xref: /openbmc/linux/crypto/drbg.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *		* with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99 
100 #include <crypto/drbg.h>
101 #include <linux/kernel.h>
102 
103 /***************************************************************
104  * Backend cipher definitions available to DRBG
105  ***************************************************************/
106 
107 /*
108  * The order of the DRBG definitions here matter: every DRBG is registered
109  * as stdrng. Each DRBG receives an increasing cra_priority values the later
110  * they are defined in this array (see drbg_fill_array).
111  *
112  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
113  * the SHA256 / AES 256 over other ciphers. Thus, the favored
114  * DRBGs are the latest entries in this array.
115  */
116 static const struct drbg_core drbg_cores[] = {
117 #ifdef CONFIG_CRYPTO_DRBG_CTR
118 	{
119 		.flags = DRBG_CTR | DRBG_STRENGTH128,
120 		.statelen = 32, /* 256 bits as defined in 10.2.1 */
121 		.blocklen_bytes = 16,
122 		.cra_name = "ctr_aes128",
123 		.backend_cra_name = "aes",
124 	}, {
125 		.flags = DRBG_CTR | DRBG_STRENGTH192,
126 		.statelen = 40, /* 320 bits as defined in 10.2.1 */
127 		.blocklen_bytes = 16,
128 		.cra_name = "ctr_aes192",
129 		.backend_cra_name = "aes",
130 	}, {
131 		.flags = DRBG_CTR | DRBG_STRENGTH256,
132 		.statelen = 48, /* 384 bits as defined in 10.2.1 */
133 		.blocklen_bytes = 16,
134 		.cra_name = "ctr_aes256",
135 		.backend_cra_name = "aes",
136 	},
137 #endif /* CONFIG_CRYPTO_DRBG_CTR */
138 #ifdef CONFIG_CRYPTO_DRBG_HASH
139 	{
140 		.flags = DRBG_HASH | DRBG_STRENGTH128,
141 		.statelen = 55, /* 440 bits */
142 		.blocklen_bytes = 20,
143 		.cra_name = "sha1",
144 		.backend_cra_name = "sha1",
145 	}, {
146 		.flags = DRBG_HASH | DRBG_STRENGTH256,
147 		.statelen = 111, /* 888 bits */
148 		.blocklen_bytes = 48,
149 		.cra_name = "sha384",
150 		.backend_cra_name = "sha384",
151 	}, {
152 		.flags = DRBG_HASH | DRBG_STRENGTH256,
153 		.statelen = 111, /* 888 bits */
154 		.blocklen_bytes = 64,
155 		.cra_name = "sha512",
156 		.backend_cra_name = "sha512",
157 	}, {
158 		.flags = DRBG_HASH | DRBG_STRENGTH256,
159 		.statelen = 55, /* 440 bits */
160 		.blocklen_bytes = 32,
161 		.cra_name = "sha256",
162 		.backend_cra_name = "sha256",
163 	},
164 #endif /* CONFIG_CRYPTO_DRBG_HASH */
165 #ifdef CONFIG_CRYPTO_DRBG_HMAC
166 	{
167 		.flags = DRBG_HMAC | DRBG_STRENGTH128,
168 		.statelen = 20, /* block length of cipher */
169 		.blocklen_bytes = 20,
170 		.cra_name = "hmac_sha1",
171 		.backend_cra_name = "hmac(sha1)",
172 	}, {
173 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
174 		.statelen = 48, /* block length of cipher */
175 		.blocklen_bytes = 48,
176 		.cra_name = "hmac_sha384",
177 		.backend_cra_name = "hmac(sha384)",
178 	}, {
179 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
180 		.statelen = 64, /* block length of cipher */
181 		.blocklen_bytes = 64,
182 		.cra_name = "hmac_sha512",
183 		.backend_cra_name = "hmac(sha512)",
184 	}, {
185 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
186 		.statelen = 32, /* block length of cipher */
187 		.blocklen_bytes = 32,
188 		.cra_name = "hmac_sha256",
189 		.backend_cra_name = "hmac(sha256)",
190 	},
191 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
192 };
193 
194 static int drbg_uninstantiate(struct drbg_state *drbg);
195 
196 /******************************************************************
197  * Generic helper functions
198  ******************************************************************/
199 
200 /*
201  * Return strength of DRBG according to SP800-90A section 8.4
202  *
203  * @flags DRBG flags reference
204  *
205  * Return: normalized strength in *bytes* value or 32 as default
206  *	   to counter programming errors
207  */
208 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
209 {
210 	switch (flags & DRBG_STRENGTH_MASK) {
211 	case DRBG_STRENGTH128:
212 		return 16;
213 	case DRBG_STRENGTH192:
214 		return 24;
215 	case DRBG_STRENGTH256:
216 		return 32;
217 	default:
218 		return 32;
219 	}
220 }
221 
222 /*
223  * Convert an integer into a byte representation of this integer.
224  * The byte representation is big-endian
225  *
226  * @val value to be converted
227  * @buf buffer holding the converted integer -- caller must ensure that
228  *      buffer size is at least 32 bit
229  */
230 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
231 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
232 {
233 	struct s {
234 		__be32 conv;
235 	};
236 	struct s *conversion = (struct s *) buf;
237 
238 	conversion->conv = cpu_to_be32(val);
239 }
240 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
241 
242 /******************************************************************
243  * CTR DRBG callback functions
244  ******************************************************************/
245 
246 #ifdef CONFIG_CRYPTO_DRBG_CTR
247 #define CRYPTO_DRBG_CTR_STRING "CTR "
248 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
249 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
250 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
251 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
252 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
253 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
254 
255 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
256 				 const unsigned char *key);
257 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
258 			  const struct drbg_string *in);
259 static int drbg_init_sym_kernel(struct drbg_state *drbg);
260 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
261 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
262 			      u8 *inbuf, u32 inbuflen,
263 			      u8 *outbuf, u32 outlen);
264 #define DRBG_CTR_NULL_LEN 128
265 #define DRBG_OUTSCRATCHLEN DRBG_CTR_NULL_LEN
266 
267 /* BCC function for CTR DRBG as defined in 10.4.3 */
268 static int drbg_ctr_bcc(struct drbg_state *drbg,
269 			unsigned char *out, const unsigned char *key,
270 			struct list_head *in)
271 {
272 	int ret = 0;
273 	struct drbg_string *curr = NULL;
274 	struct drbg_string data;
275 	short cnt = 0;
276 
277 	drbg_string_fill(&data, out, drbg_blocklen(drbg));
278 
279 	/* 10.4.3 step 2 / 4 */
280 	drbg_kcapi_symsetkey(drbg, key);
281 	list_for_each_entry(curr, in, list) {
282 		const unsigned char *pos = curr->buf;
283 		size_t len = curr->len;
284 		/* 10.4.3 step 4.1 */
285 		while (len) {
286 			/* 10.4.3 step 4.2 */
287 			if (drbg_blocklen(drbg) == cnt) {
288 				cnt = 0;
289 				ret = drbg_kcapi_sym(drbg, out, &data);
290 				if (ret)
291 					return ret;
292 			}
293 			out[cnt] ^= *pos;
294 			pos++;
295 			cnt++;
296 			len--;
297 		}
298 	}
299 	/* 10.4.3 step 4.2 for last block */
300 	if (cnt)
301 		ret = drbg_kcapi_sym(drbg, out, &data);
302 
303 	return ret;
304 }
305 
306 /*
307  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
308  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
309  * the scratchpad is used as follows:
310  * drbg_ctr_update:
311  *	temp
312  *		start: drbg->scratchpad
313  *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
314  *			note: the cipher writing into this variable works
315  *			blocklen-wise. Now, when the statelen is not a multiple
316  *			of blocklen, the generateion loop below "spills over"
317  *			by at most blocklen. Thus, we need to give sufficient
318  *			memory.
