xref: /openbmc/linux/crypto/drbg.c (revision 6dfcd296)
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *		* with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99 
100 #include <crypto/drbg.h>
101 #include <linux/kernel.h>
102 
103 /***************************************************************
104  * Backend cipher definitions available to DRBG
105  ***************************************************************/
106 
107 /*
108  * The order of the DRBG definitions here matter: every DRBG is registered
109  * as stdrng. Each DRBG receives an increasing cra_priority values the later
110  * they are defined in this array (see drbg_fill_array).
111  *
112  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
113  * the SHA256 / AES 256 over other ciphers. Thus, the favored
114  * DRBGs are the latest entries in this array.
115  */
116 static const struct drbg_core drbg_cores[] = {
117 #ifdef CONFIG_CRYPTO_DRBG_CTR
118 	{
119 		.flags = DRBG_CTR | DRBG_STRENGTH128,
120 		.statelen = 32, /* 256 bits as defined in 10.2.1 */
121 		.blocklen_bytes = 16,
122 		.cra_name = "ctr_aes128",
123 		.backend_cra_name = "aes",
124 	}, {
125 		.flags = DRBG_CTR | DRBG_STRENGTH192,
126 		.statelen = 40, /* 320 bits as defined in 10.2.1 */
127 		.blocklen_bytes = 16,
128 		.cra_name = "ctr_aes192",
129 		.backend_cra_name = "aes",
130 	}, {
131 		.flags = DRBG_CTR | DRBG_STRENGTH256,
132 		.statelen = 48, /* 384 bits as defined in 10.2.1 */
133 		.blocklen_bytes = 16,
134 		.cra_name = "ctr_aes256",
135 		.backend_cra_name = "aes",
136 	},
137 #endif /* CONFIG_CRYPTO_DRBG_CTR */
138 #ifdef CONFIG_CRYPTO_DRBG_HASH
139 	{
140 		.flags = DRBG_HASH | DRBG_STRENGTH128,
141 		.statelen = 55, /* 440 bits */
142 		.blocklen_bytes = 20,
143 		.cra_name = "sha1",
144 		.backend_cra_name = "sha1",
145 	}, {
146 		.flags = DRBG_HASH | DRBG_STRENGTH256,
147 		.statelen = 111, /* 888 bits */
148 		.blocklen_bytes = 48,
149 		.cra_name = "sha384",
150 		.backend_cra_name = "sha384",
151 	}, {
152 		.flags = DRBG_HASH | DRBG_STRENGTH256,
153 		.statelen = 111, /* 888 bits */
154 		.blocklen_bytes = 64,
155 		.cra_name = "sha512",
156 		.backend_cra_name = "sha512",
157 	}, {
158 		.flags = DRBG_HASH | DRBG_STRENGTH256,
159 		.statelen = 55, /* 440 bits */
160 		.blocklen_bytes = 32,
161 		.cra_name = "sha256",
162 		.backend_cra_name = "sha256",
163 	},
164 #endif /* CONFIG_CRYPTO_DRBG_HASH */
165 #ifdef CONFIG_CRYPTO_DRBG_HMAC
166 	{
167 		.flags = DRBG_HMAC | DRBG_STRENGTH128,
168 		.statelen = 20, /* block length of cipher */
169 		.blocklen_bytes = 20,
170 		.cra_name = "hmac_sha1",
171 		.backend_cra_name = "hmac(sha1)",
172 	}, {
173 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
174 		.statelen = 48, /* block length of cipher */
175 		.blocklen_bytes = 48,
176 		.cra_name = "hmac_sha384",
177 		.backend_cra_name = "hmac(sha384)",
178 	}, {
179 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
180 		.statelen = 64, /* block length of cipher */
181 		.blocklen_bytes = 64,
182 		.cra_name = "hmac_sha512",
183 		.backend_cra_name = "hmac(sha512)",
184 	}, {
185 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
186 		.statelen = 32, /* block length of cipher */
187 		.blocklen_bytes = 32,
188 		.cra_name = "hmac_sha256",
189 		.backend_cra_name = "hmac(sha256)",
190 	},
191 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
192 };
193 
194 static int drbg_uninstantiate(struct drbg_state *drbg);
195 
196 /******************************************************************
197  * Generic helper functions
198  ******************************************************************/
199 
200 /*
201  * Return strength of DRBG according to SP800-90A section 8.4
202  *
203  * @flags DRBG flags reference
204  *
205  * Return: normalized strength in *bytes* value or 32 as default
206  *	   to counter programming errors
207  */
208 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
209 {
210 	switch (flags & DRBG_STRENGTH_MASK) {
211 	case DRBG_STRENGTH128:
212 		return 16;
213 	case DRBG_STRENGTH192:
214 		return 24;
215 	case DRBG_STRENGTH256:
216 		return 32;
217 	default:
218 		return 32;
219 	}
220 }
221 
222 /*
223  * Convert an integer into a byte representation of this integer.
