xref: /openbmc/linux/crypto/drbg.c (revision 9cfc5c90)
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *		* with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99 
100 #include <crypto/drbg.h>
101 #include <linux/kernel.h>
102 
103 /***************************************************************
104  * Backend cipher definitions available to DRBG
105  ***************************************************************/
106 
107 /*
108  * The order of the DRBG definitions here matter: every DRBG is registered
109  * as stdrng. Each DRBG receives an increasing cra_priority values the later
110  * they are defined in this array (see drbg_fill_array).
111  *
112  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
113  * the SHA256 / AES 256 over other ciphers. Thus, the favored
114  * DRBGs are the latest entries in this array.
115  */
116 static const struct drbg_core drbg_cores[] = {
117 #ifdef CONFIG_CRYPTO_DRBG_CTR
118 	{
119 		.flags = DRBG_CTR | DRBG_STRENGTH128,
120 		.statelen = 32, /* 256 bits as defined in 10.2.1 */
121 		.blocklen_bytes = 16,
122 		.cra_name = "ctr_aes128",
123 		.backend_cra_name = "aes",
124 	}, {
125 		.flags = DRBG_CTR | DRBG_STRENGTH192,
126 		.statelen = 40, /* 320 bits as defined in 10.2.1 */
127 		.blocklen_bytes = 16,
128 		.cra_name = "ctr_aes192",
129 		.backend_cra_name = "aes",
130 	}, {
131 		.flags = DRBG_CTR | DRBG_STRENGTH256,
132 		.statelen = 48, /* 384 bits as defined in 10.2.1 */
133 		.blocklen_bytes = 16,
134 		.cra_name = "ctr_aes256",
135 		.backend_cra_name = "aes",
136 	},
137 #endif /* CONFIG_CRYPTO_DRBG_CTR */
138 #ifdef CONFIG_CRYPTO_DRBG_HASH
139 	{
140 		.flags = DRBG_HASH | DRBG_STRENGTH128,
141 		.statelen = 55, /* 440 bits */
142 		.blocklen_bytes = 20,
143 		.cra_name = "sha1",
144 		.backend_cra_name = "sha1",
145 	}, {
146 		.flags = DRBG_HASH | DRBG_STRENGTH256,
147 		.statelen = 111, /* 888 bits */
148 		.blocklen_bytes = 48,
149 		.cra_name = "sha384",
150 		.backend_cra_name = "sha384",
151 	}, {
152 		.flags = DRBG_HASH | DRBG_STRENGTH256,
153 		.statelen = 111, /* 888 bits */
154 		.blocklen_bytes = 64,
155 		.cra_name = "sha512",
156 		.backend_cra_name = "sha512",
157 	}, {
158 		.flags = DRBG_HASH | DRBG_STRENGTH256,
159 		.statelen = 55, /* 440 bits */
160 		.blocklen_bytes = 32,
161 		.cra_name = "sha256",
162 		.backend_cra_name = "sha256",
163 	},
164 #endif /* CONFIG_CRYPTO_DRBG_HASH */
165 #ifdef CONFIG_CRYPTO_DRBG_HMAC
166 	{
167 		.flags = DRBG_HMAC | DRBG_STRENGTH128,
168 		.statelen = 20, /* block length of cipher */
169 		.blocklen_bytes = 20,
170 		.cra_name = "hmac_sha1",
171 		.backend_cra_name = "hmac(sha1)",
172 	}, {
173 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
174 		.statelen = 48, /* block length of cipher */
175 		.blocklen_bytes = 48,
176 		.cra_name = "hmac_sha384",
177 		.backend_cra_name = "hmac(sha384)",
178 	}, {
179 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
180 		.statelen = 64, /* block length of cipher */
181 		.blocklen_bytes = 64,
182 		.cra_name = "hmac_sha512",
183 		.backend_cra_name = "hmac(sha512)",
184 	}, {
185 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
186 		.statelen = 32, /* block length of cipher */
187 		.blocklen_bytes = 32,
188 		.cra_name = "hmac_sha256",
189 		.backend_cra_name = "hmac(sha256)",
190 	},
191 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
192 };
193 
194 static int drbg_uninstantiate(struct drbg_state *drbg);
195 
196 /******************************************************************
197  * Generic helper functions
198  ******************************************************************/
199 
200 /*
201  * Return strength of DRBG according to SP800-90A section 8.4
202  *
203  * @flags DRBG flags reference
204  *
205  * Return: normalized strength in *bytes* value or 32 as default
206  *	   to counter programming errors
207  */
208 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
209 {
210 	switch (flags & DRBG_STRENGTH_MASK) {
211 	case DRBG_STRENGTH128:
212 		return 16;
213 	case DRBG_STRENGTH192:
214 		return 24;
215 	case DRBG_STRENGTH256:
216 		return 32;
217 	default:
218 		return 32;
219 	}
220 }
221 
222 /*
223  * FIPS 140-2 continuous self test
224  * The test is performed on the result of one round of the output
225  * function. Thus, the function implicitly knows the size of the
226  * buffer.
227  *
228  * @drbg DRBG handle
229  * @buf output buffer of random data to be checked
230  *
231  * return:
232  *	true on success
233  *	false on error
234  */
235 static bool drbg_fips_continuous_test(struct drbg_state *drbg,
236 				      const unsigned char *buf)
237 {
238 #ifdef CONFIG_CRYPTO_FIPS
239 	int ret = 0;
240 	/* skip test if we test the overall system */
241 	if (list_empty(&drbg->test_data.list))
242 		return true;
243 	/* only perform test in FIPS mode */
244 	if (0 == fips_enabled)
245 		return true;
246 	if (!drbg->fips_primed) {
247 		/* Priming of FIPS test */
248 		memcpy(drbg->prev, buf, drbg_blocklen(drbg));
249 		drbg->fips_primed = true;
250 		/* return false due to priming, i.e. another round is needed */
251 		return false;
252 	}
253 	ret = memcmp(drbg->prev, buf, drbg_blocklen(drbg));
254 	if (!ret)
255 		panic("DRBG continuous self test failed\n");
256 	memcpy(drbg->prev, buf, drbg_blocklen(drbg));
257 	/* the test shall pass when the two compared values are not equal */
258 	return ret != 0;
259 #else
260 	return true;
261 #endif /* CONFIG_CRYPTO_FIPS */
262 }
263 
264 /*
265  * Convert an integer into a byte representation of this integer.
266  * The byte representation is big-endian
267  *
268  * @val value to be converted
269  * @buf buffer holding the converted integer -- caller must ensure that
270  *      buffer size is at least 32 bit
271  */
272 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
273 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
274 {
275 	struct s {
276 		__be32 conv;
277 	};
278 	struct s *conversion = (struct s *) buf;
279 
280 	conversion->conv = cpu_to_be32(val);
281 }
282 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
283 
284 /******************************************************************
285  * CTR DRBG callback functions
286  ******************************************************************/
287 
288 #ifdef CONFIG_CRYPTO_DRBG_CTR
289 #define CRYPTO_DRBG_CTR_STRING "CTR "
290 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
291 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
292 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
293 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
294 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
295 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
296 
297 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
298 			  unsigned char *outval, const struct drbg_string *in);
299 static int drbg_init_sym_kernel(struct drbg_state *drbg);
300 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
301 
302 /* BCC function for CTR DRBG as defined in 10.4.3 */
303 static int drbg_ctr_bcc(struct drbg_state *drbg,
304 			unsigned char *out, const unsigned char *key,
305 			struct list_head *in)
306 {
307 	int ret = 0;
308 	struct drbg_string *curr = NULL;
309 	struct drbg_string data;
310 	short cnt = 0;
311 
312 	drbg_string_fill(&data, out, drbg_blocklen(drbg));
313 
314 	/* 10.4.3 step 2 / 4 */
315 	list_for_each_entry(curr, in, list) {
316 		const unsigned char *pos = curr->buf;
317 		size_t len = curr->len;
318 		/* 10.4.3 step 4.1 */
319 		while (len) {
320 			/* 10.4.3 step 4.2 */
321 			if (drbg_blocklen(drbg) == cnt) {
322 				cnt = 0;
323 				ret = drbg_kcapi_sym(drbg, key, out, &data);
324 				if (ret)
325 					return ret;
326 			}
327 			out[cnt] ^= *pos;
328 			pos++;
329 			cnt++;
330 			len--;
331 		}
332 	}
333 	/* 10.4.3 step 4.2 for last block */
334 	if (cnt)
335 		ret = drbg_kcapi_sym(drbg, key, out, &data);
336 
337 	return ret;
338 }
339 
340 /*
341  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
342  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
343  * the scratchpad is used as follows:
344  * drbg_ctr_update:
345  *	temp
346  *		start: drbg->scratchpad
347  *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
348  *			note: the cipher writing into this variable works
349  *			blocklen-wise. Now, when the statelen is not a multiple
350  *			of blocklen, the generateion loop below "spills over"
351  *			by at most blocklen. Thus, we need to give sufficient
352  *			memory.