319  *	df_data
320  *		start: drbg->scratchpad +
321  *				drbg_statelen(drbg) + drbg_blocklen(drbg)
322  *		length: drbg_statelen(drbg)
323  *
324  * drbg_ctr_df:
325  *	pad
326  *		start: df_data + drbg_statelen(drbg)
327  *		length: drbg_blocklen(drbg)
328  *	iv
329  *		start: pad + drbg_blocklen(drbg)
330  *		length: drbg_blocklen(drbg)
331  *	temp
332  *		start: iv + drbg_blocklen(drbg)
333  *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
334  *			note: temp is the buffer that the BCC function operates
335  *			on. BCC operates blockwise. drbg_statelen(drbg)
336  *			is sufficient when the DRBG state length is a multiple
337  *			of the block size. For AES192 (and maybe other ciphers)
338  *			this is not correct and the length for temp is
339  *			insufficient (yes, that also means for such ciphers,
340  *			the final output of all BCC rounds are truncated).
341  *			Therefore, add drbg_blocklen(drbg) to cover all
342  *			possibilities.
343  */
344 
345 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
346 static int drbg_ctr_df(struct drbg_state *drbg,
347 		       unsigned char *df_data, size_t bytes_to_return,
348 		       struct list_head *seedlist)
349 {
350 	int ret = -EFAULT;
351 	unsigned char L_N[8];
352 	/* S3 is input */
353 	struct drbg_string S1, S2, S4, cipherin;
354 	LIST_HEAD(bcc_list);
355 	unsigned char *pad = df_data + drbg_statelen(drbg);
356 	unsigned char *iv = pad + drbg_blocklen(drbg);
357 	unsigned char *temp = iv + drbg_blocklen(drbg);
358 	size_t padlen = 0;
359 	unsigned int templen = 0;
360 	/* 10.4.2 step 7 */
361 	unsigned int i = 0;
362 	/* 10.4.2 step 8 */
363 	const unsigned char *K = (unsigned char *)
364 			   "\x00\x01\x02\x03\x04\x05\x06\x07"
365 			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
366 			   "\x10\x11\x12\x13\x14\x15\x16\x17"
367 			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
368 	unsigned char *X;
369 	size_t generated_len = 0;
370 	size_t inputlen = 0;
371 	struct drbg_string *seed = NULL;
372 
373 	memset(pad, 0, drbg_blocklen(drbg));
374 	memset(iv, 0, drbg_blocklen(drbg));
375 
376 	/* 10.4.2 step 1 is implicit as we work byte-wise */
377 
378 	/* 10.4.2 step 2 */
379 	if ((512/8) < bytes_to_return)
380 		return -EINVAL;
381 
382 	/* 10.4.2 step 2 -- calculate the entire length of all input data */
383 	list_for_each_entry(seed, seedlist, list)
384 		inputlen += seed->len;
385 	drbg_cpu_to_be32(inputlen, &L_N[0]);
386 
387 	/* 10.4.2 step 3 */
388 	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
389 
390 	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
391 	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
392 	/* wrap the padlen appropriately */
393 	if (padlen)
394 		padlen = drbg_blocklen(drbg) - padlen;
395 	/*
396 	 * pad / padlen contains the 0x80 byte and the following zero bytes.
397 	 * As the calculated padlen value only covers the number of zero
398 	 * bytes, this value has to be incremented by one for the 0x80 byte.
399 	 */
400 	padlen++;
401 	pad[0] = 0x80;
402 
403 	/* 10.4.2 step 4 -- first fill the linked list and then order it */
404 	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
405 	list_add_tail(&S1.list, &bcc_list);
406 	drbg_string_fill(&S2, L_N, sizeof(L_N));
407 	list_add_tail(&S2.list, &bcc_list);
408 	list_splice_tail(seedlist, &bcc_list);
409 	drbg_string_fill(&S4, pad, padlen);
410 	list_add_tail(&S4.list, &bcc_list);
411 
412 	/* 10.4.2 step 9 */
413 	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
414 		/*
415 		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
416 		 * holds zeros after allocation -- even the increment of i
417 		 * is irrelevant as the increment remains within length of i
418 		 */
419 		drbg_cpu_to_be32(i, iv);
420 		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
421 		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
422 		if (ret)
423 			goto out;
424 		/* 10.4.2 step 9.3 */
425 		i++;
426 		templen += drbg_blocklen(drbg);
427 	}
428 
429 	/* 10.4.2 step 11 */
430 	X = temp + (drbg_keylen(drbg));
431 	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
432 
433 	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
434 
435 	/* 10.4.2 step 13 */
436 	drbg_kcapi_symsetkey(drbg, temp);
437 	while (generated_len < bytes_to_return) {
438 		short blocklen = 0;
439 		/*
440 		 * 10.4.2 step 13.1: the truncation of the key length is
441 		 * implicit as the key is only drbg_blocklen in size based on
442 		 * the implementation of the cipher function callback
443 		 */
444 		ret = drbg_kcapi_sym(drbg, X, &cipherin);
445 		if (ret)
446 			goto out;
447 		blocklen = (drbg_blocklen(drbg) <
448 				(bytes_to_return - generated_len)) ?
449 			    drbg_blocklen(drbg) :
450 				(bytes_to_return - generated_len);
451 		/* 10.4.2 step 13.2 and 14 */
452 		memcpy(df_data + generated_len, X, blocklen);
453 		generated_len += blocklen;
454 	}
455 
456 	ret = 0;
457 
458 out:
459 	memset(iv, 0, drbg_blocklen(drbg));
460 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
461 	memset(pad, 0, drbg_blocklen(drbg));
462 	return ret;
463 }
464 
465 /*
466  * update function of CTR DRBG as defined in 10.2.1.2
467  *
468  * The reseed variable has an enhanced meaning compared to the update
469  * functions of the other DRBGs as follows:
470  * 0 => initial seed from initialization
471  * 1 => reseed via drbg_seed
472  * 2 => first invocation from drbg_ctr_update when addtl is present. In
473  *      this case, the df_data scratchpad is not deleted so that it is
474  *      available for another calls to prevent calling the DF function
475  *      again.
476  * 3 => second invocation from drbg_ctr_update. When the update function
477  *      was called with addtl, the df_data memory already contains the
478  *      DFed addtl information and we do not need to call DF again.
479  */
480 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
481 			   int reseed)
482 {
483 	int ret = -EFAULT;
484 	/* 10.2.1.2 step 1 */
485 	unsigned char *temp = drbg->scratchpad;
486 	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
487 				 drbg_blocklen(drbg);
488 
489 	if (3 > reseed)
490 		memset(df_data, 0, drbg_statelen(drbg));
491 
492 	if (!reseed) {
493 		/*
494 		 * The DRBG uses the CTR mode of the underlying AES cipher. The
495 		 * CTR mode increments the counter value after the AES operation
496 		 * but SP800-90A requires that the counter is incremented before
497 		 * the AES operation. Hence, we increment it at the time we set
498 		 * it by one.
