32,
187 		.cra_name = "hmac_sha256",
188 		.backend_cra_name = "hmac(sha256)",
189 	},
190 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
191 };
192 
193 /******************************************************************
194  * Generic helper functions
195  ******************************************************************/
196 
197 /*
198  * Return strength of DRBG according to SP800-90A section 8.4
199  *
200  * @flags DRBG flags reference
201  *
202  * Return: normalized strength in *bytes* value or 32 as default
203  *	   to counter programming errors
204  */
205 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
206 {
207 	switch (flags & DRBG_STRENGTH_MASK) {
208 	case DRBG_STRENGTH128:
209 		return 16;
210 	case DRBG_STRENGTH192:
211 		return 24;
212 	case DRBG_STRENGTH256:
213 		return 32;
214 	default:
215 		return 32;
216 	}
217 }
218 
219 /*
220  * FIPS 140-2 continuous self test
221  * The test is performed on the result of one round of the output
222  * function. Thus, the function implicitly knows the size of the
223  * buffer.
224  *
225  * @drbg DRBG handle
226  * @buf output buffer of random data to be checked
227  *
228  * return:
229  *	true on success
230  *	false on error
231  */
232 static bool drbg_fips_continuous_test(struct drbg_state *drbg,
233 				      const unsigned char *buf)
234 {
235 #ifdef CONFIG_CRYPTO_FIPS
236 	int ret = 0;
237 	/* skip test if we test the overall system */
238 	if (drbg->test_data)
239 		return true;
240 	/* only perform test in FIPS mode */
241 	if (0 == fips_enabled)
242 		return true;
243 	if (!drbg->fips_primed) {
244 		/* Priming of FIPS test */
245 		memcpy(drbg->prev, buf, drbg_blocklen(drbg));
246 		drbg->fips_primed = true;
247 		/* return false due to priming, i.e. another round is needed */
248 		return false;
249 	}
250 	ret = memcmp(drbg->prev, buf, drbg_blocklen(drbg));
251 	if (!ret)
252 		panic("DRBG continuous self test failed\n");
253 	memcpy(drbg->prev, buf, drbg_blocklen(drbg));
254 	/* the test shall pass when the two compared values are not equal */
255 	return ret != 0;
256 #else
257 	return true;
258 #endif /* CONFIG_CRYPTO_FIPS */
259 }
260 
261 /*
262  * Convert an integer into a byte representation of this integer.
263  * The byte representation is big-endian
264  *
265  * @val value to be converted
266  * @buf buffer holding the converted integer -- caller must ensure that
267  *      buffer size is at least 32 bit
268  */
269 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
270 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
271 {
272 	struct s {
273 		__be32 conv;
274 	};
275 	struct s *conversion = (struct s *) buf;
276 
277 	conversion->conv = cpu_to_be32(val);
278 }
279 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
280 
281 /******************************************************************
282  * CTR DRBG callback functions
283  ******************************************************************/
284 
285 #ifdef CONFIG_CRYPTO_DRBG_CTR
286 #define CRYPTO_DRBG_CTR_STRING "CTR "
287 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
288 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
289 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
290 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
291 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
292 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
293 
294 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
295 			  unsigned char *outval, const struct drbg_string *in);
296 static int drbg_init_sym_kernel(struct drbg_state *drbg);
297 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
298 
299 /* BCC function for CTR DRBG as defined in 10.4.3 */
300 static int drbg_ctr_bcc(struct drbg_state *drbg,
301 			unsigned char *out, const unsigned char *key,
302 			struct list_head *in)
303 {
304 	int ret = 0;
305 	struct drbg_string *curr = NULL;
306 	struct drbg_string data;
307 	short cnt = 0;
308 
309 	drbg_string_fill(&data, out, drbg_blocklen(drbg));
310 
311 	/* 10.4.3 step 2 / 4 */
312 	list_for_each_entry(curr, in, list) {
313 		const unsigned char *pos = curr->buf;
314 		size_t len = curr->len;
315 		/* 10.4.3 step 4.1 */
316 		while (len) {
317 			/* 10.4.3 step 4.2 */
318 			if (drbg_blocklen(drbg) == cnt) {
319 				cnt = 0;
320 				ret = drbg_kcapi_sym(drbg, key, out, &data);
321 				if (ret)
322 					return ret;
323 			}
324 			out[cnt] ^= *pos;
325 			pos++;
326 			cnt++;
327 			len--;
328 		}
329 	}
330 	/* 10.4.3 step 4.2 for last block */
331 	if (cnt)
332 		ret = drbg_kcapi_sym(drbg, key, out, &data);
333 
334 	return ret;
335 }
336 
337 /*
338  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
339  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
340  * the scratchpad is used as follows:
341  * drbg_ctr_update:
342  *	temp
343  *		start: drbg->scratchpad
344  *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
345  *			note: the cipher writing into this variable works
346  *			blocklen-wise. Now, when the statelen is not a multiple
347  *			of blocklen, the generateion loop below "spills over"
348  *			by at most blocklen. Thus, we need to give sufficient
349  *			memory.
350  *	df_data
351  *		start: drbg->scratchpad +
352  *				drbg_statelen(drbg) + drbg_blocklen(drbg)
353  *		length: drbg_statelen(drbg)
354  *
355  * drbg_ctr_df:
356  *	pad
357  *		start: df_data + drbg_statelen(drbg)
358  *		length: drbg_blocklen(drbg)
359  *	iv
360  *		start: pad + drbg_blocklen(drbg)
361  *		length: drbg_blocklen(drbg)
362  *	temp
363  *		start: iv + drbg_blocklen(drbg)
364  *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
365  *			note: temp is the buffer that the BCC function operates
366  *			on. BCC operates blockwise. drbg_statelen(drbg)
367  *			is sufficient when the DRBG state length is a multiple
368  *			of the block size. For AES192 (and maybe other ciphers)
369  *			this is not correct and the length for temp is
370  *			insufficient (yes, that also means for such ciphers,
371  *			the final output of all BCC rounds are truncated).
372  *			Therefore, add drbg_blocklen(drbg) to cover all
373  *			possibilities.
374  */
375 
376 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
377 static int drbg_ctr_df(struct drbg_state *drbg,
378 		       unsigned char *df_data, size_t bytes_to_return,
379 		       struct list_head *seedlist)
380 {
381 	int ret = -EFAULT;
382 	unsigned char L_N[8];
383 	/* S3 is input */
384 	struct drbg_string S1, S2, S4, cipherin;
385 	LIST_HEAD(bcc_list);
386 	unsigned char *pad = df_data + drbg_statelen(drbg);
387 	unsigned char *iv = pad + drbg_blocklen(drbg);
388 	unsigned char *temp = iv + drbg_blocklen(drbg);
389 	size_t padlen = 0;
390 	unsigned int templen = 0;
391 	/* 10.4.2 step 7 */
392 	unsigned int i = 0;
393 	/* 10.4.2 step 8 */
394 	const unsigned char *K = (unsigned char *)
395 			   "\x00\x01\x02\x03\x04\x05\x06\x07"
396 			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
397 			   "\x10\x11\x12\x13\x14\x15\x16\x17"
398 			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
399 	unsigned char *X;
400 	size_t generated_len = 0;
401 	size_t inputlen = 0;
402 	struct drbg_string *seed = NULL;
403 
404 	memset(pad, 0, drbg_blocklen(drbg));
405 	memset(iv, 0, drbg_blocklen(drbg));
406 
407 	/* 10.4.2 step 1 is implicit as we work byte-wise */
408 
409 	/* 10.4.2 step 2 */
410 	if ((512/8) < bytes_to_return)
411 		return -EINVAL;
412 
413 	/* 10.4.2 step 2 -- calculate the entire length of all input data */
414 	list_for_each_entry(seed, seedlist, list)
415 		inputlen += seed->len;
416 	drbg_cpu_to_be32(inputlen, &L_N[0]);
417 
418 	/* 10.4.2 step 3 */
419 	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
420 
421 	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
422 	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
423 	/* wrap the padlen appropriately */
424 	if (padlen)
425 		padlen = drbg_blocklen(drbg) - padlen;
426 	/*
427 	 * pad / padlen contains the 0x80 byte and the following zero bytes.