353  *	df_data
354  *		start: drbg->scratchpad +
355  *				drbg_statelen(drbg) + drbg_blocklen(drbg)
356  *		length: drbg_statelen(drbg)
357  *
358  * drbg_ctr_df:
359  *	pad
360  *		start: df_data + drbg_statelen(drbg)
361  *		length: drbg_blocklen(drbg)
362  *	iv
363  *		start: pad + drbg_blocklen(drbg)
364  *		length: drbg_blocklen(drbg)
365  *	temp
366  *		start: iv + drbg_blocklen(drbg)
367  *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
368  *			note: temp is the buffer that the BCC function operates
369  *			on. BCC operates blockwise. drbg_statelen(drbg)
370  *			is sufficient when the DRBG state length is a multiple
371  *			of the block size. For AES192 (and maybe other ciphers)
372  *			this is not correct and the length for temp is
373  *			insufficient (yes, that also means for such ciphers,
374  *			the final output of all BCC rounds are truncated).
375  *			Therefore, add drbg_blocklen(drbg) to cover all
376  *			possibilities.
377  */
378 
379 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
380 static int drbg_ctr_df(struct drbg_state *drbg,
381 		       unsigned char *df_data, size_t bytes_to_return,
382 		       struct list_head *seedlist)
383 {
384 	int ret = -EFAULT;
385 	unsigned char L_N[8];
386 	/* S3 is input */
387 	struct drbg_string S1, S2, S4, cipherin;
388 	LIST_HEAD(bcc_list);
389 	unsigned char *pad = df_data + drbg_statelen(drbg);
390 	unsigned char *iv = pad + drbg_blocklen(drbg);
391 	unsigned char *temp = iv + drbg_blocklen(drbg);
392 	size_t padlen = 0;
393 	unsigned int templen = 0;
394 	/* 10.4.2 step 7 */
395 	unsigned int i = 0;
396 	/* 10.4.2 step 8 */
397 	const unsigned char *K = (unsigned char *)
398 			   "\x00\x01\x02\x03\x04\x05\x06\x07"
399 			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
400 			   "\x10\x11\x12\x13\x14\x15\x16\x17"
401 			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
402 	unsigned char *X;
403 	size_t generated_len = 0;
404 	size_t inputlen = 0;
405 	struct drbg_string *seed = NULL;
406 
407 	memset(pad, 0, drbg_blocklen(drbg));
408 	memset(iv, 0, drbg_blocklen(drbg));
409 
410 	/* 10.4.2 step 1 is implicit as we work byte-wise */
411 
412 	/* 10.4.2 step 2 */
413 	if ((512/8) < bytes_to_return)
414 		return -EINVAL;
415 
416 	/* 10.4.2 step 2 -- calculate the entire length of all input data */
417 	list_for_each_entry(seed, seedlist, list)
418 		inputlen += seed->len;
419 	drbg_cpu_to_be32(inputlen, &L_N[0]);
420 
421 	/* 10.4.2 step 3 */
422 	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
423 
424 	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
425 	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
426 	/* wrap the padlen appropriately */
427 	if (padlen)
428 		padlen = drbg_blocklen(drbg) - padlen;
429 	/*
430 	 * pad / padlen contains the 0x80 byte and the following zero bytes.
431 	 * As the calculated padlen value only covers the number of zero
432 	 * bytes, this value has to be incremented by one for the 0x80 byte.
433 	 */
434 	padlen++;
435 	pad[0] = 0x80;
436 
437 	/* 10.4.2 step 4 -- first fill the linked list and then order it */
438 	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
439 	list_add_tail(&S1.list, &bcc_list);
440 	drbg_string_fill(&S2, L_N, sizeof(L_N));
441 	list_add_tail(&S2.list, &bcc_list);
442 	list_splice_tail(seedlist, &bcc_list);
443 	drbg_string_fill(&S4, pad, padlen);
444 	list_add_tail(&S4.list, &bcc_list);
445 
446 	/* 10.4.2 step 9 */
447 	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
448 		/*
449 		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
450 		 * holds zeros after allocation -- even the increment of i
451 		 * is irrelevant as the increment remains within length of i
452 		 */
453 		drbg_cpu_to_be32(i, iv);
454 		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
455 		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
456 		if (ret)
457 			goto out;
458 		/* 10.4.2 step 9.3 */
459 		i++;
460 		templen += drbg_blocklen(drbg);
461 	}
462 
463 	/* 10.4.2 step 11 */
464 	X = temp + (drbg_keylen(drbg));
465 	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
466 
467 	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
468 
469 	/* 10.4.2 step 13 */
470 	while (generated_len < bytes_to_return) {
471 		short blocklen = 0;
472 		/*
473 		 * 10.4.2 step 13.1: the truncation of the key length is
474 		 * implicit as the key is only drbg_blocklen in size based on
475 		 * the implementation of the cipher function callback
476 		 */
477 		ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
478 		if (ret)
479 			goto out;
480 		blocklen = (drbg_blocklen(drbg) <
481 				(bytes_to_return - generated_len)) ?
482 			    drbg_blocklen(drbg) :
483 				(bytes_to_return - generated_len);
484 		/* 10.4.2 step 13.2 and 14 */
485 		memcpy(df_data + generated_len, X, blocklen);
486 		generated_len += blocklen;
487 	}
488 
489 	ret = 0;
490 
491 out:
492 	memset(iv, 0, drbg_blocklen(drbg));
493 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
494 	memset(pad, 0, drbg_blocklen(drbg));
495 	return ret;
496 }
497 
498 /*
499  * update function of CTR DRBG as defined in 10.2.1.2
500  *
501  * The reseed variable has an enhanced meaning compared to the update
502  * functions of the other DRBGs as follows:
503  * 0 => initial seed from initialization
504  * 1 => reseed via drbg_seed
505  * 2 => first invocation from drbg_ctr_update when addtl is present. In
506  *      this case, the df_data scratchpad is not deleted so that it is
507  *      available for another calls to prevent calling the DF function
508  *      again.
509  * 3 => second invocation from drbg_ctr_update. When the update function
510  *      was called with addtl, the df_data memory already contains the
511  *      DFed addtl information and we do not need to call DF again.