499 		 */
500 		crypto_inc(drbg->V, drbg_blocklen(drbg));
501 
502 		ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
503 					     drbg_keylen(drbg));
504 		if (ret)
505 			goto out;
506 	}
507 
508 	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
509 	if (seed) {
510 		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
511 		if (ret)
512 			goto out;
513 	}
514 
515 	ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
516 				 temp, drbg_statelen(drbg));
517 	if (ret)
518 		return ret;
519 
520 	/* 10.2.1.2 step 5 */
521 	ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
522 				     drbg_keylen(drbg));
523 	if (ret)
524 		goto out;
525 	/* 10.2.1.2 step 6 */
526 	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
527 	/* See above: increment counter by one to compensate timing of CTR op */
528 	crypto_inc(drbg->V, drbg_blocklen(drbg));
529 	ret = 0;
530 
531 out:
532 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
533 	if (2 != reseed)
534 		memset(df_data, 0, drbg_statelen(drbg));
535 	return ret;
536 }
537 
538 /*
539  * scratchpad use: drbg_ctr_update is called independently from
540  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
541  */
542 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
543 static int drbg_ctr_generate(struct drbg_state *drbg,
544 			     unsigned char *buf, unsigned int buflen,
545 			     struct list_head *addtl)
546 {
547 	int ret;
548 	int len = min_t(int, buflen, INT_MAX);
549 
550 	/* 10.2.1.5.2 step 2 */
551 	if (addtl && !list_empty(addtl)) {
552 		ret = drbg_ctr_update(drbg, addtl, 2);
553 		if (ret)
554 			return 0;
555 	}
556 
557 	/* 10.2.1.5.2 step 4.1 */
558 	ret = drbg_kcapi_sym_ctr(drbg, drbg->ctr_null_value, DRBG_CTR_NULL_LEN,
559 				 buf, len);
560 	if (ret)
561 		return ret;
562 
563 	/* 10.2.1.5.2 step 6 */
564 	ret = drbg_ctr_update(drbg, NULL, 3);
565 	if (ret)
566 		len = ret;
567 
568 	return len;
569 }
570 
571 static const struct drbg_state_ops drbg_ctr_ops = {
572 	.update		= drbg_ctr_update,
573 	.generate	= drbg_ctr_generate,
574 	.crypto_init	= drbg_init_sym_kernel,
575 	.crypto_fini	= drbg_fini_sym_kernel,
576 };
577 #endif /* CONFIG_CRYPTO_DRBG_CTR */
578 
579 /******************************************************************
580  * HMAC DRBG callback functions
581  ******************************************************************/
582 
583 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
584 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
585 			   const struct list_head *in);
586 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
587 				  const unsigned char *key);
588 static int drbg_init_hash_kernel(struct drbg_state *drbg);
589 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
590 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
591 
592 #ifdef CONFIG_CRYPTO_DRBG_HMAC
593 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
594 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
595 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
596 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
597 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
598 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
599 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
600 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
601 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
602 
603 /* update function of HMAC DRBG as defined in 10.1.2.2 */
604 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
605 			    int reseed)
606 {
607 	int ret = -EFAULT;
608 	int i = 0;
609 	struct drbg_string seed1, seed2, vdata;
610 	LIST_HEAD(seedlist);
611 	LIST_HEAD(vdatalist);
612 
613 	if (!reseed) {
614 		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
615 		memset(drbg->V, 1, drbg_statelen(drbg));
616 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
617 	}
618 
619 	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
620 	list_add_tail(&seed1.list, &seedlist);
621 	/* buffer of seed2 will be filled in for loop below with one byte */
622 	drbg_string_fill(&seed2, NULL, 1);
623 	list_add_tail(&seed2.list, &seedlist);
624 	/* input data of seed is allowed to be NULL at this point */
625 	if (seed)
626 		list_splice_tail(seed, &seedlist);
627 
628 	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
629 	list_add_tail(&vdata.list, &vdatalist);
630 	for (i = 2; 0 < i; i--) {
631 		/* first round uses 0x0, second 0x1 */
632 		unsigned char prefix = DRBG_PREFIX0;
633 		if (1 == i)
634 			prefix = DRBG_PREFIX1;
635 		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
636 		seed2.buf = &prefix;
637 		ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
638 		if (ret)
639 			return ret;
640 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
641 
642 		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
643 		ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
644 		if (ret)
645 			return ret;
646 
647 		/* 10.1.2.2 step 3 */
648 		if (!seed)
649 			return ret;
650 	}
651 
652 	return 0;
653 }
654 
655 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
656 static int drbg_hmac_generate(struct drbg_state *drbg,
657 			      unsigned char *buf,
658 			      unsigned int buflen,
659 			      struct list_head *addtl)
660 {
661 	int len = 0;
662 	int ret = 0;
663 	struct drbg_string data;
664 	LIST_HEAD(datalist);
665 
666 	/* 10.1.2.5 step 2 */
667 	if (addtl && !list_empty(addtl)) {
668 		ret = drbg_hmac_update(drbg, addtl, 1);
669 		if (ret)
670 			return ret;
671 	}
672 
673 	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
674 	list_add_tail(&data.list, &datalist);
675 	while (len < buflen) {
676 		unsigned int outlen = 0;
677 		/* 10.1.2.5 step 4.1 */
678 		ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
679 		if (ret)
680 			return ret;
681 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
682 			  drbg_blocklen(drbg) : (buflen - len);
683 
684 		/* 10.1.2.5 step 4.2 */
685 		memcpy(buf + len, drbg->V, outlen);
686 		len += outlen;
687 	}
688 
689 	/* 10.1.2.5 step 6 */
690 	if (addtl && !list_empty(addtl))
691 		ret = drbg_hmac_update(drbg, addtl, 1);
692 	else
693 		ret = drbg_hmac_update(drbg, NULL, 1);
694 	if (ret)
695 		return ret;
696 
697 	return len;
698 }
699 
700 static const struct drbg_state_ops drbg_hmac_ops = {
701 	.update		= drbg_hmac_update,
702 	.generate	= drbg_hmac_generate,
703 	.crypto_init	= drbg_init_hash_kernel,
704 	.crypto_fini	= drbg_fini_hash_kernel,
705 };
706 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
707 
708 /******************************************************************
709  * Hash DRBG callback functions
710  ******************************************************************/
711 
712 #ifdef CONFIG_CRYPTO_DRBG_HASH
713 #define CRYPTO_DRBG_HASH_STRING "HASH "
714 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
715 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
716 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
717 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
718 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
719 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
720 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
721 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
722 
723 /*
724  * Increment buffer
725  *
726  * @dst buffer to increment
727  * @add value to add
728  */
729 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
730 				const unsigned char *add, size_t addlen)
731 {
732 	/* implied: dstlen > addlen */
733 	unsigned char *dstptr;
734 	const unsigned char *addptr;
735 	unsigned int remainder = 0;
736 	size_t len = addlen;
737 
738 	dstptr = dst + (dstlen-1);
739 	addptr = add + (addlen-1);
740 	while (len) {
741 		remainder += *dstptr + *addptr;
742 		*dstptr = remainder & 0xff;
743 		remainder >>= 8;
744 		len--; dstptr--; addptr--;
745 	}
746 	len = dstlen - addlen;
747 	while (len && remainder > 0) {
748 		remainder = *dstptr + 1;
749 		*dstptr = remainder & 0xff;
750 		remainder >>= 8;
751 		len--; dstptr--;
752 	}
753 }
754 
755 /*
756  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
757  * interlinked, the scratchpad is used as follows:
758  * drbg_hash_update
759  *	start: drbg->scratchpad
760  *	length: drbg_statelen(drbg)
761  * drbg_hash_df:
762  *	start: drbg->scratchpad + drbg_statelen(drbg)
763  *	length: drbg_blocklen(drbg)
764  *
765  * drbg_hash_process_addtl uses the scratchpad, but fully completes
766  * before either of the functions mentioned before are invoked. Therefore,
767  * drbg_hash_process_addtl does not need to be specifically considered.