224  * The byte representation is big-endian
225  *
226  * @val value to be converted
227  * @buf buffer holding the converted integer -- caller must ensure that
228  *      buffer size is at least 32 bit
229  */
230 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
231 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
232 {
233 	struct s {
234 		__be32 conv;
235 	};
236 	struct s *conversion = (struct s *) buf;
237 
238 	conversion->conv = cpu_to_be32(val);
239 }
240 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
241 
242 /******************************************************************
243  * CTR DRBG callback functions
244  ******************************************************************/
245 
246 #ifdef CONFIG_CRYPTO_DRBG_CTR
247 #define CRYPTO_DRBG_CTR_STRING "CTR "
248 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
249 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
250 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
251 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
252 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
253 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
254 
255 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
256 				 const unsigned char *key);
257 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
258 			  const struct drbg_string *in);
259 static int drbg_init_sym_kernel(struct drbg_state *drbg);
260 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
261 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
262 			      u8 *inbuf, u32 inbuflen,
263 			      u8 *outbuf, u32 outlen);
264 #define DRBG_CTR_NULL_LEN 128
265 
266 /* BCC function for CTR DRBG as defined in 10.4.3 */
267 static int drbg_ctr_bcc(struct drbg_state *drbg,
268 			unsigned char *out, const unsigned char *key,
269 			struct list_head *in)
270 {
271 	int ret = 0;
272 	struct drbg_string *curr = NULL;
273 	struct drbg_string data;
274 	short cnt = 0;
275 
276 	drbg_string_fill(&data, out, drbg_blocklen(drbg));
277 
278 	/* 10.4.3 step 2 / 4 */
279 	drbg_kcapi_symsetkey(drbg, key);
280 	list_for_each_entry(curr, in, list) {
281 		const unsigned char *pos = curr->buf;
282 		size_t len = curr->len;
283 		/* 10.4.3 step 4.1 */
284 		while (len) {
285 			/* 10.4.3 step 4.2 */
286 			if (drbg_blocklen(drbg) == cnt) {
287 				cnt = 0;
288 				ret = drbg_kcapi_sym(drbg, out, &data);
289 				if (ret)
290 					return ret;
291 			}
292 			out[cnt] ^= *pos;
293 			pos++;
294 			cnt++;
295 			len--;
296 		}
297 	}
298 	/* 10.4.3 step 4.2 for last block */
299 	if (cnt)
300 		ret = drbg_kcapi_sym(drbg, out, &data);
301 
302 	return ret;
303 }
304 
305 /*
306  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
307  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
308  * the scratchpad is used as follows:
309  * drbg_ctr_update:
310  *	temp
311  *		start: drbg->scratchpad
312  *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
313  *			note: the cipher writing into this variable works
314  *			blocklen-wise. Now, when the statelen is not a multiple
315  *			of blocklen, the generateion loop below "spills over"
316  *			by at most blocklen. Thus, we need to give sufficient
317  *			memory.
318  *	df_data
319  *		start: drbg->scratchpad +
320  *				drbg_statelen(drbg) + drbg_blocklen(drbg)
321  *		length: drbg_statelen(drbg)
322  *
323  * drbg_ctr_df:
324  *	pad
325  *		start: df_data + drbg_statelen(drbg)
326  *		length: drbg_blocklen(drbg)
327  *	iv
328  *		start: pad + drbg_blocklen(drbg)
329  *		length: drbg_blocklen(drbg)
330  *	temp
331  *		start: iv + drbg_blocklen(drbg)
332  *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
333  *			note: temp is the buffer that the BCC function operates
334  *			on. BCC operates blockwise. drbg_statelen(drbg)
335  *			is sufficient when the DRBG state length is a multiple
336  *			of the block size. For AES192 (and maybe other ciphers)
337  *			this is not correct and the length for temp is
338  *			insufficient (yes, that also means for such ciphers,
339  *			the final output of all BCC rounds are truncated).
340  *			Therefore, add drbg_blocklen(drbg) to cover all
341  *			possibilities.