512  */
513 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
514 			   int reseed)
515 {
516 	int ret = -EFAULT;
517 	/* 10.2.1.2 step 1 */
518 	unsigned char *temp = drbg->scratchpad;
519 	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
520 				 drbg_blocklen(drbg);
521 	unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
522 	unsigned int len = 0;
523 	struct drbg_string cipherin;
524 
525 	if (3 > reseed)
526 		memset(df_data, 0, drbg_statelen(drbg));
527 
528 	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
529 	if (seed) {
530 		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
531 		if (ret)
532 			goto out;
533 	}
534 
535 	drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
536 	/*
537 	 * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
538 	 * zeroizes all memory during initialization
539 	 */
540 	while (len < (drbg_statelen(drbg))) {
541 		/* 10.2.1.2 step 2.1 */
542 		crypto_inc(drbg->V, drbg_blocklen(drbg));
543 		/*
544 		 * 10.2.1.2 step 2.2 */
545 		ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
546 		if (ret)
547 			goto out;
548 		/* 10.2.1.2 step 2.3 and 3 */
549 		len += drbg_blocklen(drbg);
550 	}
551 
552 	/* 10.2.1.2 step 4 */
553 	temp_p = temp;
554 	df_data_p = df_data;
555 	for (len = 0; len < drbg_statelen(drbg); len++) {
556 		*temp_p ^= *df_data_p;
557 		df_data_p++; temp_p++;
558 	}
559 
560 	/* 10.2.1.2 step 5 */
561 	memcpy(drbg->C, temp, drbg_keylen(drbg));
562 	/* 10.2.1.2 step 6 */
563 	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
564 	ret = 0;
565 
566 out:
567 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
568 	if (2 != reseed)
569 		memset(df_data, 0, drbg_statelen(drbg));
570 	return ret;
571 }
572 
573 /*
574  * scratchpad use: drbg_ctr_update is called independently from
575  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
576  */
577 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
578 static int drbg_ctr_generate(struct drbg_state *drbg,
579 			     unsigned char *buf, unsigned int buflen,
580 			     struct list_head *addtl)
581 {
582 	int len = 0;
583 	int ret = 0;
584 	struct drbg_string data;
585 
586 	/* 10.2.1.5.2 step 2 */
587 	if (addtl && !list_empty(addtl)) {
588 		ret = drbg_ctr_update(drbg, addtl, 2);
589 		if (ret)
590 			return 0;
591 	}
592 
593 	/* 10.2.1.5.2 step 4.1 */
594 	crypto_inc(drbg->V, drbg_blocklen(drbg));
595 	drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
596 	while (len < buflen) {
597 		int outlen = 0;
598 		/* 10.2.1.5.2 step 4.2 */
599 		ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
600 		if (ret) {
601 			len = ret;
602 			goto out;
603 		}
604 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
605 			  drbg_blocklen(drbg) : (buflen - len);
606 		if (!drbg_fips_continuous_test(drbg, drbg->scratchpad)) {
607 			/* 10.2.1.5.2 step 6 */
608 			crypto_inc(drbg->V, drbg_blocklen(drbg));
609 			continue;
610 		}
611 		/* 10.2.1.5.2 step 4.3 */
612 		memcpy(buf + len, drbg->scratchpad, outlen);
613 		len += outlen;
614 		/* 10.2.1.5.2 step 6 */
615 		if (len < buflen)
616 			crypto_inc(drbg->V, drbg_blocklen(drbg));
617 	}
618 
619 	/* 10.2.1.5.2 step 6 */
620 	ret = drbg_ctr_update(drbg, NULL, 3);
621 	if (ret)
622 		len = ret;
623 
624 out:
625 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
626 	return len;
627 }
628 
629 static struct drbg_state_ops drbg_ctr_ops = {
630 	.update		= drbg_ctr_update,
631 	.generate	= drbg_ctr_generate,
632 	.crypto_init	= drbg_init_sym_kernel,
633 	.crypto_fini	= drbg_fini_sym_kernel,
634 };
635 #endif /* CONFIG_CRYPTO_DRBG_CTR */
636 
637 /******************************************************************
638  * HMAC DRBG callback functions
639  ******************************************************************/
640 
641 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
642 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
643 			   unsigned char *outval, const struct list_head *in);
644 static int drbg_init_hash_kernel(struct drbg_state *drbg);
645 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
646 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
647 
648 #ifdef CONFIG_CRYPTO_DRBG_HMAC
649 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
650 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
651 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
652 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
653 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
654 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
655 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
656 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
657 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
658 
659 /* update function of HMAC DRBG as defined in 10.1.2.2 */
660 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
661 			    int reseed)
662 {
663 	int ret = -EFAULT;
664 	int i = 0;
665 	struct drbg_string seed1, seed2, vdata;
666 	LIST_HEAD(seedlist);
667 	LIST_HEAD(vdatalist);
668 
669 	if (!reseed)
670 		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
671 		memset(drbg->V, 1, drbg_statelen(drbg));
672 
673 	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
674 	list_add_tail(&seed1.list, &seedlist);
675 	/* buffer of seed2 will be filled in for loop below with one byte */
676 	drbg_string_fill(&seed2, NULL, 1);
677 	list_add_tail(&seed2.list, &seedlist);
678 	/* input data of seed is allowed to be NULL at this point */
679 	if (seed)
680 		list_splice_tail(seed, &seedlist);
681 
682 	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
683 	list_add_tail(&vdata.list, &vdatalist);
684 	for (i = 2; 0 < i; i--) {
685 		/* first round uses 0x0, second 0x1 */
686 		unsigned char prefix = DRBG_PREFIX0;
687 		if (1 == i)
688 			prefix = DRBG_PREFIX1;
689 		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
690 		seed2.buf = &prefix;
691 		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seedlist);
692 		if (ret)
693 			return ret;
694 
695 		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
696 		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &vdatalist);
697 		if (ret)
698 			return ret;
699 
700 		/* 10.1.2.2 step 3 */
701 		if (!seed)
702 			return ret;
703 	}
704 
705 	return 0;
706 }
707 
708 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
709 static int drbg_hmac_generate(struct drbg_state *drbg,
710 			      unsigned char *buf,
711 			      unsigned int buflen,
712 			      struct list_head *addtl)
713 {
714 	int len = 0;
715 	int ret = 0;
716 	struct drbg_string data;
717 	LIST_HEAD(datalist);
718 
719 	/* 10.1.2.5 step 2 */
720 	if (addtl && !list_empty(addtl)) {
721 		ret = drbg_hmac_update(drbg, addtl, 1);
722 		if (ret)
723 			return ret;
724 	}
725 
726 	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
727 	list_add_tail(&data.list, &datalist);
728 	while (len < buflen) {
729 		unsigned int outlen = 0;
730 		/* 10.1.2.5 step 4.1 */
731 		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &datalist);
732 		if (ret)
733 			return ret;
734 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
735 			  drbg_blocklen(drbg) : (buflen - len);
736 		if (!drbg_fips_continuous_test(drbg, drbg->V))
737 			continue;
738 
739 		/* 10.1.2.5 step 4.2 */
740 		memcpy(buf + len, drbg->V, outlen);
741 		len += outlen;
742 	}
743 
744 	/* 10.1.2.5 step 6 */
745 	if (addtl && !list_empty(addtl))
746 		ret = drbg_hmac_update(drbg, addtl, 1);
747 	else
748 		ret = drbg_hmac_update(drbg, NULL, 1);
749 	if (ret)
750 		return ret;
751 
752 	return len;
753 }
754 
755 static struct drbg_state_ops drbg_hmac_ops = {
756 	.update		= drbg_hmac_update,
757 	.generate	= drbg_hmac_generate,
758 	.crypto_init	= drbg_init_hash_kernel,
759 	.crypto_fini	= drbg_fini_hash_kernel,
760 };
761 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
762 
763 /******************************************************************
764  * Hash DRBG callback functions
765  ******************************************************************/
766 
767 #ifdef CONFIG_CRYPTO_DRBG_HASH
768 #define CRYPTO_DRBG_HASH_STRING "HASH "
769 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
770 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
771 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
772 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
773 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
774 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
775 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
776 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
777 
778 /*
779  * Increment buffer
780  *
781  * @dst buffer to increment
782  * @add value to add
783  */
784 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
785 				const unsigned char *add, size_t addlen)
786 {
787 	/* implied: dstlen > addlen */
788 	unsigned char *dstptr;
789 	const unsigned char *addptr;
790 	unsigned int remainder = 0;
791 	size_t len = addlen;
792 
793 	dstptr = dst + (dstlen-1);
794 	addptr = add + (addlen-1);
795 	while (len) {
796 		remainder += *dstptr + *addptr;
797 		*dstptr = remainder & 0xff;
798 		remainder >>= 8;
799 		len--; dstptr--; addptr--;
800 	}
801 	len = dstlen - addlen;
802 	while (len && remainder > 0) {
803 		remainder = *dstptr + 1;
804 		*dstptr = remainder & 0xff;
805 		remainder >>= 8;
806 		len--; dstptr--;
807 	}
808 }
809 
810 /*
811  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
812  * interlinked, the scratchpad is used as follows:
813  * drbg_hash_update
814  *	start: drbg->scratchpad
815  *	length: drbg_statelen(drbg)
816  * drbg_hash_df:
817  *	start: drbg->scratchpad + drbg_statelen(drbg)
818  *	length: drbg_blocklen(drbg)
819  *
820  * drbg_hash_process_addtl uses the scratchpad, but fully completes
821  * before either of the functions mentioned before are invoked. Therefore,
822  * drbg_hash_process_addtl does not need to be specifically considered.