768  */
769 
770 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
771 static int drbg_hash_df(struct drbg_state *drbg,
772 			unsigned char *outval, size_t outlen,
773 			struct list_head *entropylist)
774 {
775 	int ret = 0;
776 	size_t len = 0;
777 	unsigned char input[5];
778 	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
779 	struct drbg_string data;
780 
781 	/* 10.4.1 step 3 */
782 	input[0] = 1;
783 	drbg_cpu_to_be32((outlen * 8), &input[1]);
784 
785 	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
786 	drbg_string_fill(&data, input, 5);
787 	list_add(&data.list, entropylist);
788 
789 	/* 10.4.1 step 4 */
790 	while (len < outlen) {
791 		short blocklen = 0;
792 		/* 10.4.1 step 4.1 */
793 		ret = drbg_kcapi_hash(drbg, tmp, entropylist);
794 		if (ret)
795 			goto out;
796 		/* 10.4.1 step 4.2 */
797 		input[0]++;
798 		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
799 			    drbg_blocklen(drbg) : (outlen - len);
800 		memcpy(outval + len, tmp, blocklen);
801 		len += blocklen;
802 	}
803 
804 out:
805 	memset(tmp, 0, drbg_blocklen(drbg));
806 	return ret;
807 }
808 
809 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
810 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
811 			    int reseed)
812 {
813 	int ret = 0;
814 	struct drbg_string data1, data2;
815 	LIST_HEAD(datalist);
816 	LIST_HEAD(datalist2);
817 	unsigned char *V = drbg->scratchpad;
818 	unsigned char prefix = DRBG_PREFIX1;
819 
820 	if (!seed)
821 		return -EINVAL;
822 
823 	if (reseed) {
824 		/* 10.1.1.3 step 1 */
825 		memcpy(V, drbg->V, drbg_statelen(drbg));
826 		drbg_string_fill(&data1, &prefix, 1);
827 		list_add_tail(&data1.list, &datalist);
828 		drbg_string_fill(&data2, V, drbg_statelen(drbg));
829 		list_add_tail(&data2.list, &datalist);
830 	}
831 	list_splice_tail(seed, &datalist);
832 
833 	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
834 	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
835 	if (ret)
836 		goto out;
837 
838 	/* 10.1.1.2 / 10.1.1.3 step 4  */
839 	prefix = DRBG_PREFIX0;
840 	drbg_string_fill(&data1, &prefix, 1);
841 	list_add_tail(&data1.list, &datalist2);
842 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
843 	list_add_tail(&data2.list, &datalist2);
844 	/* 10.1.1.2 / 10.1.1.3 step 4 */
845 	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
846 
847 out:
848 	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
849 	return ret;
850 }
851 
852 /* processing of additional information string for Hash DRBG */
853 static int drbg_hash_process_addtl(struct drbg_state *drbg,
854 				   struct list_head *addtl)
855 {
856 	int ret = 0;
857 	struct drbg_string data1, data2;
858 	LIST_HEAD(datalist);
859 	unsigned char prefix = DRBG_PREFIX2;
860 
861 	/* 10.1.1.4 step 2 */
862 	if (!addtl || list_empty(addtl))
863 		return 0;
864 
865 	/* 10.1.1.4 step 2a */
866 	drbg_string_fill(&data1, &prefix, 1);
867 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
868 	list_add_tail(&data1.list, &datalist);
869 	list_add_tail(&data2.list, &datalist);
870 	list_splice_tail(addtl, &datalist);
871 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
872 	if (ret)
873 		goto out;
874 
875 	/* 10.1.1.4 step 2b */
876 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
877 		     drbg->scratchpad, drbg_blocklen(drbg));
878 
879 out:
880 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
881 	return ret;
882 }
883 
884 /* Hashgen defined in 10.1.1.4 */
885 static int drbg_hash_hashgen(struct drbg_state *drbg,
886 			     unsigned char *buf,
887 			     unsigned int buflen)
888 {
889 	int len = 0;
890 	int ret = 0;
891 	unsigned char *src = drbg->scratchpad;
892 	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
893 	struct drbg_string data;
894 	LIST_HEAD(datalist);
895 
896 	/* 10.1.1.4 step hashgen 2 */
897 	memcpy(src, drbg->V, drbg_statelen(drbg));
898 
899 	drbg_string_fill(&data, src, drbg_statelen(drbg));
900 	list_add_tail(&data.list, &datalist);
901 	while (len < buflen) {
902 		unsigned int outlen = 0;
903 		/* 10.1.1.4 step hashgen 4.1 */
904 		ret = drbg_kcapi_hash(drbg, dst, &datalist);
905 		if (ret) {
906 			len = ret;
907 			goto out;
908 		}
909 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
910 			  drbg_blocklen(drbg) : (buflen - len);
911 		/* 10.1.1.4 step hashgen 4.2 */
912 		memcpy(buf + len, dst, outlen);
913 		len += outlen;
914 		/* 10.1.1.4 hashgen step 4.3 */
915 		if (len < buflen)
916 			crypto_inc(src, drbg_statelen(drbg));
917 	}
918 
919 out:
920 	memset(drbg->scratchpad, 0,
921 	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
922 	return len;
923 }
924 
925 /* generate function for Hash DRBG as defined in  10.1.1.4 */
926 static int drbg_hash_generate(struct drbg_state *drbg,
927 			      unsigned char *buf, unsigned int buflen,
928 			      struct list_head *addtl)
929 {
930 	int len = 0;
931 	int ret = 0;
932 	union {
933 		unsigned char req[8];
934 		__be64 req_int;
935 	} u;
936 	unsigned char prefix = DRBG_PREFIX3;
937 	struct drbg_string data1, data2;
938 	LIST_HEAD(datalist);
939 
940 	/* 10.1.1.4 step 2 */
941 	ret = drbg_hash_process_addtl(drbg, addtl);
942 	if (ret)
943 		return ret;
944 	/* 10.1.1.4 step 3 */
945 	len = drbg_hash_hashgen(drbg, buf, buflen);
946 
947 	/* this is the value H as documented in 10.1.1.4 */
948 	/* 10.1.1.4 step 4 */
949 	drbg_string_fill(&data1, &prefix, 1);
950 	list_add_tail(&data1.list, &datalist);
951 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
952 	list_add_tail(&data2.list, &datalist);
953 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
954 	if (ret) {
955 		len = ret;
956 		goto out;
957 	}
958 
959 	/* 10.1.1.4 step 5 */
960 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
961 		     drbg->scratchpad, drbg_blocklen(drbg));
962 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
963 		     drbg->C, drbg_statelen(drbg));
964 	u.req_int = cpu_to_be64(drbg->reseed_ctr);
965 	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
966 
967 out:
968 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
969 	return len;
970 }
971 
972 /*
973  * scratchpad usage: as update and generate are used isolated, both
974  * can use the scratchpad
975  */
976 static const struct drbg_state_ops drbg_hash_ops = {
977 	.update		= drbg_hash_update,
978 	.generate	= drbg_hash_generate,
979 	.crypto_init	= drbg_init_hash_kernel,
980 	.crypto_fini	= drbg_fini_hash_kernel,
981 };
982 #endif /* CONFIG_CRYPTO_DRBG_HASH */
983 
984 /******************************************************************
985  * Functions common for DRBG implementations
986  ******************************************************************/
987 
988 static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
989 			      int reseed)
990 {
991 	int ret = drbg->d_ops->update(drbg, seed, reseed);
992 
993 	if (ret)
994 		return ret;
995 
996 	drbg->seeded = true;
997 	/* 10.1.1.2 / 10.1.1.3 step 5 */
998 	drbg->reseed_ctr = 1;
999 
1000 	return ret;
1001 }
1002 
1003 static void drbg_async_seed(struct work_struct *work)
1004 {
1005 	struct drbg_string data;
1006 	LIST_HEAD(seedlist);
1007 	struct drbg_state *drbg = container_of(work, struct drbg_state,
1008 					       seed_work);
1009 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1010 	unsigned char entropy[32];
1011 
1012 	BUG_ON(!entropylen);
1013 	BUG_ON(entropylen > sizeof(entropy));
1014 	get_random_bytes(entropy, entropylen);
1015 
1016 	drbg_string_fill(&data, entropy, entropylen);
1017 	list_add_tail(&data.list, &seedlist);
1018 
1019 	mutex_lock(&drbg->drbg_mutex);
1020 
1021 	/* If nonblocking pool is initialized, deactivate Jitter RNG */
1022 	crypto_free_rng(drbg->jent);
1023 	drbg->jent = NULL;
1024 
1025 	/* Set seeded to false so that if __drbg_seed fails the
1026 	 * next generate call will trigger a reseed.
1027 	 */
1028 	drbg->seeded = false;
1029 
1030 	__drbg_seed(drbg, &seedlist, true);
1031 
1032 	if (drbg->seeded)
1033 		drbg->reseed_threshold = drbg_max_requests(drbg);
1034 
1035 	mutex_unlock(&drbg->drbg_mutex);
1036 
1037 	memzero_explicit(entropy, entropylen);
1038 }
1039 
1040 /*
1041  * Seeding or reseeding of the DRBG
1042  *
1043  * @drbg: DRBG state struct
1044  * @pers: personalization / additional information buffer
1045  * @reseed: 0 for initial seed process, 1 for reseeding
1046  *
1047  * return:
1048  *	0 on success
1049  *	error value otherwise
1050  */
1051 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1052 		     bool reseed)
1053 {
1054 	int ret;
1055 	unsigned char entropy[((32 + 16) * 2)];
1056 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1057 	struct drbg_string data1;
1058 	LIST_HEAD(seedlist);
1059 
1060 	/* 9.1 / 9.2 / 9.3.1 step 3 */
1061 	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1062 		pr_devel("DRBG: personalization string too long %zu\n",
1063 			 pers->len);
1064 		return -EINVAL;
1065 	}
1066 
1067 	if (list_empty(&drbg->test_data.list)) {
1068 		drbg_string_fill(&data1, drbg->test_data.buf,
1069 				 drbg->test_data.len);
1070 		pr_devel("DRBG: using test entropy\n");
1071 	} else {
1072 		/*
1073 		 * Gather entropy equal to the security strength of the DRBG.