342  */
343 
344 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
345 static int drbg_ctr_df(struct drbg_state *drbg,
346 		       unsigned char *df_data, size_t bytes_to_return,
347 		       struct list_head *seedlist)
348 {
349 	int ret = -EFAULT;
350 	unsigned char L_N[8];
351 	/* S3 is input */
352 	struct drbg_string S1, S2, S4, cipherin;
353 	LIST_HEAD(bcc_list);
354 	unsigned char *pad = df_data + drbg_statelen(drbg);
355 	unsigned char *iv = pad + drbg_blocklen(drbg);
356 	unsigned char *temp = iv + drbg_blocklen(drbg);
357 	size_t padlen = 0;
358 	unsigned int templen = 0;
359 	/* 10.4.2 step 7 */
360 	unsigned int i = 0;
361 	/* 10.4.2 step 8 */
362 	const unsigned char *K = (unsigned char *)
363 			   "\x00\x01\x02\x03\x04\x05\x06\x07"
364 			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
365 			   "\x10\x11\x12\x13\x14\x15\x16\x17"
366 			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
367 	unsigned char *X;
368 	size_t generated_len = 0;
369 	size_t inputlen = 0;
370 	struct drbg_string *seed = NULL;
371 
372 	memset(pad, 0, drbg_blocklen(drbg));
373 	memset(iv, 0, drbg_blocklen(drbg));
374 
375 	/* 10.4.2 step 1 is implicit as we work byte-wise */
376 
377 	/* 10.4.2 step 2 */
378 	if ((512/8) < bytes_to_return)
379 		return -EINVAL;
380 
381 	/* 10.4.2 step 2 -- calculate the entire length of all input data */
382 	list_for_each_entry(seed, seedlist, list)
383 		inputlen += seed->len;
384 	drbg_cpu_to_be32(inputlen, &L_N[0]);
385 
386 	/* 10.4.2 step 3 */
387 	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
388 
389 	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
390 	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
391 	/* wrap the padlen appropriately */
392 	if (padlen)
393 		padlen = drbg_blocklen(drbg) - padlen;
394 	/*
395 	 * pad / padlen contains the 0x80 byte and the following zero bytes.
396 	 * As the calculated padlen value only covers the number of zero
397 	 * bytes, this value has to be incremented by one for the 0x80 byte.
398 	 */
399 	padlen++;
400 	pad[0] = 0x80;
401 
402 	/* 10.4.2 step 4 -- first fill the linked list and then order it */
403 	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
404 	list_add_tail(&S1.list, &bcc_list);
405 	drbg_string_fill(&S2, L_N, sizeof(L_N));
406 	list_add_tail(&S2.list, &bcc_list);
407 	list_splice_tail(seedlist, &bcc_list);
408 	drbg_string_fill(&S4, pad, padlen);
409 	list_add_tail(&S4.list, &bcc_list);
410 
411 	/* 10.4.2 step 9 */
412 	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
413 		/*
414 		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
415 		 * holds zeros after allocation -- even the increment of i
416 		 * is irrelevant as the increment remains within length of i
417 		 */
418 		drbg_cpu_to_be32(i, iv);
419 		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
420 		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
421 		if (ret)
422 			goto out;
423 		/* 10.4.2 step 9.3 */
424 		i++;
425 		templen += drbg_blocklen(drbg);
426 	}
427 
428 	/* 10.4.2 step 11 */
429 	X = temp + (drbg_keylen(drbg));
430 	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
431 
432 	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
433 
434 	/* 10.4.2 step 13 */
435 	drbg_kcapi_symsetkey(drbg, temp);
436 	while (generated_len < bytes_to_return) {
437 		short blocklen = 0;
438 		/*
439 		 * 10.4.2 step 13.1: the truncation of the key length is
440 		 * implicit as the key is only drbg_blocklen in size based on
441 		 * the implementation of the cipher function callback
442 		 */
443 		ret = drbg_kcapi_sym(drbg, X, &cipherin);
444 		if (ret)
445 			goto out;
446 		blocklen = (drbg_blocklen(drbg) <
447 				(bytes_to_return - generated_len)) ?
448 			    drbg_blocklen(drbg) :
449 				(bytes_to_return - generated_len);
450 		/* 10.4.2 step 13.2 and 14 */
451 		memcpy(df_data + generated_len, X, blocklen);
452 		generated_len += blocklen;
453 	}
454 
455 	ret = 0;
456 
457 out:
458 	memset(iv, 0, drbg_blocklen(drbg));
459 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
460 	memset(pad, 0, drbg_blocklen(drbg));
461 	return ret;
462 }
463 
464 /*
465  * update function of CTR DRBG as defined in 10.2.1.2
466  *
467  * The reseed variable has an enhanced meaning compared to the update
468  * functions of the other DRBGs as follows:
469  * 0 => initial seed from initialization
470  * 1 => reseed via drbg_seed
471  * 2 => first invocation from drbg_ctr_update when addtl is present. In
472  *      this case, the df_data scratchpad is not deleted so that it is
473  *      available for another calls to prevent calling the DF function
474  *      again.