823  */
824 
825 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
826 static int drbg_hash_df(struct drbg_state *drbg,
827 			unsigned char *outval, size_t outlen,
828 			struct list_head *entropylist)
829 {
830 	int ret = 0;
831 	size_t len = 0;
832 	unsigned char input[5];
833 	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
834 	struct drbg_string data;
835 
836 	/* 10.4.1 step 3 */
837 	input[0] = 1;
838 	drbg_cpu_to_be32((outlen * 8), &input[1]);
839 
840 	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
841 	drbg_string_fill(&data, input, 5);
842 	list_add(&data.list, entropylist);
843 
844 	/* 10.4.1 step 4 */
845 	while (len < outlen) {
846 		short blocklen = 0;
847 		/* 10.4.1 step 4.1 */
848 		ret = drbg_kcapi_hash(drbg, NULL, tmp, entropylist);
849 		if (ret)
850 			goto out;
851 		/* 10.4.1 step 4.2 */
852 		input[0]++;
853 		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
854 			    drbg_blocklen(drbg) : (outlen - len);
855 		memcpy(outval + len, tmp, blocklen);
856 		len += blocklen;
857 	}
858 
859 out:
860 	memset(tmp, 0, drbg_blocklen(drbg));
861 	return ret;
862 }
863 
864 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
865 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
866 			    int reseed)
867 {
868 	int ret = 0;
869 	struct drbg_string data1, data2;
870 	LIST_HEAD(datalist);
871 	LIST_HEAD(datalist2);
872 	unsigned char *V = drbg->scratchpad;
873 	unsigned char prefix = DRBG_PREFIX1;
874 
875 	if (!seed)
876 		return -EINVAL;
877 
878 	if (reseed) {
879 		/* 10.1.1.3 step 1 */
880 		memcpy(V, drbg->V, drbg_statelen(drbg));
881 		drbg_string_fill(&data1, &prefix, 1);
882 		list_add_tail(&data1.list, &datalist);
883 		drbg_string_fill(&data2, V, drbg_statelen(drbg));
884 		list_add_tail(&data2.list, &datalist);
885 	}
886 	list_splice_tail(seed, &datalist);
887 
888 	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
889 	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
890 	if (ret)
891 		goto out;
892 
893 	/* 10.1.1.2 / 10.1.1.3 step 4  */
894 	prefix = DRBG_PREFIX0;
895 	drbg_string_fill(&data1, &prefix, 1);
896 	list_add_tail(&data1.list, &datalist2);
897 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
898 	list_add_tail(&data2.list, &datalist2);
899 	/* 10.1.1.2 / 10.1.1.3 step 4 */
900 	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
901 
902 out:
903 	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
904 	return ret;
905 }
906 
907 /* processing of additional information string for Hash DRBG */
908 static int drbg_hash_process_addtl(struct drbg_state *drbg,
909 				   struct list_head *addtl)
910 {
911 	int ret = 0;
912 	struct drbg_string data1, data2;
913 	LIST_HEAD(datalist);
914 	unsigned char prefix = DRBG_PREFIX2;
915 
916 	/* 10.1.1.4 step 2 */
917 	if (!addtl || list_empty(addtl))
918 		return 0;
919 
920 	/* 10.1.1.4 step 2a */
921 	drbg_string_fill(&data1, &prefix, 1);
922 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
923 	list_add_tail(&data1.list, &datalist);
924 	list_add_tail(&data2.list, &datalist);
925 	list_splice_tail(addtl, &datalist);
926 	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
927 	if (ret)
928 		goto out;
929 
930 	/* 10.1.1.4 step 2b */
931 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
932 		     drbg->scratchpad, drbg_blocklen(drbg));
933 
934 out:
935 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
936 	return ret;
937 }
938 
939 /* Hashgen defined in 10.1.1.4 */
940 static int drbg_hash_hashgen(struct drbg_state *drbg,
941 			     unsigned char *buf,
942 			     unsigned int buflen)
943 {
944 	int len = 0;
945 	int ret = 0;
946 	unsigned char *src = drbg->scratchpad;
947 	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
948 	struct drbg_string data;
949 	LIST_HEAD(datalist);
950 
951 	/* 10.1.1.4 step hashgen 2 */
952 	memcpy(src, drbg->V, drbg_statelen(drbg));
953 
954 	drbg_string_fill(&data, src, drbg_statelen(drbg));
955 	list_add_tail(&data.list, &datalist);
956 	while (len < buflen) {
957 		unsigned int outlen = 0;
958 		/* 10.1.1.4 step hashgen 4.1 */
959 		ret = drbg_kcapi_hash(drbg, NULL, dst, &datalist);
960 		if (ret) {
961 			len = ret;
962 			goto out;
963 		}
964 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
965 			  drbg_blocklen(drbg) : (buflen - len);
966 		if (!drbg_fips_continuous_test(drbg, dst)) {
967 			crypto_inc(src, drbg_statelen(drbg));
968 			continue;
969 		}
970 		/* 10.1.1.4 step hashgen 4.2 */
971 		memcpy(buf + len, dst, outlen);
972 		len += outlen;
973 		/* 10.1.1.4 hashgen step 4.3 */
974 		if (len < buflen)
975 			crypto_inc(src, drbg_statelen(drbg));
976 	}
977 
978 out:
979 	memset(drbg->scratchpad, 0,
980 	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
981 	return len;
982 }
983 
984 /* generate function for Hash DRBG as defined in  10.1.1.4 */
985 static int drbg_hash_generate(struct drbg_state *drbg,
986 			      unsigned char *buf, unsigned int buflen,
987 			      struct list_head *addtl)
988 {
989 	int len = 0;
990 	int ret = 0;
991 	union {
992 		unsigned char req[8];
993 		__be64 req_int;
994 	} u;
995 	unsigned char prefix = DRBG_PREFIX3;
996 	struct drbg_string data1, data2;
997 	LIST_HEAD(datalist);
998 
999 	/* 10.1.1.4 step 2 */
1000 	ret = drbg_hash_process_addtl(drbg, addtl);
1001 	if (ret)
1002 		return ret;
1003 	/* 10.1.1.4 step 3 */
1004 	len = drbg_hash_hashgen(drbg, buf, buflen);
1005 
1006 	/* this is the value H as documented in 10.1.1.4 */
1007 	/* 10.1.1.4 step 4 */
1008 	drbg_string_fill(&data1, &prefix, 1);
1009 	list_add_tail(&data1.list, &datalist);
1010 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1011 	list_add_tail(&data2.list, &datalist);
1012 	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
1013 	if (ret) {
1014 		len = ret;
1015 		goto out;
1016 	}
1017 
1018 	/* 10.1.1.4 step 5 */
1019 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1020 		     drbg->scratchpad, drbg_blocklen(drbg));
1021 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1022 		     drbg->C, drbg_statelen(drbg));
1023 	u.req_int = cpu_to_be64(drbg->reseed_ctr);
1024 	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1025 
1026 out:
1027 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1028 	return len;
1029 }
1030 
1031 /*
1032  * scratchpad usage: as update and generate are used isolated, both
1033  * can use the scratchpad
1034  */
1035 static struct drbg_state_ops drbg_hash_ops = {
1036 	.update		= drbg_hash_update,
1037 	.generate	= drbg_hash_generate,
1038 	.crypto_init	= drbg_init_hash_kernel,
1039 	.crypto_fini	= drbg_fini_hash_kernel,
1040 };
1041 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1042 
1043 /******************************************************************
1044  * Functions common for DRBG implementations
1045  ******************************************************************/
1046 
1047 static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1048 			      int reseed)
1049 {
1050 	int ret = drbg->d_ops->update(drbg, seed, reseed);
1051 
1052 	if (ret)
1053 		return ret;
1054 
1055 	drbg->seeded = true;
1056 	/* 10.1.1.2 / 10.1.1.3 step 5 */
1057 	drbg->reseed_ctr = 1;
1058 
1059 	return ret;
1060 }
1061 
1062 static void drbg_async_seed(struct work_struct *work)
1063 {
1064 	struct drbg_string data;
1065 	LIST_HEAD(seedlist);
1066 	struct drbg_state *drbg = container_of(work, struct drbg_state,
1067 					       seed_work);
1068 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1069 	unsigned char entropy[32];
1070 
1071 	BUG_ON(!entropylen);
1072 	BUG_ON(entropylen > sizeof(entropy));
1073 	get_random_bytes(entropy, entropylen);
1074 
1075 	drbg_string_fill(&data, entropy, entropylen);
1076 	list_add_tail(&data.list, &seedlist);
1077 
1078 	mutex_lock(&drbg->drbg_mutex);
1079 
1080 	/* If nonblocking pool is initialized, deactivate Jitter RNG */
1081 	crypto_free_rng(drbg->jent);
1082 	drbg->jent = NULL;
1083 
1084 	/* Set seeded to false so that if __drbg_seed fails the
1085 	 * next generate call will trigger a reseed.