1074 		 * With a derivation function, a nonce is required in addition
1075 		 * to the entropy. A nonce must be at least 1/2 of the security
1076 		 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1077 		 * of the strength. The consideration of a nonce is only
1078 		 * applicable during initial seeding.
1079 		 */
1080 		BUG_ON(!entropylen);
1081 		if (!reseed)
1082 			entropylen = ((entropylen + 1) / 2) * 3;
1083 		BUG_ON((entropylen * 2) > sizeof(entropy));
1084 
1085 		/* Get seed from in-kernel /dev/urandom */
1086 		get_random_bytes(entropy, entropylen);
1087 
1088 		if (!drbg->jent) {
1089 			drbg_string_fill(&data1, entropy, entropylen);
1090 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1091 				 entropylen);
1092 		} else {
1093 			/* Get seed from Jitter RNG */
1094 			ret = crypto_rng_get_bytes(drbg->jent,
1095 						   entropy + entropylen,
1096 						   entropylen);
1097 			if (ret) {
1098 				pr_devel("DRBG: jent failed with %d\n", ret);
1099 				return ret;
1100 			}
1101 
1102 			drbg_string_fill(&data1, entropy, entropylen * 2);
1103 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1104 				 entropylen * 2);
1105 		}
1106 	}
1107 	list_add_tail(&data1.list, &seedlist);
1108 
1109 	/*
1110 	 * concatenation of entropy with personalization str / addtl input)
1111 	 * the variable pers is directly handed in by the caller, so check its
1112 	 * contents whether it is appropriate
1113 	 */
1114 	if (pers && pers->buf && 0 < pers->len) {
1115 		list_add_tail(&pers->list, &seedlist);
1116 		pr_devel("DRBG: using personalization string\n");
1117 	}
1118 
1119 	if (!reseed) {
1120 		memset(drbg->V, 0, drbg_statelen(drbg));
1121 		memset(drbg->C, 0, drbg_statelen(drbg));
1122 	}
1123 
1124 	ret = __drbg_seed(drbg, &seedlist, reseed);
1125 
1126 	memzero_explicit(entropy, entropylen * 2);
1127 
1128 	return ret;
1129 }
1130 
1131 /* Free all substructures in a DRBG state without the DRBG state structure */
1132 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1133 {
1134 	if (!drbg)
1135 		return;
1136 	kzfree(drbg->Vbuf);
1137 	drbg->Vbuf = NULL;
1138 	drbg->V = NULL;
1139 	kzfree(drbg->Cbuf);
1140 	drbg->Cbuf = NULL;
1141 	drbg->C = NULL;
1142 	kzfree(drbg->scratchpadbuf);
1143 	drbg->scratchpadbuf = NULL;
1144 	drbg->reseed_ctr = 0;
1145 	drbg->d_ops = NULL;
1146 	drbg->core = NULL;
1147 }
1148 
1149 /*
1150  * Allocate all sub-structures for a DRBG state.
1151  * The DRBG state structure must already be allocated.
1152  */
1153 static inline int drbg_alloc_state(struct drbg_state *drbg)
1154 {
1155 	int ret = -ENOMEM;
1156 	unsigned int sb_size = 0;
1157 
1158 	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1159 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1160 	case DRBG_HMAC:
1161 		drbg->d_ops = &drbg_hmac_ops;
1162 		break;
1163 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1164 #ifdef CONFIG_CRYPTO_DRBG_HASH
1165 	case DRBG_HASH:
1166 		drbg->d_ops = &drbg_hash_ops;
1167 		break;
1168 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1169 #ifdef CONFIG_CRYPTO_DRBG_CTR
1170 	case DRBG_CTR:
1171 		drbg->d_ops = &drbg_ctr_ops;
1172 		break;
1173 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1174 	default:
1175 		ret = -EOPNOTSUPP;
1176 		goto err;
1177 	}
1178 
1179 	ret = drbg->d_ops->crypto_init(drbg);
1180 	if (ret < 0)
1181 		goto err;
1182 
1183 	drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1184 	if (!drbg->Vbuf) {
1185 		ret = -ENOMEM;
1186 		goto fini;
1187 	}
1188 	drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1189 	drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1190 	if (!drbg->Cbuf) {
1191 		ret = -ENOMEM;
1192 		goto fini;
1193 	}
1194 	drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1195 	/* scratchpad is only generated for CTR and Hash */
1196 	if (drbg->core->flags & DRBG_HMAC)
1197 		sb_size = 0;
1198 	else if (drbg->core->flags & DRBG_CTR)
1199 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1200 			  drbg_statelen(drbg) +	/* df_data */
1201 			  drbg_blocklen(drbg) +	/* pad */
1202 			  drbg_blocklen(drbg) +	/* iv */
1203 			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1204 	else
1205 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1206 
1207 	if (0 < sb_size) {
1208 		drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1209 		if (!drbg->scratchpadbuf) {
1210 			ret = -ENOMEM;
1211 			goto fini;
1212 		}
1213 		drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1214 	}
1215 
1216 	return 0;
1217 
1218 fini:
1219 	drbg->d_ops->crypto_fini(drbg);
1220 err:
1221 	drbg_dealloc_state(drbg);
1222 	return ret;
1223 }
1224 
1225 /*************************************************************************
1226  * DRBG interface functions
1227  *************************************************************************/
1228 
1229 /*
1230  * DRBG generate function as required by SP800-90A - this function
1231  * generates random numbers
1232  *
1233  * @drbg DRBG state handle
1234  * @buf Buffer where to store the random numbers -- the buffer must already
1235  *      be pre-allocated by caller
1236  * @buflen Length of output buffer - this value defines the number of random
1237  *	   bytes pulled from DRBG
1238  * @addtl Additional input that is mixed into state, may be NULL -- note
1239  *	  the entropy is pulled by the DRBG internally unconditionally
1240  *	  as defined in SP800-90A. The additional input is mixed into
1241  *	  the state in addition to the pulled entropy.
1242  *
1243  * return: 0 when all bytes are generated; < 0 in case of an error
1244  */
1245 static int drbg_generate(struct drbg_state *drbg,
1246 			 unsigned char *buf, unsigned int buflen,
1247 			 struct drbg_string *addtl)
1248 {
1249 	int len = 0;
1250 	LIST_HEAD(addtllist);
1251 
1252 	if (!drbg->core) {
1253 		pr_devel("DRBG: not yet seeded\n");
1254 		return -EINVAL;
1255 	}
1256 	if (0 == buflen || !buf) {
1257 		pr_devel("DRBG: no output buffer provided\n");
1258 		return -EINVAL;
1259 	}
1260 	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1261 		pr_devel("DRBG: wrong format of additional information\n");
1262 		return -EINVAL;
1263 	}
1264 
1265 	/* 9.3.1 step 2 */
1266 	len = -EINVAL;
1267 	if (buflen > (drbg_max_request_bytes(drbg))) {
1268 		pr_devel("DRBG: requested random numbers too large %u\n",
1269 			 buflen);
1270 		goto err;
1271 	}
1272 
1273 	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1274 
1275 	/* 9.3.1 step 4 */
1276 	if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1277 		pr_devel("DRBG: additional information string too long %zu\n",
1278 			 addtl->len);
1279 		goto err;
1280 	}
1281 	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1282 
1283 	/*
1284 	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1285 	 * here. The spec is a bit convoluted here, we make it simpler.
1286 	 */
1287 	if (drbg->reseed_threshold < drbg->reseed_ctr)
1288 		drbg->seeded = false;
1289 
1290 	if (drbg->pr || !drbg->seeded) {
1291 		pr_devel("DRBG: reseeding before generation (prediction "
1292 			 "resistance: %s, state %s)\n",
1293 			 drbg->pr ? "true" : "false",
1294 			 drbg->seeded ? "seeded" : "unseeded");
1295 		/* 9.3.1 steps 7.1 through 7.3 */
1296 		len = drbg_seed(drbg, addtl, true);
1297 		if (len)
1298 			goto err;
1299 		/* 9.3.1 step 7.4 */
1300 		addtl = NULL;
1301 	}
1302 
1303 	if (addtl && 0 < addtl->len)
1304 		list_add_tail(&addtl->list, &addtllist);
1305 	/* 9.3.1 step 8 and 10 */
1306 	len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1307 
1308 	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1309 	drbg->reseed_ctr++;
1310 	if (0 >= len)
1311 		goto err;
1312 
1313 	/*
1314 	 * Section 11.3.3 requires to re-perform self tests after some
1315 	 * generated random numbers. The chosen value after which self
1316 	 * test is performed is arbitrary, but it should be reasonable.