475  * 3 => second invocation from drbg_ctr_update. When the update function
476  *      was called with addtl, the df_data memory already contains the
477  *      DFed addtl information and we do not need to call DF again.
478  */
479 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
480 			   int reseed)
481 {
482 	int ret = -EFAULT;
483 	/* 10.2.1.2 step 1 */
484 	unsigned char *temp = drbg->scratchpad;
485 	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
486 				 drbg_blocklen(drbg);
487 
488 	if (3 > reseed)
489 		memset(df_data, 0, drbg_statelen(drbg));
490 
491 	if (!reseed) {
492 		/*
493 		 * The DRBG uses the CTR mode of the underlying AES cipher. The
494 		 * CTR mode increments the counter value after the AES operation
495 		 * but SP800-90A requires that the counter is incremented before
496 		 * the AES operation. Hence, we increment it at the time we set
497 		 * it by one.
498 		 */
499 		crypto_inc(drbg->V, drbg_blocklen(drbg));
500 
501 		ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
502 					     drbg_keylen(drbg));
503 		if (ret)
504 			goto out;
505 	}
506 
507 	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
508 	if (seed) {
509 		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
510 		if (ret)
511 			goto out;
512 	}
513 
514 	ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
515 				 temp, drbg_statelen(drbg));
516 	if (ret)
517 		return ret;
518 
519 	/* 10.2.1.2 step 5 */
520 	ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
521 				     drbg_keylen(drbg));
522 	if (ret)
523 		goto out;
524 	/* 10.2.1.2 step 6 */
525 	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
526 	/* See above: increment counter by one to compensate timing of CTR op */
527 	crypto_inc(drbg->V, drbg_blocklen(drbg));
528 	ret = 0;
529 
530 out:
531 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
532 	if (2 != reseed)
533 		memset(df_data, 0, drbg_statelen(drbg));
534 	return ret;
535 }
536 
537 /*
538  * scratchpad use: drbg_ctr_update is called independently from
539  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
540  */
541 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
542 static int drbg_ctr_generate(struct drbg_state *drbg,
543 			     unsigned char *buf, unsigned int buflen,
544 			     struct list_head *addtl)
545 {
546 	int ret;
547 	int len = min_t(int, buflen, INT_MAX);
548 
549 	/* 10.2.1.5.2 step 2 */
550 	if (addtl && !list_empty(addtl)) {
551 		ret = drbg_ctr_update(drbg, addtl, 2);
552 		if (ret)
553 			return 0;
554 	}
555 
556 	/* 10.2.1.5.2 step 4.1 */
557 	ret = drbg_kcapi_sym_ctr(drbg, drbg->ctr_null_value, DRBG_CTR_NULL_LEN,
558 				 buf, len);
559 	if (ret)
560 		return ret;
561 
562 	/* 10.2.1.5.2 step 6 */
563 	ret = drbg_ctr_update(drbg, NULL, 3);
564 	if (ret)
565 		len = ret;
566 
567 	return len;
568 }
569 
570 static const struct drbg_state_ops drbg_ctr_ops = {
571 	.update		= drbg_ctr_update,
572 	.generate	= drbg_ctr_generate,
573 	.crypto_init	= drbg_init_sym_kernel,
574 	.crypto_fini	= drbg_fini_sym_kernel,
575 };
576 #endif /* CONFIG_CRYPTO_DRBG_CTR */
577 
578 /******************************************************************
579  * HMAC DRBG callback functions
580  ******************************************************************/
581 
582 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
583 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
584 			   const struct list_head *in);
585 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
586 				  const unsigned char *key);
587 static int drbg_init_hash_kernel(struct drbg_state *drbg);
588 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
589 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
590 
591 #ifdef CONFIG_CRYPTO_DRBG_HMAC
592 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
593 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
594 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
595 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
596 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
597 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
598 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
599 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
600 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
601 
602 /* update function of HMAC DRBG as defined in 10.1.2.2 */
603 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
604 			    int reseed)
605 {
606 	int ret = -EFAULT;
607 	int i = 0;
608 	struct drbg_string seed1, seed2, vdata;
609 	LIST_HEAD(seedlist);
610 	LIST_HEAD(vdatalist);
611 
612 	if (!reseed) {
613 		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
614 		memset(drbg->V, 1, drbg_statelen(drbg));
615 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