1086 	 */
1087 	drbg->seeded = false;
1088 
1089 	__drbg_seed(drbg, &seedlist, true);
1090 
1091 	if (drbg->seeded)
1092 		drbg->reseed_threshold = drbg_max_requests(drbg);
1093 
1094 	mutex_unlock(&drbg->drbg_mutex);
1095 
1096 	memzero_explicit(entropy, entropylen);
1097 }
1098 
1099 /*
1100  * Seeding or reseeding of the DRBG
1101  *
1102  * @drbg: DRBG state struct
1103  * @pers: personalization / additional information buffer
1104  * @reseed: 0 for initial seed process, 1 for reseeding
1105  *
1106  * return:
1107  *	0 on success
1108  *	error value otherwise
1109  */
1110 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1111 		     bool reseed)
1112 {
1113 	int ret;
1114 	unsigned char entropy[((32 + 16) * 2)];
1115 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1116 	struct drbg_string data1;
1117 	LIST_HEAD(seedlist);
1118 
1119 	/* 9.1 / 9.2 / 9.3.1 step 3 */
1120 	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1121 		pr_devel("DRBG: personalization string too long %zu\n",
1122 			 pers->len);
1123 		return -EINVAL;
1124 	}
1125 
1126 	if (list_empty(&drbg->test_data.list)) {
1127 		drbg_string_fill(&data1, drbg->test_data.buf,
1128 				 drbg->test_data.len);
1129 		pr_devel("DRBG: using test entropy\n");
1130 	} else {
1131 		/*
1132 		 * Gather entropy equal to the security strength of the DRBG.
1133 		 * With a derivation function, a nonce is required in addition
1134 		 * to the entropy. A nonce must be at least 1/2 of the security
1135 		 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1136 		 * of the strength. The consideration of a nonce is only
1137 		 * applicable during initial seeding.
1138 		 */
1139 		BUG_ON(!entropylen);
1140 		if (!reseed)
1141 			entropylen = ((entropylen + 1) / 2) * 3;
1142 		BUG_ON((entropylen * 2) > sizeof(entropy));
1143 
1144 		/* Get seed from in-kernel /dev/urandom */
1145 		get_random_bytes(entropy, entropylen);
1146 
1147 		if (!drbg->jent) {
1148 			drbg_string_fill(&data1, entropy, entropylen);
1149 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1150 				 entropylen);
1151 		} else {
1152 			/* Get seed from Jitter RNG */
1153 			ret = crypto_rng_get_bytes(drbg->jent,
1154 						   entropy + entropylen,
1155 						   entropylen);
1156 			if (ret) {
1157 				pr_devel("DRBG: jent failed with %d\n", ret);
1158 				return ret;
1159 			}
1160 
1161 			drbg_string_fill(&data1, entropy, entropylen * 2);
1162 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1163 				 entropylen * 2);
1164 		}
1165 	}
1166 	list_add_tail(&data1.list, &seedlist);
1167 
1168 	/*
1169 	 * concatenation of entropy with personalization str / addtl input)
1170 	 * the variable pers is directly handed in by the caller, so check its
1171 	 * contents whether it is appropriate
1172 	 */
1173 	if (pers && pers->buf && 0 < pers->len) {
1174 		list_add_tail(&pers->list, &seedlist);
1175 		pr_devel("DRBG: using personalization string\n");
1176 	}
1177 
1178 	if (!reseed) {
1179 		memset(drbg->V, 0, drbg_statelen(drbg));
1180 		memset(drbg->C, 0, drbg_statelen(drbg));
1181 	}
1182 
1183 	ret = __drbg_seed(drbg, &seedlist, reseed);
1184 
1185 	memzero_explicit(entropy, entropylen * 2);
1186 
1187 	return ret;
1188 }
1189 
1190 /* Free all substructures in a DRBG state without the DRBG state structure */
1191 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1192 {
1193 	if (!drbg)
1194 		return;
1195 	kzfree(drbg->V);
1196 	drbg->V = NULL;
1197 	kzfree(drbg->C);
1198 	drbg->C = NULL;
1199 	kzfree(drbg->scratchpad);
1200 	drbg->scratchpad = NULL;
1201 	drbg->reseed_ctr = 0;
1202 	drbg->d_ops = NULL;
1203 	drbg->core = NULL;
1204 #ifdef CONFIG_CRYPTO_FIPS
1205 	kzfree(drbg->prev);
1206 	drbg->prev = NULL;
1207 	drbg->fips_primed = false;
1208 #endif
1209 }
1210 
1211 /*
1212  * Allocate all sub-structures for a DRBG state.
1213  * The DRBG state structure must already be allocated.
1214  */
1215 static inline int drbg_alloc_state(struct drbg_state *drbg)
1216 {
1217 	int ret = -ENOMEM;
1218 	unsigned int sb_size = 0;
1219 
1220 	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1221 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1222 	case DRBG_HMAC:
1223 		drbg->d_ops = &drbg_hmac_ops;
1224 		break;
1225 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1226 #ifdef CONFIG_CRYPTO_DRBG_HASH
1227 	case DRBG_HASH:
1228 		drbg->d_ops = &drbg_hash_ops;
1229 		break;
1230 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1231 #ifdef CONFIG_CRYPTO_DRBG_CTR
1232 	case DRBG_CTR:
1233 		drbg->d_ops = &drbg_ctr_ops;
1234 		break;
1235 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1236 	default:
1237 		ret = -EOPNOTSUPP;
1238 		goto err;
1239 	}
1240 
1241 	drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1242 	if (!drbg->V)
1243 		goto err;
1244 	drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1245 	if (!drbg->C)
1246 		goto err;
1247 #ifdef CONFIG_CRYPTO_FIPS
1248 	drbg->prev = kmalloc(drbg_blocklen(drbg), GFP_KERNEL);
1249 	if (!drbg->prev)
1250 		goto err;
1251 	drbg->fips_primed = false;
1252 #endif
1253 	/* scratchpad is only generated for CTR and Hash */
1254 	if (drbg->core->flags & DRBG_HMAC)
1255 		sb_size = 0;
1256 	else if (drbg->core->flags & DRBG_CTR)
1257 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1258 			  drbg_statelen(drbg) +	/* df_data */
1259 			  drbg_blocklen(drbg) +	/* pad */
1260 			  drbg_blocklen(drbg) +	/* iv */
1261 			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1262 	else
1263 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1264 
1265 	if (0 < sb_size) {
1266 		drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
1267 		if (!drbg->scratchpad)
1268 			goto err;
1269 	}
1270 
1271 	return 0;
1272 
1273 err:
1274 	drbg_dealloc_state(drbg);
1275 	return ret;
1276 }
1277 
1278 /*************************************************************************
1279  * DRBG interface functions
1280  *************************************************************************/
1281 
1282 /*
1283  * DRBG generate function as required by SP800-90A - this function
1284  * generates random numbers
1285  *
1286  * @drbg DRBG state handle
1287  * @buf Buffer where to store the random numbers -- the buffer must already
1288  *      be pre-allocated by caller
1289  * @buflen Length of output buffer - this value defines the number of random
1290  *	   bytes pulled from DRBG
1291  * @addtl Additional input that is mixed into state, may be NULL -- note
1292  *	  the entropy is pulled by the DRBG internally unconditionally
1293  *	  as defined in SP800-90A. The additional input is mixed into
1294  *	  the state in addition to the pulled entropy.