1317 	 * However, we do not perform the self tests because of the following
1318 	 * reasons: it is mathematically impossible that the initial self tests
1319 	 * were successfully and the following are not. If the initial would
1320 	 * pass and the following would not, the kernel integrity is violated.
1321 	 * In this case, the entire kernel operation is questionable and it
1322 	 * is unlikely that the integrity violation only affects the
1323 	 * correct operation of the DRBG.
1324 	 *
1325 	 * Albeit the following code is commented out, it is provided in
1326 	 * case somebody has a need to implement the test of 11.3.3.
1327 	 */
1328 #if 0
1329 	if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1330 		int err = 0;
1331 		pr_devel("DRBG: start to perform self test\n");
1332 		if (drbg->core->flags & DRBG_HMAC)
1333 			err = alg_test("drbg_pr_hmac_sha256",
1334 				       "drbg_pr_hmac_sha256", 0, 0);
1335 		else if (drbg->core->flags & DRBG_CTR)
1336 			err = alg_test("drbg_pr_ctr_aes128",
1337 				       "drbg_pr_ctr_aes128", 0, 0);
1338 		else
1339 			err = alg_test("drbg_pr_sha256",
1340 				       "drbg_pr_sha256", 0, 0);
1341 		if (err) {
1342 			pr_err("DRBG: periodical self test failed\n");
1343 			/*
1344 			 * uninstantiate implies that from now on, only errors
1345 			 * are returned when reusing this DRBG cipher handle
1346 			 */
1347 			drbg_uninstantiate(drbg);
1348 			return 0;
1349 		} else {
1350 			pr_devel("DRBG: self test successful\n");
1351 		}
1352 	}
1353 #endif
1354 
1355 	/*
1356 	 * All operations were successful, return 0 as mandated by
1357 	 * the kernel crypto API interface.
1358 	 */
1359 	len = 0;
1360 err:
1361 	return len;
1362 }
1363 
1364 /*
1365  * Wrapper around drbg_generate which can pull arbitrary long strings
1366  * from the DRBG without hitting the maximum request limitation.
1367  *
1368  * Parameters: see drbg_generate
1369  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1370  *		 the entire drbg_generate_long request fails
1371  */
1372 static int drbg_generate_long(struct drbg_state *drbg,
1373 			      unsigned char *buf, unsigned int buflen,
1374 			      struct drbg_string *addtl)
1375 {
1376 	unsigned int len = 0;
1377 	unsigned int slice = 0;
1378 	do {
1379 		int err = 0;
1380 		unsigned int chunk = 0;
1381 		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1382 		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1383 		mutex_lock(&drbg->drbg_mutex);
1384 		err = drbg_generate(drbg, buf + len, chunk, addtl);
1385 		mutex_unlock(&drbg->drbg_mutex);
1386 		if (0 > err)
1387 			return err;
1388 		len += chunk;
1389 	} while (slice > 0 && (len < buflen));
1390 	return 0;
1391 }
1392 
1393 static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1394 {
1395 	struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1396 					       random_ready);
1397 
1398 	schedule_work(&drbg->seed_work);
1399 }
1400 
1401 static int drbg_prepare_hrng(struct drbg_state *drbg)
1402 {
1403 	int err;
1404 
1405 	/* We do not need an HRNG in test mode. */
1406 	if (list_empty(&drbg->test_data.list))
1407 		return 0;
1408 
1409 	INIT_WORK(&drbg->seed_work, drbg_async_seed);
1410 
1411 	drbg->random_ready.owner = THIS_MODULE;
1412 	drbg->random_ready.func = drbg_schedule_async_seed;
1413 
1414 	err = add_random_ready_callback(&drbg->random_ready);
1415 
1416 	switch (err) {
1417 	case 0:
1418 		break;
1419 
1420 	case -EALREADY:
1421 		err = 0;
1422 		/* fall through */
1423 
1424 	default:
1425 		drbg->random_ready.func = NULL;
1426 		return err;
1427 	}
1428 
1429 	drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1430 
1431 	/*
1432 	 * Require frequent reseeds until the seed source is fully
1433 	 * initialized.
1434 	 */
1435 	drbg->reseed_threshold = 50;
1436 
1437 	return err;
1438 }
1439 
1440 /*
1441  * DRBG instantiation function as required by SP800-90A - this function
1442  * sets up the DRBG handle, performs the initial seeding and all sanity
1443  * checks required by SP800-90A
1444  *
1445  * @drbg memory of state -- if NULL, new memory is allocated
1446  * @pers Personalization string that is mixed into state, may be NULL -- note
1447  *	 the entropy is pulled by the DRBG internally unconditionally
1448  *	 as defined in SP800-90A. The additional input is mixed into
1449  *	 the state in addition to the pulled entropy.
1450  * @coreref reference to core
1451  * @pr prediction resistance enabled
1452  *
1453  * return
1454  *	0 on success
1455  *	error value otherwise
1456  */
1457 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1458 			    int coreref, bool pr)
1459 {
1460 	int ret;
1461 	bool reseed = true;
1462 
1463 	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1464 		 "%s\n", coreref, pr ? "enabled" : "disabled");
1465 	mutex_lock(&drbg->drbg_mutex);
1466 
1467 	/* 9.1 step 1 is implicit with the selected DRBG type */
1468 
1469 	/*
1470 	 * 9.1 step 2 is implicit as caller can select prediction resistance
1471 	 * and the flag is copied into drbg->flags --
1472 	 * all DRBG types support prediction resistance
1473 	 */
1474 
1475 	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1476 
1477 	if (!drbg->core) {
1478 		drbg->core = &drbg_cores[coreref];
1479 		drbg->pr = pr;
1480 		drbg->seeded = false;
1481 		drbg->reseed_threshold = drbg_max_requests(drbg);
1482 
1483 		ret = drbg_alloc_state(drbg);
1484 		if (ret)
1485 			goto unlock;
1486 
1487 		ret = drbg_prepare_hrng(drbg);
1488 		if (ret)
1489 			goto free_everything;
1490 
1491 		if (IS_ERR(drbg->jent)) {
1492 			ret = PTR_ERR(drbg->jent);
1493 			drbg->jent = NULL;
1494 			if (fips_enabled || ret != -ENOENT)
1495 				goto free_everything;
1496 			pr_info("DRBG: Continuing without Jitter RNG\n");
1497 		}
1498 
1499 		reseed = false;
1500 	}
1501 
1502 	ret = drbg_seed(drbg, pers, reseed);
1503 
1504 	if (ret && !reseed)
1505 		goto free_everything;
1506 
1507 	mutex_unlock(&drbg->drbg_mutex);
1508 	return ret;
1509 
1510 unlock:
1511 	mutex_unlock(&drbg->drbg_mutex);
1512 	return ret;
1513 
1514 free_everything:
1515 	mutex_unlock(&drbg->drbg_mutex);
1516 	drbg_uninstantiate(drbg);
1517 	return ret;
1518 }
1519 
1520 /*
1521  * DRBG uninstantiate function as required by SP800-90A - this function
1522  * frees all buffers and the DRBG handle
1523  *
1524  * @drbg DRBG state handle
1525  *
1526  * return
1527  *	0 on success
1528  */
1529 static int drbg_uninstantiate(struct drbg_state *drbg)
1530 {
1531 	if (drbg->random_ready.func) {
1532 		del_random_ready_callback(&drbg->random_ready);
1533 		cancel_work_sync(&drbg->seed_work);
1534 		crypto_free_rng(drbg->jent);
1535 		drbg->jent = NULL;
1536 	}
1537 
1538 	if (drbg->d_ops)
1539 		drbg->d_ops->crypto_fini(drbg);
1540 	drbg_dealloc_state(drbg);
1541 	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1542 	return 0;
1543 }
1544 
1545 /*
1546  * Helper function for setting the test data in the DRBG
1547  *
1548  * @drbg DRBG state handle
1549  * @data test data
1550  * @len test data length
1551  */
1552 static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1553 				   const u8 *data, unsigned int len)
1554 {
1555 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1556 
1557 	mutex_lock(&drbg->drbg_mutex);
1558 	drbg_string_fill(&drbg->test_data, data, len);
1559 	mutex_unlock(&drbg->drbg_mutex);
1560 }
1561 
1562 /***************************************************************
1563  * Kernel crypto API cipher invocations requested by DRBG
1564  ***************************************************************/
1565 
1566 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1567 struct sdesc {
1568 	struct shash_desc shash;
1569 	char ctx[];
1570 };
1571 
1572 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1573 {
1574 	struct sdesc *sdesc;
1575 	struct crypto_shash *tfm;
1576 
1577 	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1578 	if (IS_ERR(tfm)) {