428 	 * As the calculated padlen value only covers the number of zero
429 	 * bytes, this value has to be incremented by one for the 0x80 byte.
430 	 */
431 	padlen++;
432 	pad[0] = 0x80;
433 
434 	/* 10.4.2 step 4 -- first fill the linked list and then order it */
435 	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
436 	list_add_tail(&S1.list, &bcc_list);
437 	drbg_string_fill(&S2, L_N, sizeof(L_N));
438 	list_add_tail(&S2.list, &bcc_list);
439 	list_splice_tail(seedlist, &bcc_list);
440 	drbg_string_fill(&S4, pad, padlen);
441 	list_add_tail(&S4.list, &bcc_list);
442 
443 	/* 10.4.2 step 9 */
444 	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
445 		/*
446 		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
447 		 * holds zeros after allocation -- even the increment of i
448 		 * is irrelevant as the increment remains within length of i
449 		 */
450 		drbg_cpu_to_be32(i, iv);
451 		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
452 		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
453 		if (ret)
454 			goto out;
455 		/* 10.4.2 step 9.3 */
456 		i++;
457 		templen += drbg_blocklen(drbg);
458 	}
459 
460 	/* 10.4.2 step 11 */
461 	X = temp + (drbg_keylen(drbg));
462 	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
463 
464 	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
465 
466 	/* 10.4.2 step 13 */
467 	while (generated_len < bytes_to_return) {
468 		short blocklen = 0;
469 		/*
470 		 * 10.4.2 step 13.1: the truncation of the key length is
471 		 * implicit as the key is only drbg_blocklen in size based on
472 		 * the implementation of the cipher function callback
473 		 */
474 		ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
475 		if (ret)
476 			goto out;
477 		blocklen = (drbg_blocklen(drbg) <
478 				(bytes_to_return - generated_len)) ?
479 			    drbg_blocklen(drbg) :
480 				(bytes_to_return - generated_len);
481 		/* 10.4.2 step 13.2 and 14 */
482 		memcpy(df_data + generated_len, X, blocklen);
483 		generated_len += blocklen;
484 	}
485 
486 	ret = 0;
487 
488 out:
489 	memset(iv, 0, drbg_blocklen(drbg));
490 	memset(temp, 0, drbg_statelen(drbg));
491 	memset(pad, 0, drbg_blocklen(drbg));
492 	return ret;
493 }
494 
495 /*
496  * update function of CTR DRBG as defined in 10.2.1.2
497  *
498  * The reseed variable has an enhanced meaning compared to the update
499  * functions of the other DRBGs as follows:
500  * 0 => initial seed from initialization
501  * 1 => reseed via drbg_seed
502  * 2 => first invocation from drbg_ctr_update when addtl is present. In
503  *      this case, the df_data scratchpad is not deleted so that it is
504  *      available for another calls to prevent calling the DF function
505  *      again.
506  * 3 => second invocation from drbg_ctr_update. When the update function
507  *      was called with addtl, the df_data memory already contains the
508  *      DFed addtl information and we do not need to call DF again.
509  */
510 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
511 			   int reseed)
512 {
513 	int ret = -EFAULT;
514 	/* 10.2.1.2 step 1 */
515 	unsigned char *temp = drbg->scratchpad;
516 	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
517 				 drbg_blocklen(drbg);
518 	unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
519 	unsigned int len = 0;
520 	struct drbg_string cipherin;
521 
522 	if (3 > reseed)
523 		memset(df_data, 0, drbg_statelen(drbg));
524 
525 	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
526 	if (seed) {
527 		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
528 		if (ret)
529 			goto out;
530 	}
531 
532 	drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
533 	/*
534 	 * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
535 	 * zeroizes all memory during initialization
536 	 */
537 	while (len < (drbg_statelen(drbg))) {
538 		/* 10.2.1.2 step 2.1 */
539 		crypto_inc(drbg->V, drbg_blocklen(drbg));
540 		/*
541 		 * 10.2.1.2 step 2.2 */
542 		ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
543 		if (ret)
544 			goto out;
545 		/* 10.2.1.2 step 2.3 and 3 */
546 		len += drbg_blocklen(drbg);
547 	}
548 
549 	/* 10.2.1.2 step 4 */
550 	temp_p = temp;
551 	df_data_p = df_data;
552 	for (len = 0; len < drbg_statelen(drbg); len++) {
553 		*temp_p ^= *df_data_p;
554 		df_data_p++; temp_p++;
555 	}
556 
557 	/* 10.2.1.2 step 5 */
558 	memcpy(drbg->C, temp, drbg_keylen(drbg));
559 	/* 10.2.1.2 step 6 */
560 	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
561 	ret = 0;
562 
563 out:
564 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
565 	if (2 != reseed)
566 		memset(df_data, 0, drbg_statelen(drbg));
567 	return ret;
568 }
569 
570 /*
571  * scratchpad use: drbg_ctr_update is called independently from
572  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
573  */
574 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
575 static int drbg_ctr_generate(struct drbg_state *drbg,
576 			     unsigned char *buf, unsigned int buflen,
577 			     struct list_head *addtl)
578 {
579 	int len = 0;
580 	int ret = 0;
581 	struct drbg_string data;
582 
583 	/* 10.2.1.5.2 step 2 */
584 	if (addtl && !list_empty(addtl)) {
585 		ret = drbg_ctr_update(drbg, addtl, 2);
586 		if (ret)
587 			return 0;
588 	}
589 
590 	/* 10.2.1.5.2 step 4.1 */
591 	crypto_inc(drbg->V, drbg_blocklen(drbg));
592 	drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
593 	while (len < buflen) {
594 		int outlen = 0;
595 		/* 10.2.1.5.2 step 4.2 */
596 		ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
597 		if (ret) {
598 			len = ret;
599 			goto out;
600 		}
601 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
602 			  drbg_blocklen(drbg) : (buflen - len);
603 		if (!drbg_fips_continuous_test(drbg, drbg->scratchpad)) {
604 			/* 10.2.1.5.2 step 6 */
605 			crypto_inc(drbg->V, drbg_blocklen(drbg));
606 			continue;
607 		}
608 		/* 10.2.1.5.2 step 4.3 */
609 		memcpy(buf + len, drbg->scratchpad, outlen);
610 		len += outlen;
611 		/* 10.2.1.5.2 step 6 */
612 		if (len < buflen)
613 			crypto_inc(drbg->V, drbg_blocklen(drbg));
614 	}
615 
616 	/* 10.2.1.5.2 step 6 */
617 	ret = drbg_ctr_update(drbg, NULL, 3);
618 	if (ret)
619 		len = ret;
620 
621 out:
622 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
623 	return len;
624 }
625 
626 static struct drbg_state_ops drbg_ctr_ops = {
627 	.update		= drbg_ctr_update,
628 	.generate	= drbg_ctr_generate,
629 	.crypto_init	= drbg_init_sym_kernel,
630 	.crypto_fini	= drbg_fini_sym_kernel,
631 };
632 #endif /* CONFIG_CRYPTO_DRBG_CTR */
633 
634 /******************************************************************
635  * HMAC DRBG callback functions
636  ******************************************************************/
637 
638 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
639 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
640 			   unsigned char *outval, const struct list_head *in);
641 static int drbg_init_hash_kernel(struct drbg_state *drbg);
642 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
643 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
644 
645 #ifdef CONFIG_CRYPTO_DRBG_HMAC
646 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
647 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
648 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
649 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
650 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
651 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
652 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
653 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
654 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