1295  *
1296  * return: 0 when all bytes are generated; < 0 in case of an error
1297  */
1298 static int drbg_generate(struct drbg_state *drbg,
1299 			 unsigned char *buf, unsigned int buflen,
1300 			 struct drbg_string *addtl)
1301 {
1302 	int len = 0;
1303 	LIST_HEAD(addtllist);
1304 
1305 	if (!drbg->core) {
1306 		pr_devel("DRBG: not yet seeded\n");
1307 		return -EINVAL;
1308 	}
1309 	if (0 == buflen || !buf) {
1310 		pr_devel("DRBG: no output buffer provided\n");
1311 		return -EINVAL;
1312 	}
1313 	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1314 		pr_devel("DRBG: wrong format of additional information\n");
1315 		return -EINVAL;
1316 	}
1317 
1318 	/* 9.3.1 step 2 */
1319 	len = -EINVAL;
1320 	if (buflen > (drbg_max_request_bytes(drbg))) {
1321 		pr_devel("DRBG: requested random numbers too large %u\n",
1322 			 buflen);
1323 		goto err;
1324 	}
1325 
1326 	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1327 
1328 	/* 9.3.1 step 4 */
1329 	if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1330 		pr_devel("DRBG: additional information string too long %zu\n",
1331 			 addtl->len);
1332 		goto err;
1333 	}
1334 	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1335 
1336 	/*
1337 	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1338 	 * here. The spec is a bit convoluted here, we make it simpler.
1339 	 */
1340 	if (drbg->reseed_threshold < drbg->reseed_ctr)
1341 		drbg->seeded = false;
1342 
1343 	if (drbg->pr || !drbg->seeded) {
1344 		pr_devel("DRBG: reseeding before generation (prediction "
1345 			 "resistance: %s, state %s)\n",
1346 			 drbg->pr ? "true" : "false",
1347 			 drbg->seeded ? "seeded" : "unseeded");
1348 		/* 9.3.1 steps 7.1 through 7.3 */
1349 		len = drbg_seed(drbg, addtl, true);
1350 		if (len)
1351 			goto err;
1352 		/* 9.3.1 step 7.4 */
1353 		addtl = NULL;
1354 	}
1355 
1356 	if (addtl && 0 < addtl->len)
1357 		list_add_tail(&addtl->list, &addtllist);
1358 	/* 9.3.1 step 8 and 10 */
1359 	len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1360 
1361 	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1362 	drbg->reseed_ctr++;
1363 	if (0 >= len)
1364 		goto err;
1365 
1366 	/*
1367 	 * Section 11.3.3 requires to re-perform self tests after some
1368 	 * generated random numbers. The chosen value after which self
1369 	 * test is performed is arbitrary, but it should be reasonable.
1370 	 * However, we do not perform the self tests because of the following
1371 	 * reasons: it is mathematically impossible that the initial self tests
1372 	 * were successfully and the following are not. If the initial would
1373 	 * pass and the following would not, the kernel integrity is violated.
1374 	 * In this case, the entire kernel operation is questionable and it
1375 	 * is unlikely that the integrity violation only affects the
1376 	 * correct operation of the DRBG.
1377 	 *
1378 	 * Albeit the following code is commented out, it is provided in
1379 	 * case somebody has a need to implement the test of 11.3.3.
1380 	 */
1381 #if 0
1382 	if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1383 		int err = 0;
1384 		pr_devel("DRBG: start to perform self test\n");
1385 		if (drbg->core->flags & DRBG_HMAC)
1386 			err = alg_test("drbg_pr_hmac_sha256",
1387 				       "drbg_pr_hmac_sha256", 0, 0);
1388 		else if (drbg->core->flags & DRBG_CTR)
1389 			err = alg_test("drbg_pr_ctr_aes128",
1390 				       "drbg_pr_ctr_aes128", 0, 0);
1391 		else
1392 			err = alg_test("drbg_pr_sha256",
1393 				       "drbg_pr_sha256", 0, 0);
1394 		if (err) {
1395 			pr_err("DRBG: periodical self test failed\n");
1396 			/*
1397 			 * uninstantiate implies that from now on, only errors
1398 			 * are returned when reusing this DRBG cipher handle
1399 			 */
1400 			drbg_uninstantiate(drbg);
1401 			return 0;
1402 		} else {
1403 			pr_devel("DRBG: self test successful\n");
1404 		}
1405 	}
1406 #endif
1407 
1408 	/*
1409 	 * All operations were successful, return 0 as mandated by
1410 	 * the kernel crypto API interface.
1411 	 */
1412 	len = 0;
1413 err:
1414 	return len;
1415 }
1416 
1417 /*
1418  * Wrapper around drbg_generate which can pull arbitrary long strings
1419  * from the DRBG without hitting the maximum request limitation.
1420  *
1421  * Parameters: see drbg_generate
1422  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1423  *		 the entire drbg_generate_long request fails
1424  */
1425 static int drbg_generate_long(struct drbg_state *drbg,
1426 			      unsigned char *buf, unsigned int buflen,
1427 			      struct drbg_string *addtl)
1428 {
1429 	unsigned int len = 0;
1430 	unsigned int slice = 0;
1431 	do {
1432 		int err = 0;
1433 		unsigned int chunk = 0;
1434 		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1435 		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1436 		mutex_lock(&drbg->drbg_mutex);
1437 		err = drbg_generate(drbg, buf + len, chunk, addtl);
1438 		mutex_unlock(&drbg->drbg_mutex);
1439 		if (0 > err)
1440 			return err;
1441 		len += chunk;
1442 	} while (slice > 0 && (len < buflen));
1443 	return 0;
1444 }
1445 
1446 static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1447 {
1448 	struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1449 					       random_ready);
1450 
1451 	schedule_work(&drbg->seed_work);
1452 }
1453 
1454 static int drbg_prepare_hrng(struct drbg_state *drbg)
1455 {
1456 	int err;
1457 
1458 	/* We do not need an HRNG in test mode. */
1459 	if (list_empty(&drbg->test_data.list))
1460 		return 0;
1461 
1462 	INIT_WORK(&drbg->seed_work, drbg_async_seed);
1463 
1464 	drbg->random_ready.owner = THIS_MODULE;
1465 	drbg->random_ready.func = drbg_schedule_async_seed;
1466 
1467 	err = add_random_ready_callback(&drbg->random_ready);
1468 
1469 	switch (err) {
1470 	case 0:
1471 		break;
1472 
1473 	case -EALREADY:
1474 		err = 0;
1475 		/* fall through */
1476 
1477 	default:
1478 		drbg->random_ready.func = NULL;
1479 		return err;
1480 	}
1481 
1482 	drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1483 
1484 	/*
1485 	 * Require frequent reseeds until the seed source is fully
1486 	 * initialized.
1487 	 */
1488 	drbg->reseed_threshold = 50;
1489 
1490 	return err;
1491 }
1492 
1493 /*
1494  * DRBG instantiation function as required by SP800-90A - this function
1495  * sets up the DRBG handle, performs the initial seeding and all sanity
1496  * checks required by SP800-90A
1497  *
1498  * @drbg memory of state -- if NULL, new memory is allocated
1499  * @pers Personalization string that is mixed into state, may be NULL -- note
1500  *	 the entropy is pulled by the DRBG internally unconditionally
1501  *	 as defined in SP800-90A. The additional input is mixed into
1502  *	 the state in addition to the pulled entropy.