1579 		pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1580 				drbg->core->backend_cra_name);
1581 		return PTR_ERR(tfm);
1582 	}
1583 	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1584 	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1585 			GFP_KERNEL);
1586 	if (!sdesc) {
1587 		crypto_free_shash(tfm);
1588 		return -ENOMEM;
1589 	}
1590 
1591 	sdesc->shash.tfm = tfm;
1592 	sdesc->shash.flags = 0;
1593 	drbg->priv_data = sdesc;
1594 
1595 	return crypto_shash_alignmask(tfm);
1596 }
1597 
1598 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1599 {
1600 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1601 	if (sdesc) {
1602 		crypto_free_shash(sdesc->shash.tfm);
1603 		kzfree(sdesc);
1604 	}
1605 	drbg->priv_data = NULL;
1606 	return 0;
1607 }
1608 
1609 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1610 				  const unsigned char *key)
1611 {
1612 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1613 
1614 	crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1615 }
1616 
1617 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1618 			   const struct list_head *in)
1619 {
1620 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1621 	struct drbg_string *input = NULL;
1622 
1623 	crypto_shash_init(&sdesc->shash);
1624 	list_for_each_entry(input, in, list)
1625 		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1626 	return crypto_shash_final(&sdesc->shash, outval);
1627 }
1628 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1629 
1630 #ifdef CONFIG_CRYPTO_DRBG_CTR
1631 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1632 {
1633 	struct crypto_cipher *tfm =
1634 		(struct crypto_cipher *)drbg->priv_data;
1635 	if (tfm)
1636 		crypto_free_cipher(tfm);
1637 	drbg->priv_data = NULL;
1638 
1639 	if (drbg->ctr_handle)
1640 		crypto_free_skcipher(drbg->ctr_handle);
1641 	drbg->ctr_handle = NULL;
1642 
1643 	if (drbg->ctr_req)
1644 		skcipher_request_free(drbg->ctr_req);
1645 	drbg->ctr_req = NULL;
1646 
1647 	kfree(drbg->ctr_null_value_buf);
1648 	drbg->ctr_null_value = NULL;
1649 
1650 	kfree(drbg->outscratchpadbuf);
1651 	drbg->outscratchpadbuf = NULL;
1652 
1653 	return 0;
1654 }
1655 
1656 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1657 {
1658 	struct crypto_cipher *tfm;
1659 	struct crypto_skcipher *sk_tfm;
1660 	struct skcipher_request *req;
1661 	unsigned int alignmask;
1662 	char ctr_name[CRYPTO_MAX_ALG_NAME];
1663 
1664 	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1665 	if (IS_ERR(tfm)) {
1666 		pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1667 				drbg->core->backend_cra_name);
1668 		return PTR_ERR(tfm);
1669 	}
1670 	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1671 	drbg->priv_data = tfm;
1672 
1673 	if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1674 	    drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1675 		drbg_fini_sym_kernel(drbg);
1676 		return -EINVAL;
1677 	}
1678 	sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1679 	if (IS_ERR(sk_tfm)) {
1680 		pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1681 				ctr_name);
1682 		drbg_fini_sym_kernel(drbg);
1683 		return PTR_ERR(sk_tfm);
1684 	}
1685 	drbg->ctr_handle = sk_tfm;
1686 	crypto_init_wait(&drbg->ctr_wait);
1687 
1688 	req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1689 	if (!req) {
1690 		pr_info("DRBG: could not allocate request queue\n");
1691 		drbg_fini_sym_kernel(drbg);
1692 		return -ENOMEM;
1693 	}
1694 	drbg->ctr_req = req;
1695 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
1696 						CRYPTO_TFM_REQ_MAY_SLEEP,
1697 					crypto_req_done, &drbg->ctr_wait);
1698 
1699 	alignmask = crypto_skcipher_alignmask(sk_tfm);
1700 	drbg->ctr_null_value_buf = kzalloc(DRBG_CTR_NULL_LEN + alignmask,
1701 					   GFP_KERNEL);
1702 	if (!drbg->ctr_null_value_buf) {
1703 		drbg_fini_sym_kernel(drbg);
1704 		return -ENOMEM;
1705 	}
1706 	drbg->ctr_null_value = (u8 *)PTR_ALIGN(drbg->ctr_null_value_buf,
1707 					       alignmask + 1);
1708 
1709 	drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1710 					 GFP_KERNEL);
1711 	if (!drbg->outscratchpadbuf) {
1712 		drbg_fini_sym_kernel(drbg);
1713 		return -ENOMEM;
1714 	}
1715 	drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1716 					      alignmask + 1);
1717 
1718 	return alignmask;
1719 }
1720 
1721 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1722 				 const unsigned char *key)
1723 {
1724 	struct crypto_cipher *tfm =
1725 		(struct crypto_cipher *)drbg->priv_data;
1726 
1727 	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1728 }
1729 
1730 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1731 			  const struct drbg_string *in)
1732 {
1733 	struct crypto_cipher *tfm =
1734 		(struct crypto_cipher *)drbg->priv_data;
1735 
1736 	/* there is only component in *in */
1737 	BUG_ON(in->len < drbg_blocklen(drbg));
1738 	crypto_cipher_encrypt_one(tfm, outval, in->buf);
1739 	return 0;
1740 }
1741 
1742 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1743 			      u8 *inbuf, u32 inlen,
1744 			      u8 *outbuf, u32 outlen)
1745 {
1746 	struct scatterlist sg_in, sg_out;
1747 	int ret;
1748 
1749 	sg_init_one(&sg_in, inbuf, inlen);
1750 	sg_init_one(&sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1751 
1752 	while (outlen) {
1753 		u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1754 
1755 		/* Output buffer may not be valid for SGL, use scratchpad */
1756 		skcipher_request_set_crypt(drbg->ctr_req, &sg_in, &sg_out,
1757 					   cryptlen, drbg->V);
1758 		ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
1759 					&drbg->ctr_wait);
1760 		if (ret)
1761 			goto out;
1762 
1763 		crypto_init_wait(&drbg->ctr_wait);
1764 
1765 		memcpy(outbuf, drbg->outscratchpad, cryptlen);
1766 
1767 		outlen -= cryptlen;
1768 		outbuf += cryptlen;
1769 	}
1770 	ret = 0;
1771 
1772 out:
1773 	memzero_explicit(drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1774 	return ret;
1775 }
1776 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1777 
1778 /***************************************************************
1779  * Kernel crypto API interface to register DRBG
1780  ***************************************************************/
1781 
1782 /*
1783  * Look up the DRBG flags by given kernel crypto API cra_name
1784  * The code uses the drbg_cores definition to do this
1785  *
1786  * @cra_name kernel crypto API cra_name
1787  * @coreref reference to integer which is filled with the pointer to
1788  *  the applicable core
1789  * @pr reference for setting prediction resistance
1790  *
1791  * return: flags
1792  */
1793 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1794 					 int *coreref, bool *pr)
1795 {
1796 	int i = 0;
1797 	size_t start = 0;
1798 	int len = 0;
1799 
1800 	*pr = true;
1801 	/* disassemble the names */
1802 	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1803 		start = 10;
1804 		*pr = false;
1805 	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1806 		start = 8;
1807 	} else {
1808 		return;
1809 	}
1810 
1811 	/* remove the first part */
1812 	len = strlen(cra_driver_name) - start;
1813 	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1814 		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1815 			    len)) {
1816 			*coreref = i;
1817 			return;
1818 		}
1819 	}
1820 }
1821 
1822 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1823 {
1824 	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1825 
1826 	mutex_init(&drbg->drbg_mutex);
1827 
1828 	return 0;
1829 }
1830 
1831 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1832 {
1833 	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1834 }
1835 
1836 /*
1837  * Generate random numbers invoked by the kernel crypto API:
1838  * The API of the kernel crypto API is extended as follows:
1839  *
1840  * src is additional input supplied to the RNG.