655 
656 /* update function of HMAC DRBG as defined in 10.1.2.2 */
657 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
658 			    int reseed)
659 {
660 	int ret = -EFAULT;
661 	int i = 0;
662 	struct drbg_string seed1, seed2, vdata;
663 	LIST_HEAD(seedlist);
664 	LIST_HEAD(vdatalist);
665 
666 	if (!reseed)
667 		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
668 		memset(drbg->V, 1, drbg_statelen(drbg));
669 
670 	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
671 	list_add_tail(&seed1.list, &seedlist);
672 	/* buffer of seed2 will be filled in for loop below with one byte */
673 	drbg_string_fill(&seed2, NULL, 1);
674 	list_add_tail(&seed2.list, &seedlist);
675 	/* input data of seed is allowed to be NULL at this point */
676 	if (seed)
677 		list_splice_tail(seed, &seedlist);
678 
679 	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
680 	list_add_tail(&vdata.list, &vdatalist);
681 	for (i = 2; 0 < i; i--) {
682 		/* first round uses 0x0, second 0x1 */
683 		unsigned char prefix = DRBG_PREFIX0;
684 		if (1 == i)
685 			prefix = DRBG_PREFIX1;
686 		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
687 		seed2.buf = &prefix;
688 		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seedlist);
689 		if (ret)
690 			return ret;
691 
692 		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
693 		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &vdatalist);
694 		if (ret)
695 			return ret;
696 
697 		/* 10.1.2.2 step 3 */
698 		if (!seed)
699 			return ret;
700 	}
701 
702 	return 0;
703 }
704 
705 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
706 static int drbg_hmac_generate(struct drbg_state *drbg,
707 			      unsigned char *buf,
708 			      unsigned int buflen,
709 			      struct list_head *addtl)
710 {
711 	int len = 0;
712 	int ret = 0;
713 	struct drbg_string data;
714 	LIST_HEAD(datalist);
715 
716 	/* 10.1.2.5 step 2 */
717 	if (addtl && !list_empty(addtl)) {
718 		ret = drbg_hmac_update(drbg, addtl, 1);
719 		if (ret)
720 			return ret;
721 	}
722 
723 	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
724 	list_add_tail(&data.list, &datalist);
725 	while (len < buflen) {
726 		unsigned int outlen = 0;
727 		/* 10.1.2.5 step 4.1 */
728 		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &datalist);
729 		if (ret)
730 			return ret;
731 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
732 			  drbg_blocklen(drbg) : (buflen - len);
733 		if (!drbg_fips_continuous_test(drbg, drbg->V))
734 			continue;
735 
736 		/* 10.1.2.5 step 4.2 */
737 		memcpy(buf + len, drbg->V, outlen);
738 		len += outlen;
739 	}
740 
741 	/* 10.1.2.5 step 6 */
742 	if (addtl && !list_empty(addtl))
743 		ret = drbg_hmac_update(drbg, addtl, 1);
744 	else
745 		ret = drbg_hmac_update(drbg, NULL, 1);
746 	if (ret)
747 		return ret;
748 
749 	return len;
750 }
751 
752 static struct drbg_state_ops drbg_hmac_ops = {
753 	.update		= drbg_hmac_update,
754 	.generate	= drbg_hmac_generate,
755 	.crypto_init	= drbg_init_hash_kernel,
756 	.crypto_fini	= drbg_fini_hash_kernel,
757 };
758 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
759 
760 /******************************************************************
761  * Hash DRBG callback functions
762  ******************************************************************/
763 
764 #ifdef CONFIG_CRYPTO_DRBG_HASH
765 #define CRYPTO_DRBG_HASH_STRING "HASH "
766 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
767 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
768 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
769 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
770 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
771 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
772 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
773 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
774 
775 /*
776  * Increment buffer
777  *
778  * @dst buffer to increment
779  * @add value to add
780  */
781 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
782 				const unsigned char *add, size_t addlen)
783 {
784 	/* implied: dstlen > addlen */
785 	unsigned char *dstptr;
786 	const unsigned char *addptr;
787 	unsigned int remainder = 0;
788 	size_t len = addlen;
789 
790 	dstptr = dst + (dstlen-1);
791 	addptr = add + (addlen-1);
792 	while (len) {
793 		remainder += *dstptr + *addptr;
794 		*dstptr = remainder & 0xff;
795 		remainder >>= 8;
796 		len--; dstptr--; addptr--;
797 	}
798 	len = dstlen - addlen;
799 	while (len && remainder > 0) {
800 		remainder = *dstptr + 1;
801 		*dstptr = remainder & 0xff;
802 		remainder >>= 8;
803 		len--; dstptr--;
804 	}
805 }
806 
807 /*
808  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
809  * interlinked, the scratchpad is used as follows:
810  * drbg_hash_update
811  *	start: drbg->scratchpad
812  *	length: drbg_statelen(drbg)
813  * drbg_hash_df:
814  *	start: drbg->scratchpad + drbg_statelen(drbg)
815  *	length: drbg_blocklen(drbg)
816  *
817  * drbg_hash_process_addtl uses the scratchpad, but fully completes
818  * before either of the functions mentioned before are invoked. Therefore,
819  * drbg_hash_process_addtl does not need to be specifically considered.
820  */
821 
822 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
823 static int drbg_hash_df(struct drbg_state *drbg,
824 			unsigned char *outval, size_t outlen,
825 			struct list_head *entropylist)
826 {
827 	int ret = 0;
828 	size_t len = 0;
829 	unsigned char input[5];
830 	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
831 	struct drbg_string data;
832 
833 	/* 10.4.1 step 3 */
834 	input[0] = 1;
835 	drbg_cpu_to_be32((outlen * 8), &input[1]);
836 
837 	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
838 	drbg_string_fill(&data, input, 5);
839 	list_add(&data.list, entropylist);
840 
841 	/* 10.4.1 step 4 */
842 	while (len < outlen) {
843 		short blocklen = 0;
844 		/* 10.4.1 step 4.1 */
845 		ret = drbg_kcapi_hash(drbg, NULL, tmp, entropylist);
846 		if (ret)
847 			goto out;
848 		/* 10.4.1 step 4.2 */
849 		input[0]++;
850 		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
851 			    drbg_blocklen(drbg) : (outlen - len);
852 		memcpy(outval + len, tmp, blocklen);
853 		len += blocklen;
854 	}
855 
856 out:
857 	memset(tmp, 0, drbg_blocklen(drbg));
858 	return ret;
859 }
860 
861 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
862 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
863 			    int reseed)
864 {
865 	int ret = 0;
866 	struct drbg_string data1, data2;
867 	LIST_HEAD(datalist);
868 	LIST_HEAD(datalist2);
869 	unsigned char *V = drbg->scratchpad;
870 	unsigned char prefix = DRBG_PREFIX1;
871 
872 	if (!seed)
873 		return -EINVAL;
874 
875 	if (reseed) {
876 		/* 10.1.1.3 step 1 */
877 		memcpy(V, drbg->V, drbg_statelen(drbg));
878 		drbg_string_fill(&data1, &prefix, 1);
879 		list_add_tail(&data1.list, &datalist);
880 		drbg_string_fill(&data2, V, drbg_statelen(drbg));
881 		list_add_tail(&data2.list, &datalist);
882 	}
883 	list_splice_tail(seed, &datalist);
884 
885 	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
886 	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
887 	if (ret)
888 		goto out;
889 
890 	/* 10.1.1.2 / 10.1.1.3 step 4  */
891 	prefix = DRBG_PREFIX0;
892 	drbg_string_fill(&data1, &prefix, 1);
893 	list_add_tail(&data1.list, &datalist2);
894 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
895 	list_add_tail(&data2.list, &datalist2);
896 	/* 10.1.1.2 / 10.1.1.3 step 4 */
897 	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
898 
899 out:
900 	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
901 	return ret;
902 }
903 