616 	}
617 
618 	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
619 	list_add_tail(&seed1.list, &seedlist);
620 	/* buffer of seed2 will be filled in for loop below with one byte */
621 	drbg_string_fill(&seed2, NULL, 1);
622 	list_add_tail(&seed2.list, &seedlist);
623 	/* input data of seed is allowed to be NULL at this point */
624 	if (seed)
625 		list_splice_tail(seed, &seedlist);
626 
627 	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
628 	list_add_tail(&vdata.list, &vdatalist);
629 	for (i = 2; 0 < i; i--) {
630 		/* first round uses 0x0, second 0x1 */
631 		unsigned char prefix = DRBG_PREFIX0;
632 		if (1 == i)
633 			prefix = DRBG_PREFIX1;
634 		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
635 		seed2.buf = &prefix;
636 		ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
637 		if (ret)
638 			return ret;
639 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
640 
641 		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
642 		ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
643 		if (ret)
644 			return ret;
645 
646 		/* 10.1.2.2 step 3 */
647 		if (!seed)
648 			return ret;
649 	}
650 
651 	return 0;
652 }
653 
654 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
655 static int drbg_hmac_generate(struct drbg_state *drbg,
656 			      unsigned char *buf,
657 			      unsigned int buflen,
658 			      struct list_head *addtl)
659 {
660 	int len = 0;
661 	int ret = 0;
662 	struct drbg_string data;
663 	LIST_HEAD(datalist);
664 
665 	/* 10.1.2.5 step 2 */
666 	if (addtl && !list_empty(addtl)) {
667 		ret = drbg_hmac_update(drbg, addtl, 1);
668 		if (ret)
669 			return ret;
670 	}
671 
672 	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
673 	list_add_tail(&data.list, &datalist);
674 	while (len < buflen) {
675 		unsigned int outlen = 0;
676 		/* 10.1.2.5 step 4.1 */
677 		ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
678 		if (ret)
679 			return ret;
680 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
681 			  drbg_blocklen(drbg) : (buflen - len);
682 
683 		/* 10.1.2.5 step 4.2 */
684 		memcpy(buf + len, drbg->V, outlen);
685 		len += outlen;
686 	}
687 
688 	/* 10.1.2.5 step 6 */
689 	if (addtl && !list_empty(addtl))
690 		ret = drbg_hmac_update(drbg, addtl, 1);
691 	else
692 		ret = drbg_hmac_update(drbg, NULL, 1);
693 	if (ret)
694 		return ret;
695 
696 	return len;
697 }
698 
699 static const struct drbg_state_ops drbg_hmac_ops = {
700 	.update		= drbg_hmac_update,
701 	.generate	= drbg_hmac_generate,
702 	.crypto_init	= drbg_init_hash_kernel,
703 	.crypto_fini	= drbg_fini_hash_kernel,
704 };
705 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
706 
707 /******************************************************************
708  * Hash DRBG callback functions
709  ******************************************************************/
710 
711 #ifdef CONFIG_CRYPTO_DRBG_HASH
712 #define CRYPTO_DRBG_HASH_STRING "HASH "
713 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
714 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
715 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
716 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
717 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
718 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
719 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
720 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
721 
722 /*
723  * Increment buffer
724  *
725  * @dst buffer to increment
726  * @add value to add
727  */
728 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
729 				const unsigned char *add, size_t addlen)
730 {
731 	/* implied: dstlen > addlen */
732 	unsigned char *dstptr;
733 	const unsigned char *addptr;
734 	unsigned int remainder = 0;
735 	size_t len = addlen;
736 
737 	dstptr = dst + (dstlen-1);
738 	addptr = add + (addlen-1);
739 	while (len) {
740 		remainder += *dstptr + *addptr;
741 		*dstptr = remainder & 0xff;
742 		remainder >>= 8;
743 		len--; dstptr--; addptr--;
744 	}
745 	len = dstlen - addlen;
746 	while (len && remainder > 0) {
747 		remainder = *dstptr + 1;
748 		*dstptr = remainder & 0xff;
749 		remainder >>= 8;
750 		len--; dstptr--;
751 	}
752 }
753 
754 /*
755  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
756  * interlinked, the scratchpad is used as follows:
757  * drbg_hash_update
758  *	start: drbg->scratchpad
759  *	length: drbg_statelen(drbg)
760  * drbg_hash_df:
761  *	start: drbg->scratchpad + drbg_statelen(drbg)
762  *	length: drbg_blocklen(drbg)
763  *
764  * drbg_hash_process_addtl uses the scratchpad, but fully completes
765  * before either of the functions mentioned before are invoked. Therefore,
766  * drbg_hash_process_addtl does not need to be specifically considered.