1503  * @coreref reference to core
1504  * @pr prediction resistance enabled
1505  *
1506  * return
1507  *	0 on success
1508  *	error value otherwise
1509  */
1510 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1511 			    int coreref, bool pr)
1512 {
1513 	int ret;
1514 	bool reseed = true;
1515 
1516 	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1517 		 "%s\n", coreref, pr ? "enabled" : "disabled");
1518 	mutex_lock(&drbg->drbg_mutex);
1519 
1520 	/* 9.1 step 1 is implicit with the selected DRBG type */
1521 
1522 	/*
1523 	 * 9.1 step 2 is implicit as caller can select prediction resistance
1524 	 * and the flag is copied into drbg->flags --
1525 	 * all DRBG types support prediction resistance
1526 	 */
1527 
1528 	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1529 
1530 	if (!drbg->core) {
1531 		drbg->core = &drbg_cores[coreref];
1532 		drbg->pr = pr;
1533 		drbg->seeded = false;
1534 		drbg->reseed_threshold = drbg_max_requests(drbg);
1535 
1536 		ret = drbg_alloc_state(drbg);
1537 		if (ret)
1538 			goto unlock;
1539 
1540 		ret = -EFAULT;
1541 		if (drbg->d_ops->crypto_init(drbg))
1542 			goto err;
1543 
1544 		ret = drbg_prepare_hrng(drbg);
1545 		if (ret)
1546 			goto free_everything;
1547 
1548 		if (IS_ERR(drbg->jent)) {
1549 			ret = PTR_ERR(drbg->jent);
1550 			drbg->jent = NULL;
1551 			if (fips_enabled || ret != -ENOENT)
1552 				goto free_everything;
1553 			pr_info("DRBG: Continuing without Jitter RNG\n");
1554 		}
1555 
1556 		reseed = false;
1557 	}
1558 
1559 	ret = drbg_seed(drbg, pers, reseed);
1560 
1561 	if (ret && !reseed)
1562 		goto free_everything;
1563 
1564 	mutex_unlock(&drbg->drbg_mutex);
1565 	return ret;
1566 
1567 err:
1568 	drbg_dealloc_state(drbg);
1569 unlock:
1570 	mutex_unlock(&drbg->drbg_mutex);
1571 	return ret;
1572 
1573 free_everything:
1574 	mutex_unlock(&drbg->drbg_mutex);
1575 	drbg_uninstantiate(drbg);
1576 	return ret;
1577 }
1578 
1579 /*
1580  * DRBG uninstantiate function as required by SP800-90A - this function
1581  * frees all buffers and the DRBG handle
1582  *
1583  * @drbg DRBG state handle
1584  *
1585  * return
1586  *	0 on success
1587  */
1588 static int drbg_uninstantiate(struct drbg_state *drbg)
1589 {
1590 	if (drbg->random_ready.func) {
1591 		del_random_ready_callback(&drbg->random_ready);
1592 		cancel_work_sync(&drbg->seed_work);
1593 		crypto_free_rng(drbg->jent);
1594 		drbg->jent = NULL;
1595 	}
1596 
1597 	if (drbg->d_ops)
1598 		drbg->d_ops->crypto_fini(drbg);
1599 	drbg_dealloc_state(drbg);
1600 	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1601 	return 0;
1602 }
1603 
1604 /*
1605  * Helper function for setting the test data in the DRBG
1606  *
1607  * @drbg DRBG state handle
1608  * @data test data
1609  * @len test data length
1610  */
1611 static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1612 				   const u8 *data, unsigned int len)
1613 {
1614 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1615 
1616 	mutex_lock(&drbg->drbg_mutex);
1617 	drbg_string_fill(&drbg->test_data, data, len);
1618 	mutex_unlock(&drbg->drbg_mutex);
1619 }
1620 
1621 /***************************************************************
1622  * Kernel crypto API cipher invocations requested by DRBG
1623  ***************************************************************/
1624 
1625 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1626 struct sdesc {
1627 	struct shash_desc shash;
1628 	char ctx[];
1629 };
1630 
1631 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1632 {
1633 	struct sdesc *sdesc;
1634 	struct crypto_shash *tfm;
1635 
1636 	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1637 	if (IS_ERR(tfm)) {
1638 		pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1639 				drbg->core->backend_cra_name);
1640 		return PTR_ERR(tfm);
1641 	}
1642 	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1643 	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1644 			GFP_KERNEL);
1645 	if (!sdesc) {
1646 		crypto_free_shash(tfm);
1647 		return -ENOMEM;
1648 	}
1649 
1650 	sdesc->shash.tfm = tfm;
1651 	sdesc->shash.flags = 0;
1652 	drbg->priv_data = sdesc;
1653 	return 0;
1654 }
1655 
1656 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1657 {
1658 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1659 	if (sdesc) {
1660 		crypto_free_shash(sdesc->shash.tfm);
1661 		kzfree(sdesc);
1662 	}
1663 	drbg->priv_data = NULL;
1664 	return 0;
1665 }
1666 
1667 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
1668 			   unsigned char *outval, const struct list_head *in)
1669 {
1670 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1671 	struct drbg_string *input = NULL;
1672 
1673 	if (key)
1674 		crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1675 	crypto_shash_init(&sdesc->shash);
1676 	list_for_each_entry(input, in, list)
1677 		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1678 	return crypto_shash_final(&sdesc->shash, outval);
1679 }
1680 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1681 
1682 #ifdef CONFIG_CRYPTO_DRBG_CTR
1683 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1684 {
1685 	int ret = 0;
1686 	struct crypto_cipher *tfm;
1687 
1688 	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1689 	if (IS_ERR(tfm)) {
1690 		pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1691 				drbg->core->backend_cra_name);
1692 		return PTR_ERR(tfm);
1693 	}
1694 	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1695 	drbg->priv_data = tfm;
1696 	return ret;
1697 }
1698 
1699 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1700 {
1701 	struct crypto_cipher *tfm =
1702 		(struct crypto_cipher *)drbg->priv_data;
1703 	if (tfm)
1704 		crypto_free_cipher(tfm);
1705 	drbg->priv_data = NULL;
1706 	return 0;
1707 }
1708 
1709 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
1710 			  unsigned char *outval, const struct drbg_string *in)
1711 {
1712 	struct crypto_cipher *tfm =
1713 		(struct crypto_cipher *)drbg->priv_data;
1714 
1715 	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1716 	/* there is only component in *in */
1717 	BUG_ON(in->len < drbg_blocklen(drbg));
1718 	crypto_cipher_encrypt_one(tfm, outval, in->buf);
1719 	return 0;
1720 }
1721 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1722 
1723 /***************************************************************
1724  * Kernel crypto API interface to register DRBG
1725  ***************************************************************/
1726 
1727 /*
1728  * Look up the DRBG flags by given kernel crypto API cra_name
1729  * The code uses the drbg_cores definition to do this
1730  *
1731  * @cra_name kernel crypto API cra_name
1732  * @coreref reference to integer which is filled with the pointer to
1733  *  the applicable core
1734  * @pr reference for setting prediction resistance
1735  *
1736  * return: flags
1737  */
1738 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1739 					 int *coreref, bool *pr)
1740 {
1741 	int i = 0;
1742 	size_t start = 0;
1743 	int len = 0;
1744 
1745 	*pr = true;
1746 	/* disassemble the names */
1747 	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1748 		start = 10;
1749 		*pr = false;
1750 	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1751 		start = 8;
1752 	} else {
1753 		return;
1754 	}
1755 
1756 	/* remove the first part */
1757 	len = strlen(cra_driver_name) - start;
1758 	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1759 		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1760 			    len)) {
1761 			*coreref = i;
1762 			return;
1763 		}
1764 	}
1765 }
1766 
1767 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1768 {
1769 	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1770 
1771 	mutex_init(&drbg->drbg_mutex);
1772 
1773 	return 0;
1774 }
1775 
1776 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1777 {
1778 	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1779 }
1780 
1781 /*
1782  * Generate random numbers invoked by the kernel crypto API:
1783  * The API of the kernel crypto API is extended as follows:
1784  *
1785  * src is additional input supplied to the RNG.
1786  * slen is the length of src.