904 /* processing of additional information string for Hash DRBG */
905 static int drbg_hash_process_addtl(struct drbg_state *drbg,
906 				   struct list_head *addtl)
907 {
908 	int ret = 0;
909 	struct drbg_string data1, data2;
910 	LIST_HEAD(datalist);
911 	unsigned char prefix = DRBG_PREFIX2;
912 
913 	/* 10.1.1.4 step 2 */
914 	if (!addtl || list_empty(addtl))
915 		return 0;
916 
917 	/* 10.1.1.4 step 2a */
918 	drbg_string_fill(&data1, &prefix, 1);
919 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
920 	list_add_tail(&data1.list, &datalist);
921 	list_add_tail(&data2.list, &datalist);
922 	list_splice_tail(addtl, &datalist);
923 	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
924 	if (ret)
925 		goto out;
926 
927 	/* 10.1.1.4 step 2b */
928 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
929 		     drbg->scratchpad, drbg_blocklen(drbg));
930 
931 out:
932 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
933 	return ret;
934 }
935 
936 /* Hashgen defined in 10.1.1.4 */
937 static int drbg_hash_hashgen(struct drbg_state *drbg,
938 			     unsigned char *buf,
939 			     unsigned int buflen)
940 {
941 	int len = 0;
942 	int ret = 0;
943 	unsigned char *src = drbg->scratchpad;
944 	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
945 	struct drbg_string data;
946 	LIST_HEAD(datalist);
947 
948 	/* 10.1.1.4 step hashgen 2 */
949 	memcpy(src, drbg->V, drbg_statelen(drbg));
950 
951 	drbg_string_fill(&data, src, drbg_statelen(drbg));
952 	list_add_tail(&data.list, &datalist);
953 	while (len < buflen) {
954 		unsigned int outlen = 0;
955 		/* 10.1.1.4 step hashgen 4.1 */
956 		ret = drbg_kcapi_hash(drbg, NULL, dst, &datalist);
957 		if (ret) {
958 			len = ret;
959 			goto out;
960 		}
961 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
962 			  drbg_blocklen(drbg) : (buflen - len);
963 		if (!drbg_fips_continuous_test(drbg, dst)) {
964 			crypto_inc(src, drbg_statelen(drbg));
965 			continue;
966 		}
967 		/* 10.1.1.4 step hashgen 4.2 */
968 		memcpy(buf + len, dst, outlen);
969 		len += outlen;
970 		/* 10.1.1.4 hashgen step 4.3 */
971 		if (len < buflen)
972 			crypto_inc(src, drbg_statelen(drbg));
973 	}
974 
975 out:
976 	memset(drbg->scratchpad, 0,
977 	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
978 	return len;
979 }
980 
981 /* generate function for Hash DRBG as defined in  10.1.1.4 */
982 static int drbg_hash_generate(struct drbg_state *drbg,
983 			      unsigned char *buf, unsigned int buflen,
984 			      struct list_head *addtl)
985 {
986 	int len = 0;
987 	int ret = 0;
988 	union {
989 		unsigned char req[8];
990 		__be64 req_int;
991 	} u;
992 	unsigned char prefix = DRBG_PREFIX3;
993 	struct drbg_string data1, data2;
994 	LIST_HEAD(datalist);
995 
996 	/* 10.1.1.4 step 2 */
997 	ret = drbg_hash_process_addtl(drbg, addtl);
998 	if (ret)
999 		return ret;
1000 	/* 10.1.1.4 step 3 */
1001 	len = drbg_hash_hashgen(drbg, buf, buflen);
1002 
1003 	/* this is the value H as documented in 10.1.1.4 */
1004 	/* 10.1.1.4 step 4 */
1005 	drbg_string_fill(&data1, &prefix, 1);
1006 	list_add_tail(&data1.list, &datalist);
1007 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1008 	list_add_tail(&data2.list, &datalist);
1009 	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
1010 	if (ret) {
1011 		len = ret;
1012 		goto out;
1013 	}
1014 
1015 	/* 10.1.1.4 step 5 */
1016 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1017 		     drbg->scratchpad, drbg_blocklen(drbg));
1018 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1019 		     drbg->C, drbg_statelen(drbg));
1020 	u.req_int = cpu_to_be64(drbg->reseed_ctr);
1021 	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1022 
1023 out:
1024 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1025 	return len;
1026 }
1027 
1028 /*
1029  * scratchpad usage: as update and generate are used isolated, both
1030  * can use the scratchpad
1031  */
1032 static struct drbg_state_ops drbg_hash_ops = {
1033 	.update		= drbg_hash_update,
1034 	.generate	= drbg_hash_generate,
1035 	.crypto_init	= drbg_init_hash_kernel,
1036 	.crypto_fini	= drbg_fini_hash_kernel,
1037 };
1038 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1039 
1040 /******************************************************************
1041  * Functions common for DRBG implementations
1042  ******************************************************************/
1043 
1044 /*
1045  * Seeding or reseeding of the DRBG
1046  *
1047  * @drbg: DRBG state struct
1048  * @pers: personalization / additional information buffer
1049  * @reseed: 0 for initial seed process, 1 for reseeding
1050  *
1051  * return:
1052  *	0 on success
1053  *	error value otherwise
1054  */
1055 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1056 		     bool reseed)
1057 {
1058 	int ret = 0;
1059 	unsigned char *entropy = NULL;
1060 	size_t entropylen = 0;
1061 	struct drbg_string data1;
1062 	LIST_HEAD(seedlist);
1063 
1064 	/* 9.1 / 9.2 / 9.3.1 step 3 */
1065 	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1066 		pr_devel("DRBG: personalization string too long %zu\n",
1067 			 pers->len);
1068 		return -EINVAL;
1069 	}
1070 
1071 	if (drbg->test_data && drbg->test_data->testentropy) {
1072 		drbg_string_fill(&data1, drbg->test_data->testentropy->buf,
1073 				 drbg->test_data->testentropy->len);
1074 		pr_devel("DRBG: using test entropy\n");
1075 	} else {
1076 		/*
1077 		 * Gather entropy equal to the security strength of the DRBG.
1078 		 * With a derivation function, a nonce is required in addition
1079 		 * to the entropy. A nonce must be at least 1/2 of the security
1080 		 * strength of the DRBG in size. Thus, entropy * nonce is 3/2
1081 		 * of the strength. The consideration of a nonce is only
1082 		 * applicable during initial seeding.
1083 		 */
1084 		entropylen = drbg_sec_strength(drbg->core->flags);
1085 		if (!entropylen)
1086 			return -EFAULT;
1087 		if (!reseed)
1088 			entropylen = ((entropylen + 1) / 2) * 3;
1089 		pr_devel("DRBG: (re)seeding with %zu bytes of entropy\n",
1090 			 entropylen);
1091 		entropy = kzalloc(entropylen, GFP_KERNEL);
1092 		if (!entropy)
1093 			return -ENOMEM;
1094 		get_random_bytes(entropy, entropylen);
1095 		drbg_string_fill(&data1, entropy, entropylen);
1096 	}
1097 	list_add_tail(&data1.list, &seedlist);
1098 
1099 	/*
1100 	 * concatenation of entropy with personalization str / addtl input)
1101 	 * the variable pers is directly handed in by the caller, so check its
1102 	 * contents whether it is appropriate
1103 	 */
1104 	if (pers && pers->buf && 0 < pers->len) {
1105 		list_add_tail(&pers->list, &seedlist);
1106 		pr_devel("DRBG: using personalization string\n");
1107 	}
1108 
1109 	if (!reseed) {
1110 		memset(drbg->V, 0, drbg_statelen(drbg));
1111 		memset(drbg->C, 0, drbg_statelen(drbg));
1112 	}
1113 
1114 	ret = drbg->d_ops->update(drbg, &seedlist, reseed);
1115 	if (ret)
1116 		goto out;
1117 
1118 	drbg->seeded = true;
1119 	/* 10.1.1.2 / 10.1.1.3 step 5 */
1120 	drbg->reseed_ctr = 1;
1121 
1122 out:
1123 	kzfree(entropy);
1124 	return ret;
1125 }
1126 
1127 /* Free all substructures in a DRBG state without the DRBG state structure */
1128 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1129 {
1130 	if (!drbg)
1131 		return;
1132 	kzfree(drbg->V);
1133 	drbg->V = NULL;
1134 	kzfree(drbg->C);
1135 	drbg->C = NULL;
1136 	kzfree(drbg->scratchpad);
1137 	drbg->scratchpad = NULL;
1138 	drbg->reseed_ctr = 0;
1139 #ifdef CONFIG_CRYPTO_FIPS
1140 	kzfree(drbg->prev);
1141 	drbg->prev = NULL;
1142 	drbg->fips_primed = false;
1143 #endif
1144 }
1145 
1146 /*
1147  * Allocate all sub-structures for a DRBG state.