1841  * slen is the length of src.
1842  * dst is the output buffer where random data is to be stored.
1843  * dlen is the length of dst.
1844  */
1845 static int drbg_kcapi_random(struct crypto_rng *tfm,
1846 			     const u8 *src, unsigned int slen,
1847 			     u8 *dst, unsigned int dlen)
1848 {
1849 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1850 	struct drbg_string *addtl = NULL;
1851 	struct drbg_string string;
1852 
1853 	if (slen) {
1854 		/* linked list variable is now local to allow modification */
1855 		drbg_string_fill(&string, src, slen);
1856 		addtl = &string;
1857 	}
1858 
1859 	return drbg_generate_long(drbg, dst, dlen, addtl);
1860 }
1861 
1862 /*
1863  * Seed the DRBG invoked by the kernel crypto API
1864  */
1865 static int drbg_kcapi_seed(struct crypto_rng *tfm,
1866 			   const u8 *seed, unsigned int slen)
1867 {
1868 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1869 	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1870 	bool pr = false;
1871 	struct drbg_string string;
1872 	struct drbg_string *seed_string = NULL;
1873 	int coreref = 0;
1874 
1875 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1876 			      &pr);
1877 	if (0 < slen) {
1878 		drbg_string_fill(&string, seed, slen);
1879 		seed_string = &string;
1880 	}
1881 
1882 	return drbg_instantiate(drbg, seed_string, coreref, pr);
1883 }
1884 
1885 /***************************************************************
1886  * Kernel module: code to load the module
1887  ***************************************************************/
1888 
1889 /*
1890  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1891  * of the error handling.
1892  *
1893  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1894  * as seed source of get_random_bytes does not fail.
1895  *
1896  * Note 2: There is no sensible way of testing the reseed counter
1897  * enforcement, so skip it.
1898  */
1899 static inline int __init drbg_healthcheck_sanity(void)
1900 {
1901 	int len = 0;
1902 #define OUTBUFLEN 16
1903 	unsigned char buf[OUTBUFLEN];
1904 	struct drbg_state *drbg = NULL;
1905 	int ret = -EFAULT;
1906 	int rc = -EFAULT;
1907 	bool pr = false;
1908 	int coreref = 0;
1909 	struct drbg_string addtl;
1910 	size_t max_addtllen, max_request_bytes;
1911 
1912 	/* only perform test in FIPS mode */
1913 	if (!fips_enabled)
1914 		return 0;
1915 
1916 #ifdef CONFIG_CRYPTO_DRBG_CTR
1917 	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1918 #elif defined CONFIG_CRYPTO_DRBG_HASH
1919 	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1920 #else
1921 	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1922 #endif
1923 
1924 	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1925 	if (!drbg)
1926 		return -ENOMEM;
1927 
1928 	mutex_init(&drbg->drbg_mutex);
1929 	drbg->core = &drbg_cores[coreref];
1930 	drbg->reseed_threshold = drbg_max_requests(drbg);
1931 
1932 	/*
1933 	 * if the following tests fail, it is likely that there is a buffer
1934 	 * overflow as buf is much smaller than the requested or provided
1935 	 * string lengths -- in case the error handling does not succeed
1936 	 * we may get an OOPS. And we want to get an OOPS as this is a
1937 	 * grave bug.
1938 	 */
1939 
1940 	max_addtllen = drbg_max_addtl(drbg);
1941 	max_request_bytes = drbg_max_request_bytes(drbg);
1942 	drbg_string_fill(&addtl, buf, max_addtllen + 1);
1943 	/* overflow addtllen with additonal info string */
1944 	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1945 	BUG_ON(0 < len);
1946 	/* overflow max_bits */
1947 	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1948 	BUG_ON(0 < len);
1949 
1950 	/* overflow max addtllen with personalization string */
1951 	ret = drbg_seed(drbg, &addtl, false);
1952 	BUG_ON(0 == ret);
1953 	/* all tests passed */
1954 	rc = 0;
1955 
1956 	pr_devel("DRBG: Sanity tests for failure code paths successfully "
1957 		 "completed\n");
1958 
1959 	kfree(drbg);
1960 	return rc;
1961 }
1962 
1963 static struct rng_alg drbg_algs[22];
1964 
1965 /*
1966  * Fill the array drbg_algs used to register the different DRBGs
1967  * with the kernel crypto API. To fill the array, the information
1968  * from drbg_cores[] is used.
1969  */
1970 static inline void __init drbg_fill_array(struct rng_alg *alg,
1971 					  const struct drbg_core *core, int pr)
1972 {
1973 	int pos = 0;
1974 	static int priority = 200;
1975 
1976 	memcpy(alg->base.cra_name, "stdrng", 6);
1977 	if (pr) {
1978 		memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
1979 		pos = 8;
1980 	} else {
1981 		memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
1982 		pos = 10;
1983 	}
1984 	memcpy(alg->base.cra_driver_name + pos, core->cra_name,
1985 	       strlen(core->cra_name));
1986 
1987 	alg->base.cra_priority = priority;
1988 	priority++;
1989 	/*
1990 	 * If FIPS mode enabled, the selected DRBG shall have the
1991 	 * highest cra_priority over other stdrng instances to ensure
1992 	 * it is selected.
1993 	 */
1994 	if (fips_enabled)
1995 		alg->base.cra_priority += 200;
1996 
1997 	alg->base.cra_ctxsize 	= sizeof(struct drbg_state);
1998 	alg->base.cra_module	= THIS_MODULE;
1999 	alg->base.cra_init	= drbg_kcapi_init;
2000 	alg->base.cra_exit	= drbg_kcapi_cleanup;
2001 	alg->generate		= drbg_kcapi_random;
2002 	alg->seed		= drbg_kcapi_seed;
2003 	alg->set_ent		= drbg_kcapi_set_entropy;
2004 	alg->seedsize		= 0;
2005 }
2006 
2007 static int __init drbg_init(void)
2008 {
2009 	unsigned int i = 0; /* pointer to drbg_algs */
2010 	unsigned int j = 0; /* pointer to drbg_cores */
2011 	int ret;
2012 
2013 	ret = drbg_healthcheck_sanity();
2014 	if (ret)
2015 		return ret;
2016 
2017 	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2018 		pr_info("DRBG: Cannot register all DRBG types"
2019 			"(slots needed: %zu, slots available: %zu)\n",
2020 			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2021 		return -EFAULT;
2022 	}
2023 
2024 	/*
2025 	 * each DRBG definition can be used with PR and without PR, thus
2026 	 * we instantiate each DRBG in drbg_cores[] twice.
2027 	 *
2028 	 * As the order of placing them into the drbg_algs array matters
2029 	 * (the later DRBGs receive a higher cra_priority) we register the
2030 	 * prediction resistance DRBGs first as the should not be too
2031 	 * interesting.
2032 	 */
2033 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2034 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2035 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2036 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2037 	return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2038 }
2039 
2040 static void __exit drbg_exit(void)
2041 {
2042 	crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2043 }
2044 
2045 module_init(drbg_init);
2046 module_exit(drbg_exit);
2047 #ifndef CRYPTO_DRBG_HASH_STRING
2048 #define CRYPTO_DRBG_HASH_STRING ""
2049 #endif
2050 #ifndef CRYPTO_DRBG_HMAC_STRING
2051 #define CRYPTO_DRBG_HMAC_STRING ""
2052 #endif
2053 #ifndef CRYPTO_DRBG_CTR_STRING
2054 #define CRYPTO_DRBG_CTR_STRING ""
2055 #endif
2056 MODULE_LICENSE("GPL");
2057 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2058 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2059 		   "using following cores: "
2060 		   CRYPTO_DRBG_HASH_STRING
2061 		   CRYPTO_DRBG_HMAC_STRING
2062 		   CRYPTO_DRBG_CTR_STRING);
2063 MODULE_ALIAS_CRYPTO("stdrng");
2064