1787  * dst is the output buffer where random data is to be stored.
1788  * dlen is the length of dst.
1789  */
1790 static int drbg_kcapi_random(struct crypto_rng *tfm,
1791 			     const u8 *src, unsigned int slen,
1792 			     u8 *dst, unsigned int dlen)
1793 {
1794 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1795 	struct drbg_string *addtl = NULL;
1796 	struct drbg_string string;
1797 
1798 	if (slen) {
1799 		/* linked list variable is now local to allow modification */
1800 		drbg_string_fill(&string, src, slen);
1801 		addtl = &string;
1802 	}
1803 
1804 	return drbg_generate_long(drbg, dst, dlen, addtl);
1805 }
1806 
1807 /*
1808  * Seed the DRBG invoked by the kernel crypto API
1809  */
1810 static int drbg_kcapi_seed(struct crypto_rng *tfm,
1811 			   const u8 *seed, unsigned int slen)
1812 {
1813 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1814 	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1815 	bool pr = false;
1816 	struct drbg_string string;
1817 	struct drbg_string *seed_string = NULL;
1818 	int coreref = 0;
1819 
1820 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1821 			      &pr);
1822 	if (0 < slen) {
1823 		drbg_string_fill(&string, seed, slen);
1824 		seed_string = &string;
1825 	}
1826 
1827 	return drbg_instantiate(drbg, seed_string, coreref, pr);
1828 }
1829 
1830 /***************************************************************
1831  * Kernel module: code to load the module
1832  ***************************************************************/
1833 
1834 /*
1835  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1836  * of the error handling.
1837  *
1838  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1839  * as seed source of get_random_bytes does not fail.
1840  *
1841  * Note 2: There is no sensible way of testing the reseed counter
1842  * enforcement, so skip it.
1843  */
1844 static inline int __init drbg_healthcheck_sanity(void)
1845 {
1846 	int len = 0;
1847 #define OUTBUFLEN 16
1848 	unsigned char buf[OUTBUFLEN];
1849 	struct drbg_state *drbg = NULL;
1850 	int ret = -EFAULT;
1851 	int rc = -EFAULT;
1852 	bool pr = false;
1853 	int coreref = 0;
1854 	struct drbg_string addtl;
1855 	size_t max_addtllen, max_request_bytes;
1856 
1857 	/* only perform test in FIPS mode */
1858 	if (!fips_enabled)
1859 		return 0;
1860 
1861 #ifdef CONFIG_CRYPTO_DRBG_CTR
1862 	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1863 #elif defined CONFIG_CRYPTO_DRBG_HASH
1864 	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1865 #else
1866 	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1867 #endif
1868 
1869 	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1870 	if (!drbg)
1871 		return -ENOMEM;
1872 
1873 	mutex_init(&drbg->drbg_mutex);
1874 
1875 	/*
1876 	 * if the following tests fail, it is likely that there is a buffer
1877 	 * overflow as buf is much smaller than the requested or provided
1878 	 * string lengths -- in case the error handling does not succeed
1879 	 * we may get an OOPS. And we want to get an OOPS as this is a
1880 	 * grave bug.
1881 	 */
1882 
1883 	/* get a valid instance of DRBG for following tests */
1884 	ret = drbg_instantiate(drbg, NULL, coreref, pr);
1885 	if (ret) {
1886 		rc = ret;
1887 		goto outbuf;
1888 	}
1889 	max_addtllen = drbg_max_addtl(drbg);
1890 	max_request_bytes = drbg_max_request_bytes(drbg);
1891 	drbg_string_fill(&addtl, buf, max_addtllen + 1);
1892 	/* overflow addtllen with additonal info string */
1893 	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1894 	BUG_ON(0 < len);
1895 	/* overflow max_bits */
1896 	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1897 	BUG_ON(0 < len);
1898 	drbg_uninstantiate(drbg);
1899 
1900 	/* overflow max addtllen with personalization string */
1901 	ret = drbg_instantiate(drbg, &addtl, coreref, pr);
1902 	BUG_ON(0 == ret);
1903 	/* all tests passed */
1904 	rc = 0;
1905 
1906 	pr_devel("DRBG: Sanity tests for failure code paths successfully "
1907 		 "completed\n");
1908 
1909 	drbg_uninstantiate(drbg);
1910 outbuf:
1911 	kzfree(drbg);
1912 	return rc;
1913 }
1914 
1915 static struct rng_alg drbg_algs[22];
1916 
1917 /*
1918  * Fill the array drbg_algs used to register the different DRBGs
1919  * with the kernel crypto API. To fill the array, the information
1920  * from drbg_cores[] is used.
1921  */
1922 static inline void __init drbg_fill_array(struct rng_alg *alg,
1923 					  const struct drbg_core *core, int pr)
1924 {
1925 	int pos = 0;
1926 	static int priority = 200;
1927 
1928 	memcpy(alg->base.cra_name, "stdrng", 6);
1929 	if (pr) {
1930 		memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
1931 		pos = 8;
1932 	} else {
1933 		memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
1934 		pos = 10;
1935 	}
1936 	memcpy(alg->base.cra_driver_name + pos, core->cra_name,
1937 	       strlen(core->cra_name));
1938 
1939 	alg->base.cra_priority = priority;
1940 	priority++;
1941 	/*
1942 	 * If FIPS mode enabled, the selected DRBG shall have the
1943 	 * highest cra_priority over other stdrng instances to ensure
1944 	 * it is selected.
1945 	 */
1946 	if (fips_enabled)
1947 		alg->base.cra_priority += 200;
1948 
1949 	alg->base.cra_ctxsize 	= sizeof(struct drbg_state);
1950 	alg->base.cra_module	= THIS_MODULE;
1951 	alg->base.cra_init	= drbg_kcapi_init;
1952 	alg->base.cra_exit	= drbg_kcapi_cleanup;
1953 	alg->generate		= drbg_kcapi_random;
1954 	alg->seed		= drbg_kcapi_seed;
1955 	alg->set_ent		= drbg_kcapi_set_entropy;
1956 	alg->seedsize		= 0;
1957 }
1958 
1959 static int __init drbg_init(void)
1960 {
1961 	unsigned int i = 0; /* pointer to drbg_algs */
1962 	unsigned int j = 0; /* pointer to drbg_cores */
1963 	int ret = -EFAULT;
1964 
1965 	ret = drbg_healthcheck_sanity();
1966 	if (ret)
1967 		return ret;
1968 
1969 	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
1970 		pr_info("DRBG: Cannot register all DRBG types"
1971 			"(slots needed: %zu, slots available: %zu)\n",
1972 			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
1973 		return ret;
1974 	}
1975 
1976 	/*
1977 	 * each DRBG definition can be used with PR and without PR, thus
1978 	 * we instantiate each DRBG in drbg_cores[] twice.
1979 	 *
1980 	 * As the order of placing them into the drbg_algs array matters
1981 	 * (the later DRBGs receive a higher cra_priority) we register the
1982 	 * prediction resistance DRBGs first as the should not be too
1983 	 * interesting.
1984 	 */
1985 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1986 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
1987 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1988 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
1989 	return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1990 }
1991 
1992 static void __exit drbg_exit(void)
1993 {
1994 	crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1995 }
1996 
1997 module_init(drbg_init);
1998 module_exit(drbg_exit);
1999 #ifndef CRYPTO_DRBG_HASH_STRING
2000 #define CRYPTO_DRBG_HASH_STRING ""
2001 #endif
2002 #ifndef CRYPTO_DRBG_HMAC_STRING
2003 #define CRYPTO_DRBG_HMAC_STRING ""
2004 #endif
2005 #ifndef CRYPTO_DRBG_CTR_STRING
2006 #define CRYPTO_DRBG_CTR_STRING ""
2007 #endif
2008 MODULE_LICENSE("GPL");
2009 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2010 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2011 		   "using following cores: "
2012 		   CRYPTO_DRBG_HASH_STRING
2013 		   CRYPTO_DRBG_HMAC_STRING
2014 		   CRYPTO_DRBG_CTR_STRING);
2015 MODULE_ALIAS_CRYPTO("stdrng");
2016