1148  * The DRBG state structure must already be allocated.
1149  */
1150 static inline int drbg_alloc_state(struct drbg_state *drbg)
1151 {
1152 	int ret = -ENOMEM;
1153 	unsigned int sb_size = 0;
1154 
1155 	drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1156 	if (!drbg->V)
1157 		goto err;
1158 	drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1159 	if (!drbg->C)
1160 		goto err;
1161 #ifdef CONFIG_CRYPTO_FIPS
1162 	drbg->prev = kmalloc(drbg_blocklen(drbg), GFP_KERNEL);
1163 	if (!drbg->prev)
1164 		goto err;
1165 	drbg->fips_primed = false;
1166 #endif
1167 	/* scratchpad is only generated for CTR and Hash */
1168 	if (drbg->core->flags & DRBG_HMAC)
1169 		sb_size = 0;
1170 	else if (drbg->core->flags & DRBG_CTR)
1171 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1172 			  drbg_statelen(drbg) +	/* df_data */
1173 			  drbg_blocklen(drbg) +	/* pad */
1174 			  drbg_blocklen(drbg) +	/* iv */
1175 			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1176 	else
1177 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1178 
1179 	if (0 < sb_size) {
1180 		drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
1181 		if (!drbg->scratchpad)
1182 			goto err;
1183 	}
1184 	spin_lock_init(&drbg->drbg_lock);
1185 	return 0;
1186 
1187 err:
1188 	drbg_dealloc_state(drbg);
1189 	return ret;
1190 }
1191 
1192 /*
1193  * Strategy to avoid holding long term locks: generate a shadow copy of DRBG
1194  * and perform all operations on this shadow copy. After finishing, restore
1195  * the updated state of the shadow copy into original drbg state. This way,
1196  * only the read and write operations of the original drbg state must be
1197  * locked
1198  */
1199 static inline void drbg_copy_drbg(struct drbg_state *src,
1200 				  struct drbg_state *dst)
1201 {
1202 	if (!src || !dst)
1203 		return;
1204 	memcpy(dst->V, src->V, drbg_statelen(src));
1205 	memcpy(dst->C, src->C, drbg_statelen(src));
1206 	dst->reseed_ctr = src->reseed_ctr;
1207 	dst->seeded = src->seeded;
1208 	dst->pr = src->pr;
1209 #ifdef CONFIG_CRYPTO_FIPS
1210 	dst->fips_primed = src->fips_primed;
1211 	memcpy(dst->prev, src->prev, drbg_blocklen(src));
1212 #endif
1213 	/*
1214 	 * Not copied:
1215 	 * scratchpad is initialized drbg_alloc_state;
1216 	 * priv_data is initialized with call to crypto_init;
1217 	 * d_ops and core are set outside, as these parameters are const;
1218 	 * test_data is set outside to prevent it being copied back.
1219 	 */
1220 }
1221 
1222 static int drbg_make_shadow(struct drbg_state *drbg, struct drbg_state **shadow)
1223 {
1224 	int ret = -ENOMEM;
1225 	struct drbg_state *tmp = NULL;
1226 
1227 	tmp = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1228 	if (!tmp)
1229 		return -ENOMEM;
1230 
1231 	/* read-only data as they are defined as const, no lock needed */
1232 	tmp->core = drbg->core;
1233 	tmp->d_ops = drbg->d_ops;
1234 
1235 	ret = drbg_alloc_state(tmp);
1236 	if (ret)
1237 		goto err;
1238 
1239 	spin_lock_bh(&drbg->drbg_lock);
1240 	drbg_copy_drbg(drbg, tmp);
1241 	/* only make a link to the test buffer, as we only read that data */
1242 	tmp->test_data = drbg->test_data;
1243 	spin_unlock_bh(&drbg->drbg_lock);
1244 	*shadow = tmp;
1245 	return 0;
1246 
1247 err:
1248 	kzfree(tmp);
1249 	return ret;
1250 }
1251 
1252 static void drbg_restore_shadow(struct drbg_state *drbg,
1253 				struct drbg_state **shadow)
1254 {
1255 	struct drbg_state *tmp = *shadow;
1256 
1257 	spin_lock_bh(&drbg->drbg_lock);
1258 	drbg_copy_drbg(tmp, drbg);
1259 	spin_unlock_bh(&drbg->drbg_lock);
1260 	drbg_dealloc_state(tmp);
1261 	kzfree(tmp);
1262 	*shadow = NULL;
1263 }
1264 
1265 /*************************************************************************
1266  * DRBG interface functions
1267  *************************************************************************/
1268 
1269 /*
1270  * DRBG generate function as required by SP800-90A - this function
1271  * generates random numbers
1272  *
1273  * @drbg DRBG state handle
1274  * @buf Buffer where to store the random numbers -- the buffer must already
1275  *      be pre-allocated by caller
1276  * @buflen Length of output buffer - this value defines the number of random
1277  *	   bytes pulled from DRBG
1278  * @addtl Additional input that is mixed into state, may be NULL -- note
1279  *	  the entropy is pulled by the DRBG internally unconditionally
1280  *	  as defined in SP800-90A. The additional input is mixed into
1281  *	  the state in addition to the pulled entropy.
1282  *
1283  * return: 0 when all bytes are generated; < 0 in case of an error
1284  */
1285 static int drbg_generate(struct drbg_state *drbg,
1286 			 unsigned char *buf, unsigned int buflen,
1287 			 struct drbg_string *addtl)
1288 {
1289 	int len = 0;
1290 	struct drbg_state *shadow = NULL;
1291 	LIST_HEAD(addtllist);
1292 	struct drbg_string timestamp;
1293 	union {
1294 		cycles_t cycles;
1295 		unsigned char char_cycles[sizeof(cycles_t)];
1296 	} now;
1297 
1298 	if (0 == buflen || !buf) {
1299 		pr_devel("DRBG: no output buffer provided\n");
1300 		return -EINVAL;
1301 	}
1302 	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1303 		pr_devel("DRBG: wrong format of additional information\n");
1304 		return -EINVAL;
1305 	}
1306 
1307 	len = drbg_make_shadow(drbg, &shadow);
1308 	if (len) {
1309 		pr_devel("DRBG: shadow copy cannot be generated\n");
1310 		return len;
1311 	}
1312 
1313 	/* 9.3.1 step 2 */
1314 	len = -EINVAL;
1315 	if (buflen > (drbg_max_request_bytes(shadow))) {
1316 		pr_devel("DRBG: requested random numbers too large %u\n",
1317 			 buflen);
1318 		goto err;
1319 	}
1320 
1321 	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1322 
1323 	/* 9.3.1 step 4 */
1324 	if (addtl && addtl->len > (drbg_max_addtl(shadow))) {
1325 		pr_devel("DRBG: additional information string too long %zu\n",
1326 			 addtl->len);
1327 		goto err;
1328 	}
1329 	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1330 
1331 	/*
1332 	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1333 	 * here. The spec is a bit convoluted here, we make it simpler.