767  */
768 
769 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
770 static int drbg_hash_df(struct drbg_state *drbg,
771 			unsigned char *outval, size_t outlen,
772 			struct list_head *entropylist)
773 {
774 	int ret = 0;
775 	size_t len = 0;
776 	unsigned char input[5];
777 	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
778 	struct drbg_string data;
779 
780 	/* 10.4.1 step 3 */
781 	input[0] = 1;
782 	drbg_cpu_to_be32((outlen * 8), &input[1]);
783 
784 	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
785 	drbg_string_fill(&data, input, 5);
786 	list_add(&data.list, entropylist);
787 
788 	/* 10.4.1 step 4 */
789 	while (len < outlen) {
790 		short blocklen = 0;
791 		/* 10.4.1 step 4.1 */
792 		ret = drbg_kcapi_hash(drbg, tmp, entropylist);
793 		if (ret)
794 			goto out;
795 		/* 10.4.1 step 4.2 */
796 		input[0]++;
797 		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
798 			    drbg_blocklen(drbg) : (outlen - len);
799 		memcpy(outval + len, tmp, blocklen);
800 		len += blocklen;
801 	}
802 
803 out:
804 	memset(tmp, 0, drbg_blocklen(drbg));
805 	return ret;
806 }
807 
808 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
809 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
810 			    int reseed)
811 {
812 	int ret = 0;
813 	struct drbg_string data1, data2;
814 	LIST_HEAD(datalist);
815 	LIST_HEAD(datalist2);
816 	unsigned char *V = drbg->scratchpad;
817 	unsigned char prefix = DRBG_PREFIX1;
818 
819 	if (!seed)
820 		return -EINVAL;
821 
822 	if (reseed) {
823 		/* 10.1.1.3 step 1 */
824 		memcpy(V, drbg->V, drbg_statelen(drbg));
825 		drbg_string_fill(&data1, &prefix, 1);
826 		list_add_tail(&data1.list, &datalist);
827 		drbg_string_fill(&data2, V, drbg_statelen(drbg));
828 		list_add_tail(&data2.list, &datalist);
829 	}
830 	list_splice_tail(seed, &datalist);
831 
832 	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
833 	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
834 	if (ret)
835 		goto out;
836 
837 	/* 10.1.1.2 / 10.1.1.3 step 4  */
838 	prefix = DRBG_PREFIX0;
839 	drbg_string_fill(&data1, &prefix, 1);
840 	list_add_tail(&data1.list, &datalist2);
841 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
842 	list_add_tail(&data2.list, &datalist2);
843 	/* 10.1.1.2 / 10.1.1.3 step 4 */
844 	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
845 
846 out:
847 	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
848 	return ret;
849 }
850 
851 /* processing of additional information string for Hash DRBG */
852 static int drbg_hash_process_addtl(struct drbg_state *drbg,
853 				   struct list_head *addtl)
854 {
855 	int ret = 0;
856 	struct drbg_string data1, data2;
857 	LIST_HEAD(datalist);
858 	unsigned char prefix = DRBG_PREFIX2;
859 
860 	/* 10.1.1.4 step 2 */
861 	if (!addtl || list_empty(addtl))
862 		return 0;
863 
864 	/* 10.1.1.4 step 2a */
865 	drbg_string_fill(&data1, &prefix, 1);
866 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
867 	list_add_tail(&data1.list, &datalist);
868 	list_add_tail(&data2.list, &datalist);
869 	list_splice_tail(addtl, &datalist);
870 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
871 	if (ret)
872 		goto out;
873 
874 	/* 10.1.1.4 step 2b */
875 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
876 		     drbg->scratchpad, drbg_blocklen(drbg));
877 
878 out:
879 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
880 	return ret;
881 }
882 
883 /* Hashgen defined in 10.1.1.4 */
884 static int drbg_hash_hashgen(struct drbg_state *drbg,
885 			     unsigned char *buf,
886 			     unsigned int buflen)
887 {
888 	int len = 0;
889 	int ret = 0;
890 	unsigned char *src = drbg->scratchpad;
891 	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
892 	struct drbg_string data;
893 	LIST_HEAD(datalist);
894 
895 	/* 10.1.1.4 step hashgen 2 */
896 	memcpy(src, drbg->V, drbg_statelen(drbg));
897 
898 	drbg_string_fill(&data, src, drbg_statelen(drbg));
899 	list_add_tail(&data.list, &datalist);
900 	while (len < buflen) {
901 		unsigned int outlen = 0;
902 		/* 10.1.1.4 step hashgen 4.1 */
903 		ret = drbg_kcapi_hash(drbg, dst, &datalist);
904 		if (ret) {
905 			len = ret;
906 			goto out;
907 		}
908 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
909 			  drbg_blocklen(drbg) : (buflen - len);
910 		/* 10.1.1.4 step hashgen 4.2 */
911 		memcpy(buf + len, dst, outlen);
912 		len += outlen;
913 		/* 10.1.1.4 hashgen step 4.3 */
914 		if (len < buflen)
915 			crypto_inc(src, drbg_statelen(drbg));
916 	}
917 
918 out:
919 	memset(drbg->scratchpad, 0,
920 	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
921 	return len;
922 }
923 
924 /* generate function for Hash DRBG as defined in  10.1.1.4 */
925 static int drbg_hash_generate(struct drbg_state *drbg,
926 			      unsigned char *buf, unsigned int buflen,
927 			      struct list_head *addtl)
928 {
929 	int len = 0;
930 	int ret = 0;
931 	union {
932 		unsigned char req[8];
933 		__be64 req_int;
934 	} u;
935 	unsigned char prefix = DRBG_PREFIX3;
936 	struct drbg_string data1, data2;
937 	LIST_HEAD(datalist);
938 
939 	/* 10.1.1.4 step 2 */
940 	ret = drbg_hash_process_addtl(drbg, addtl);
941 	if (ret)
942 		return ret;
943 	/* 10.1.1.4 step 3 */
944 	len = drbg_hash_hashgen(drbg, buf, buflen);
945 
946 	/* this is the value H as documented in 10.1.1.4 */
947 	/* 10.1.1.4 step 4 */
948 	drbg_string_fill(&data1, &prefix, 1);
949 	list_add_tail(&data1.list, &datalist);
950 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
951 	list_add_tail(&data2.list, &datalist);
952 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
953 	if (ret) {
954 		len = ret;
955 		goto out;
956 	}
957 
958 	/* 10.1.1.4 step 5 */
959 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
960 		     drbg->scratchpad, drbg_blocklen(drbg));
961 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
962 		     drbg->C, drbg_statelen(drbg));
963 	u.req_int = cpu_to_be64(drbg->reseed_ctr);
964 	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
965 
966 out:
967 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
968 	return len;
969 }
970 
971 /*
972  * scratchpad usage: as update and generate are used isolated, both
973  * can use the scratchpad
974  */
975 static const struct drbg_state_ops drbg_hash_ops = {
976 	.update		= drbg_hash_update,
977 	.generate	= drbg_hash_generate,
978 	.crypto_init	= drbg_init_hash_kernel,
979 	.crypto_fini	= drbg_fini_hash_kernel,
980 };
981 #endif /* CONFIG_CRYPTO_DRBG_HASH */
982 
983 /******************************************************************
984  * Functions common for DRBG implementations
985  ******************************************************************/
986 
987 static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
988 			      int reseed)
989 {
990 	int ret = drbg->d_ops->update(drbg, seed, reseed);
991 
992 	if (ret)
993 		return ret;
994 
995 	drbg->seeded = true;
996 	/* 10.1.1.2 / 10.1.1.3 step 5 */
997 	drbg->reseed_ctr = 1;
998 
999 	return ret;
1000 }
1001 
1002 static void drbg_async_seed(struct work_struct *work)
1003 {
1004 	struct drbg_string data;
1005 	LIST_HEAD(seedlist);
1006 	struct drbg_state *drbg = container_of(work, struct drbg_state,
1007 					       seed_work);
1008 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1009 	unsigned char entropy[32];
1010 
1011 	BUG_ON(!entropylen);
1012 	BUG_ON(entropylen > sizeof(entropy));
1013 	get_random_bytes(entropy, entropylen);
1014 
1015 	drbg_string_fill(&data, entropy, entropylen);
1016 	list_add_tail(&data.list, &seedlist);
1017 
1018 	mutex_lock(&drbg->drbg_mutex);
1019 
1020 	/* If nonblocking pool is initialized, deactivate Jitter RNG */
1021 	crypto_free_rng(drbg->jent);
1022 	drbg->jent = NULL;
1023 
1024 	/* Set seeded to false so that if __drbg_seed fails the
1025 	 * next generate call will trigger a reseed.