1334 	 */
1335 	if ((drbg_max_requests(shadow)) < shadow->reseed_ctr)
1336 		shadow->seeded = false;
1337 
1338 	/* allocate cipher handle */
1339 	len = shadow->d_ops->crypto_init(shadow);
1340 	if (len)
1341 		goto err;
1342 
1343 	if (shadow->pr || !shadow->seeded) {
1344 		pr_devel("DRBG: reseeding before generation (prediction "
1345 			 "resistance: %s, state %s)\n",
1346 			 drbg->pr ? "true" : "false",
1347 			 drbg->seeded ? "seeded" : "unseeded");
1348 		/* 9.3.1 steps 7.1 through 7.3 */
1349 		len = drbg_seed(shadow, addtl, true);
1350 		if (len)
1351 			goto err;
1352 		/* 9.3.1 step 7.4 */
1353 		addtl = NULL;
1354 	}
1355 
1356 	/*
1357 	 * Mix the time stamp into the DRBG state if the DRBG is not in
1358 	 * test mode. If there are two callers invoking the DRBG at the same
1359 	 * time, i.e. before the first caller merges its shadow state back,
1360 	 * both callers would obtain the same random number stream without
1361 	 * changing the state here.
1362 	 */
1363 	if (!drbg->test_data) {
1364 		now.cycles = random_get_entropy();
1365 		drbg_string_fill(&timestamp, now.char_cycles, sizeof(cycles_t));
1366 		list_add_tail(&timestamp.list, &addtllist);
1367 	}
1368 	if (addtl && 0 < addtl->len)
1369 		list_add_tail(&addtl->list, &addtllist);
1370 	/* 9.3.1 step 8 and 10 */
1371 	len = shadow->d_ops->generate(shadow, buf, buflen, &addtllist);
1372 
1373 	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1374 	shadow->reseed_ctr++;
1375 	if (0 >= len)
1376 		goto err;
1377 
1378 	/*
1379 	 * Section 11.3.3 requires to re-perform self tests after some
1380 	 * generated random numbers. The chosen value after which self
1381 	 * test is performed is arbitrary, but it should be reasonable.
1382 	 * However, we do not perform the self tests because of the following
1383 	 * reasons: it is mathematically impossible that the initial self tests
1384 	 * were successfully and the following are not. If the initial would
1385 	 * pass and the following would not, the kernel integrity is violated.
1386 	 * In this case, the entire kernel operation is questionable and it
1387 	 * is unlikely that the integrity violation only affects the
1388 	 * correct operation of the DRBG.
1389 	 *
1390 	 * Albeit the following code is commented out, it is provided in
1391 	 * case somebody has a need to implement the test of 11.3.3.
1392 	 */
1393 #if 0
1394 	if (shadow->reseed_ctr && !(shadow->reseed_ctr % 4096)) {
1395 		int err = 0;
1396 		pr_devel("DRBG: start to perform self test\n");
1397 		if (drbg->core->flags & DRBG_HMAC)
1398 			err = alg_test("drbg_pr_hmac_sha256",
1399 				       "drbg_pr_hmac_sha256", 0, 0);
1400 		else if (drbg->core->flags & DRBG_CTR)
1401 			err = alg_test("drbg_pr_ctr_aes128",
1402 				       "drbg_pr_ctr_aes128", 0, 0);
1403 		else
1404 			err = alg_test("drbg_pr_sha256",
1405 				       "drbg_pr_sha256", 0, 0);
1406 		if (err) {
1407 			pr_err("DRBG: periodical self test failed\n");
1408 			/*
1409 			 * uninstantiate implies that from now on, only errors
1410 			 * are returned when reusing this DRBG cipher handle
1411 			 */
1412 			drbg_uninstantiate(drbg);
1413 			drbg_dealloc_state(shadow);
1414 			kzfree(shadow);
1415 			return 0;
1416 		} else {
1417 			pr_devel("DRBG: self test successful\n");
1418 		}
1419 	}
1420 #endif
1421 
1422 	/*
1423 	 * All operations were successful, return 0 as mandated by
1424 	 * the kernel crypto API interface.
1425 	 */
1426 	len = 0;
1427 err:
1428 	shadow->d_ops->crypto_fini(shadow);
1429 	drbg_restore_shadow(drbg, &shadow);
1430 	return len;
1431 }
1432 
1433 /*
1434  * Wrapper around drbg_generate which can pull arbitrary long strings
1435  * from the DRBG without hitting the maximum request limitation.
1436  *
1437  * Parameters: see drbg_generate
1438  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1439  *		 the entire drbg_generate_long request fails
1440  */
1441 static int drbg_generate_long(struct drbg_state *drbg,
1442 			      unsigned char *buf, unsigned int buflen,
1443 			      struct drbg_string *addtl)
1444 {
1445 	int len = 0;
1446 	unsigned int slice = 0;
1447 	do {
1448 		int tmplen = 0;
1449 		unsigned int chunk = 0;
1450 		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1451 		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1452 		tmplen = drbg_generate(drbg, buf + len, chunk, addtl);
1453 		if (0 >= tmplen)
1454 			return tmplen;
1455 		len += tmplen;
1456 	} while (slice > 0 && (len < buflen));
1457 	return len;
1458 }
1459 
1460 /*
1461  * DRBG instantiation function as required by SP800-90A - this function
1462  * sets up the DRBG handle, performs the initial seeding and all sanity
1463  * checks required by SP800-90A
1464  *
1465  * @drbg memory of state -- if NULL, new memory is allocated
1466  * @pers Personalization string that is mixed into state, may be NULL -- note
1467  *	 the entropy is pulled by the DRBG internally unconditionally
1468  *	 as defined in SP800-90A. The additional input is mixed into
1469  *	 the state in addition to the pulled entropy.
1470  * @coreref reference to core
1471  * @pr prediction resistance enabled
1472  *
1473  * return
1474  *	0 on success
1475  *	error value otherwise
1476  */
1477 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1478 			    int coreref, bool pr)
1479 {
1480 	int ret = -ENOMEM;
1481 
1482 	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1483 		 "%s\n", coreref, pr ? "enabled" : "disabled");
1484 	drbg->core = &drbg_cores[coreref];
1485 	drbg->pr = pr;
1486 	drbg->seeded = false;
1487 	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1488 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1489 	case DRBG_HMAC:
1490 		drbg->d_ops = &drbg_hmac_ops;
1491 		break;
1492 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1493 #ifdef CONFIG_CRYPTO_DRBG_HASH
1494 	case DRBG_HASH:
1495 		drbg->d_ops = &drbg_hash_ops;
1496 		break;
1497 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1498 #ifdef CONFIG_CRYPTO_DRBG_CTR
1499 	case DRBG_CTR:
1500 		drbg->d_ops = &drbg_ctr_ops;
1501 		break;
1502 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1503 	default:
1504 		return -EOPNOTSUPP;
1505 	}
1506 
1507 	/* 9.1 step 1 is implicit with the selected DRBG type */
1508 
1509 	/*
1510 	 * 9.1 step 2 is implicit as caller can select prediction resistance
1511 	 * and the flag is copied into drbg->flags --
1512 	 * all DRBG types support prediction resistance
1513 	 */
1514 
1515 	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1516 
1517 	ret = drbg_alloc_state(drbg);
1518 	if (ret)
1519 		return ret;
1520 
1521 	ret = -EFAULT;
1522 	if (drbg->d_ops->crypto_init(drbg))
1523 		goto err;
1524 	ret = drbg_seed(drbg, pers, false);
1525 	drbg->d_ops->crypto_fini(drbg);
1526 	if (ret)
1527 		goto err;
1528 
1529 	return 0;
1530 
1531 err:
1532 	drbg_dealloc_state(drbg);
1533 	return ret;
1534 }
1535 
1536 /*
1537  * DRBG uninstantiate function as required by SP800-90A - this function
1538  * frees all buffers and the DRBG handle
1539  *
1540  * @drbg DRBG state handle
1541  *
1542  * return
1543  *	0 on success
1544  */
1545 static int drbg_uninstantiate(struct drbg_state *drbg)
1546 {
1547 	spin_lock_bh(&drbg->drbg_lock);
1548 	drbg_dealloc_state(drbg);
1549 	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1550 	spin_unlock_bh(&drbg->drbg_lock);
1551 	return 0;
1552 }
1553 
1554 /*
1555  * Helper function for setting the test data in the DRBG
1556  *
1557  * @drbg DRBG state handle
1558  * @test_data test data to sets
1559  */
1560 static inline void drbg_set_testdata(struct drbg_state *drbg,
1561 				     struct drbg_test_data *test_data)
1562 {
1563 	if (!test_data || !test_data->testentropy)
1564 		return;
1565 	spin_lock_bh(&drbg->drbg_lock);
1566 	drbg->test_data = test_data;
1567 	spin_unlock_bh(&drbg->drbg_lock);
1568 }
1569 
1570 /***************************************************************
1571  * Kernel crypto API cipher invocations requested by DRBG
1572  ***************************************************************/
1573 
1574 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1575 struct sdesc {
1576 	struct shash_desc shash;
1577 	char ctx[];
1578 };
1579 
1580 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1581 {
1582 	struct sdesc *sdesc;
1583 	struct crypto_shash *tfm;
1584 
1585 	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1586 	if (IS_ERR(tfm)) {
1587 		pr_info("DRBG: could not allocate digest TFM handle\n");
1588 		return PTR_ERR(tfm);
1589 	}
1590 	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1591 	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1592 			GFP_KERNEL);
1593 	if (!sdesc) {
1594 		crypto_free_shash(tfm);
1595 		return -ENOMEM;
1596 	}
1597 
1598 	sdesc->shash.tfm = tfm;
1599 	sdesc->shash.flags = 0;
1600 	drbg->priv_data = sdesc;
1601 	return 0;
1602 }
1603 
1604 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1605 {
1606 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1607 	if (sdesc) {
1608 		crypto_free_shash(sdesc->shash.tfm);
1609 		kzfree(sdesc);
1610 	}
1611 	drbg->priv_data = NULL;
1612 	return 0;
1613 }
1614 
1615 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
1616 			   unsigned char *outval, const struct list_head *in)
1617 {
1618 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1619 	struct drbg_string *input = NULL;
1620 
1621 	if (key)
1622 		crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1623 	crypto_shash_init(&sdesc->shash);
1624 	list_for_each_entry(input, in, list)
1625 		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1626 	return crypto_shash_final(&sdesc->shash, outval);
1627 }
1628 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1629 
1630 #ifdef CONFIG_CRYPTO_DRBG_CTR
1631 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1632 {
1633 	int ret = 0;
1634 	struct crypto_cipher *tfm;
1635 
1636 	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1637 	if (IS_ERR(tfm)) {
1638 		pr_info("DRBG: could not allocate cipher TFM handle\n");
1639 		return PTR_ERR(tfm);
1640 	}
1641 	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1642 	drbg->priv_data = tfm;
1643 	return ret;
1644 }
1645 
1646 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1647 {
1648 	struct crypto_cipher *tfm =
1649 		(struct crypto_cipher *)drbg->priv_data;
1650 	if (tfm)
1651 		crypto_free_cipher(tfm);
1652 	drbg->priv_data = NULL;
1653 	return 0;
1654 }
1655 
1656 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
1657 			  unsigned char *outval, const struct drbg_string *in)
1658 {
1659 	struct crypto_cipher *tfm =
1660 		(struct crypto_cipher *)drbg->priv_data;
1661 
1662 	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1663 	/* there is only component in *in */
1664 	BUG_ON(in->len < drbg_blocklen(drbg));
1665 	crypto_cipher_encrypt_one(tfm, outval, in->buf);
1666 	return 0;
1667 }
1668 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1669 
1670 /***************************************************************
1671  * Kernel crypto API interface to register DRBG
1672  ***************************************************************/
1673 
1674 /*
1675  * Look up the DRBG flags by given kernel crypto API cra_name
1676  * The code uses the drbg_cores definition to do this
1677  *
1678  * @cra_name kernel crypto API cra_name
1679  * @coreref reference to integer which is filled with the pointer to
1680  *  the applicable core
1681  * @pr reference for setting prediction resistance
1682  *
1683  * return: flags
1684  */
1685 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1686 					 int *coreref, bool *pr)
1687 {
1688 	int i = 0;
1689 	size_t start = 0;
1690 	int len = 0;
1691 
1692 	*pr = true;
1693 	/* disassemble the names */
1694 	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1695 		start = 10;
1696 		*pr = false;
1697 	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1698 		start = 8;
1699 	} else {
1700 		return;
1701 	}
1702 
1703 	/* remove the first part */
1704 	len = strlen(cra_driver_name) - start;
1705 	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1706 		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1707 			    len)) {
1708 			*coreref = i;
1709 			return;
1710 		}
1711 	}
1712 }
1713 
1714 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1715 {
1716 	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1717 	bool pr = false;
1718 	int coreref = 0;
1719 
1720 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm), &coreref, &pr);
1721 	/*
1722 	 * when personalization string is needed, the caller must call reset
1723 	 * and provide the personalization string as seed information
1724 	 */
1725 	return drbg_instantiate(drbg, NULL, coreref, pr);
1726 }
1727 
1728 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1729 {
1730 	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1731 }
1732 
1733 /*
1734  * Generate random numbers invoked by the kernel crypto API:
1735  * The API of the kernel crypto API is extended as follows:
1736  *
1737  * If dlen is larger than zero, rdata is interpreted as the output buffer
1738  * where random data is to be stored.
1739  *
1740  * If dlen is zero, rdata is interpreted as a pointer to a struct drbg_gen
1741  * which holds the additional information string that is used for the
1742  * DRBG generation process. The output buffer that is to be used to store
1743  * data is also pointed to by struct drbg_gen.
1744  */
1745 static int drbg_kcapi_random(struct crypto_rng *tfm, u8 *rdata,
1746 			     unsigned int dlen)
1747 {
1748 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1749 	if (0 < dlen) {
1750 		return drbg_generate_long(drbg, rdata, dlen, NULL);
1751 	} else {
1752 		struct drbg_gen *data = (struct drbg_gen *)rdata;
1753 		struct drbg_string addtl;
1754 		/* catch NULL pointer */
1755 		if (!data)
1756 			return 0;
1757 		drbg_set_testdata(drbg, data->test_data);
1758 		/* linked list variable is now local to allow modification */
1759 		drbg_string_fill(&addtl, data->addtl->buf, data->addtl->len);
1760 		return drbg_generate_long(drbg, data->outbuf, data->outlen,
1761 					  &addtl);
1762 	}
1763 }
1764 
1765 /*
1766  * Reset the DRBG invoked by the kernel crypto API
1767  * The reset implies a full re-initialization of the DRBG. Similar to the
1768  * generate function of drbg_kcapi_random, this function extends the
1769  * kernel crypto API interface with struct drbg_gen
1770  */
1771 static int drbg_kcapi_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
1772 {
1773 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1774 	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1775 	bool pr = false;
1776 	struct drbg_string seed_string;
1777 	int coreref = 0;
1778 
1779 	drbg_uninstantiate(drbg);
1780 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1781 			      &pr);
1782 	if (0 < slen) {
1783 		drbg_string_fill(&seed_string, seed, slen);
1784 		return drbg_instantiate(drbg, &seed_string, coreref, pr);
1785 	} else {
1786 		struct drbg_gen *data = (struct drbg_gen *)seed;
1787 		/* allow invocation of API call with NULL, 0 */
1788 		if (!data)
1789 			return drbg_instantiate(drbg, NULL, coreref, pr);
1790 		drbg_set_testdata(drbg, data->test_data);
1791 		/* linked list variable is now local to allow modification */
1792 		drbg_string_fill(&seed_string, data->addtl->buf,
1793 				 data->addtl->len);
1794 		return drbg_instantiate(drbg, &seed_string, coreref, pr);
1795 	}
1796 }
1797 
1798 /***************************************************************
1799  * Kernel module: code to load the module
1800  ***************************************************************/
1801 
1802 /*
1803  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1804  * of the error handling.
1805  *
1806  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1807  * as seed source of get_random_bytes does not fail.
1808  *
1809  * Note 2: There is no sensible way of testing the reseed counter
1810  * enforcement, so skip it.
1811  */
1812 static inline int __init drbg_healthcheck_sanity(void)
1813 {
1814 #ifdef CONFIG_CRYPTO_FIPS
1815 	int len = 0;
1816 #define OUTBUFLEN 16
1817 	unsigned char buf[OUTBUFLEN];
1818 	struct drbg_state *drbg = NULL;
1819 	int ret = -EFAULT;
1820 	int rc = -EFAULT;
1821 	bool pr = false;
1822 	int coreref = 0;
1823 	struct drbg_string addtl;
1824 	size_t max_addtllen, max_request_bytes;
1825 
1826 	/* only perform test in FIPS mode */
1827 	if (!fips_enabled)
1828 		return 0;
1829 
1830 #ifdef CONFIG_CRYPTO_DRBG_CTR
1831 	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1832 #elif defined CONFIG_CRYPTO_DRBG_HASH
1833 	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1834 #else
1835 	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1836 #endif
1837 
1838 	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1839 	if (!drbg)
1840 		return -ENOMEM;
1841 
1842 	/*
1843 	 * if the following tests fail, it is likely that there is a buffer
1844 	 * overflow as buf is much smaller than the requested or provided
1845 	 * string lengths -- in case the error handling does not succeed
1846 	 * we may get an OOPS. And we want to get an OOPS as this is a
1847 	 * grave bug.
1848 	 */
1849 
1850 	/* get a valid instance of DRBG for following tests */
1851 	ret = drbg_instantiate(drbg, NULL, coreref, pr);
1852 	if (ret) {
1853 		rc = ret;
1854 		goto outbuf;
1855 	}
1856 	max_addtllen = drbg_max_addtl(drbg);
1857 	max_request_bytes = drbg_max_request_bytes(drbg);
1858 	drbg_string_fill(&addtl, buf, max_addtllen + 1);
1859 	/* overflow addtllen with additonal info string */
1860 	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1861 	BUG_ON(0 < len);
1862 	/* overflow max_bits */
1863 	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1864 	BUG_ON(0 < len);
1865 	drbg_uninstantiate(drbg);
1866 
1867 	/* overflow max addtllen with personalization string */
1868 	ret = drbg_instantiate(drbg, &addtl, coreref, pr);
1869 	BUG_ON(0 == ret);
1870 	/* all tests passed */
1871 	rc = 0;
1872 
1873 	pr_devel("DRBG: Sanity tests for failure code paths successfully "
1874 		 "completed\n");
1875 
1876 	drbg_uninstantiate(drbg);
1877 outbuf:
1878 	kzfree(drbg);
1879 	return rc;
1880 #else /* CONFIG_CRYPTO_FIPS */
1881 	return 0;
1882 #endif /* CONFIG_CRYPTO_FIPS */
1883 }
1884 
1885 static struct crypto_alg drbg_algs[22];
1886 
1887 /*
1888  * Fill the array drbg_algs used to register the different DRBGs
1889  * with the kernel crypto API. To fill the array, the information
1890  * from drbg_cores[] is used.
1891  */
1892 static inline void __init drbg_fill_array(struct crypto_alg *alg,
1893 					  const struct drbg_core *core, int pr)
1894 {
1895 	int pos = 0;
1896 	static int priority = 100;
1897 
1898 	memset(alg, 0, sizeof(struct crypto_alg));
1899 	memcpy(alg->cra_name, "stdrng", 6);
1900 	if (pr) {
1901 		memcpy(alg->cra_driver_name, "drbg_pr_", 8);
1902 		pos = 8;
1903 	} else {
1904 		memcpy(alg->cra_driver_name, "drbg_nopr_", 10);
1905 		pos = 10;
1906 	}
1907 	memcpy(alg->cra_driver_name + pos, core->cra_name,
1908 	       strlen(core->cra_name));
1909 
1910 	alg->cra_priority = priority;
1911 	priority++;
1912 	/*
1913 	 * If FIPS mode enabled, the selected DRBG shall have the
1914 	 * highest cra_priority over other stdrng instances to ensure
1915 	 * it is selected.
1916 	 */
1917 	if (fips_enabled)
1918 		alg->cra_priority += 200;
1919 
1920 	alg->cra_flags		= CRYPTO_ALG_TYPE_RNG;
1921 	alg->cra_ctxsize 	= sizeof(struct drbg_state);
1922 	alg->cra_type		= &crypto_rng_type;
1923 	alg->cra_module		= THIS_MODULE;
1924 	alg->cra_init		= drbg_kcapi_init;
1925 	alg->cra_exit		= drbg_kcapi_cleanup;
1926 	alg->cra_u.rng.rng_make_random	= drbg_kcapi_random;
1927 	alg->cra_u.rng.rng_reset	= drbg_kcapi_reset;
1928 	alg->cra_u.rng.seedsize	= 0;
1929 }
1930 
1931 static int __init drbg_init(void)
1932 {
1933 	unsigned int i = 0; /* pointer to drbg_algs */
1934 	unsigned int j = 0; /* pointer to drbg_cores */
1935 	int ret = -EFAULT;
1936 
1937 	ret = drbg_healthcheck_sanity();
1938 	if (ret)
1939 		return ret;
1940 
1941 	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
1942 		pr_info("DRBG: Cannot register all DRBG types"
1943 			"(slots needed: %zu, slots available: %zu)\n",
1944 			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
1945 		return ret;
1946 	}
1947 
1948 	/*
1949 	 * each DRBG definition can be used with PR and without PR, thus
1950 	 * we instantiate each DRBG in drbg_cores[] twice.
1951 	 *
1952 	 * As the order of placing them into the drbg_algs array matters
1953 	 * (the later DRBGs receive a higher cra_priority) we register the
1954 	 * prediction resistance DRBGs first as the should not be too
1955 	 * interesting.
1956 	 */
1957 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1958 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
1959 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1960 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
1961 	return crypto_register_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1962 }
1963 
1964 static void __exit drbg_exit(void)
1965 {
1966 	crypto_unregister_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1967 }
1968 
1969 module_init(drbg_init);
1970 module_exit(drbg_exit);
1971 #ifndef CRYPTO_DRBG_HASH_STRING
1972 #define CRYPTO_DRBG_HASH_STRING ""
1973 #endif
1974 #ifndef CRYPTO_DRBG_HMAC_STRING
1975 #define CRYPTO_DRBG_HMAC_STRING ""
1976 #endif
1977 #ifndef CRYPTO_DRBG_CTR_STRING
1978 #define CRYPTO_DRBG_CTR_STRING ""
1979 #endif
1980 MODULE_LICENSE("GPL");
1981 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
1982 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
1983 		   "using following cores: "
1984 		   CRYPTO_DRBG_HASH_STRING
1985 		   CRYPTO_DRBG_HMAC_STRING
1986 		   CRYPTO_DRBG_CTR_STRING);
1987