1026 	 */
1027 	drbg->seeded = false;
1028 
1029 	__drbg_seed(drbg, &seedlist, true);
1030 
1031 	if (drbg->seeded)
1032 		drbg->reseed_threshold = drbg_max_requests(drbg);
1033 
1034 	mutex_unlock(&drbg->drbg_mutex);
1035 
1036 	memzero_explicit(entropy, entropylen);
1037 }
1038 
1039 /*
1040  * Seeding or reseeding of the DRBG
1041  *
1042  * @drbg: DRBG state struct
1043  * @pers: personalization / additional information buffer
1044  * @reseed: 0 for initial seed process, 1 for reseeding
1045  *
1046  * return:
1047  *	0 on success
1048  *	error value otherwise
1049  */
1050 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1051 		     bool reseed)
1052 {
1053 	int ret;
1054 	unsigned char entropy[((32 + 16) * 2)];
1055 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1056 	struct drbg_string data1;
1057 	LIST_HEAD(seedlist);
1058 
1059 	/* 9.1 / 9.2 / 9.3.1 step 3 */
1060 	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1061 		pr_devel("DRBG: personalization string too long %zu\n",
1062 			 pers->len);
1063 		return -EINVAL;
1064 	}
1065 
1066 	if (list_empty(&drbg->test_data.list)) {
1067 		drbg_string_fill(&data1, drbg->test_data.buf,
1068 				 drbg->test_data.len);
1069 		pr_devel("DRBG: using test entropy\n");
1070 	} else {
1071 		/*
1072 		 * Gather entropy equal to the security strength of the DRBG.
1073 		 * With a derivation function, a nonce is required in addition
1074 		 * to the entropy. A nonce must be at least 1/2 of the security
1075 		 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1076 		 * of the strength. The consideration of a nonce is only
1077 		 * applicable during initial seeding.
1078 		 */
1079 		BUG_ON(!entropylen);
1080 		if (!reseed)
1081 			entropylen = ((entropylen + 1) / 2) * 3;
1082 		BUG_ON((entropylen * 2) > sizeof(entropy));
1083 
1084 		/* Get seed from in-kernel /dev/urandom */
1085 		get_random_bytes(entropy, entropylen);
1086 
1087 		if (!drbg->jent) {
1088 			drbg_string_fill(&data1, entropy, entropylen);
1089 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1090 				 entropylen);
1091 		} else {
1092 			/* Get seed from Jitter RNG */
1093 			ret = crypto_rng_get_bytes(drbg->jent,
1094 						   entropy + entropylen,
1095 						   entropylen);
1096 			if (ret) {
1097 				pr_devel("DRBG: jent failed with %d\n", ret);
1098 				return ret;
1099 			}
1100 
1101 			drbg_string_fill(&data1, entropy, entropylen * 2);
1102 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1103 				 entropylen * 2);
1104 		}
1105 	}
1106 	list_add_tail(&data1.list, &seedlist);
1107 
1108 	/*
1109 	 * concatenation of entropy with personalization str / addtl input)
1110 	 * the variable pers is directly handed in by the caller, so check its
1111 	 * contents whether it is appropriate
1112 	 */
1113 	if (pers && pers->buf && 0 < pers->len) {
1114 		list_add_tail(&pers->list, &seedlist);
1115 		pr_devel("DRBG: using personalization string\n");
1116 	}
1117 
1118 	if (!reseed) {
1119 		memset(drbg->V, 0, drbg_statelen(drbg));
1120 		memset(drbg->C, 0, drbg_statelen(drbg));
1121 	}
1122 
1123 	ret = __drbg_seed(drbg, &seedlist, reseed);
1124 
1125 	memzero_explicit(entropy, entropylen * 2);
1126 
1127 	return ret;
1128 }
1129 
1130 /* Free all substructures in a DRBG state without the DRBG state structure */
1131 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1132 {
1133 	if (!drbg)
1134 		return;
1135 	kzfree(drbg->V);
1136 	drbg->Vbuf = NULL;
1137 	kzfree(drbg->C);
1138 	drbg->Cbuf = NULL;
1139 	kzfree(drbg->scratchpadbuf);
1140 	drbg->scratchpadbuf = NULL;
1141 	drbg->reseed_ctr = 0;
1142 	drbg->d_ops = NULL;
1143 	drbg->core = NULL;
1144 }
1145 
1146 /*
1147  * Allocate all sub-structures for a DRBG state.
1148  * The DRBG state structure must already be allocated.
1149  */
1150 static inline int drbg_alloc_state(struct drbg_state *drbg)
1151 {
1152 	int ret = -ENOMEM;
1153 	unsigned int sb_size = 0;
1154 
1155 	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1156 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1157 	case DRBG_HMAC:
1158 		drbg->d_ops = &drbg_hmac_ops;
1159 		break;
1160 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1161 #ifdef CONFIG_CRYPTO_DRBG_HASH
1162 	case DRBG_HASH:
1163 		drbg->d_ops = &drbg_hash_ops;
1164 		break;
1165 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1166 #ifdef CONFIG_CRYPTO_DRBG_CTR
1167 	case DRBG_CTR:
1168 		drbg->d_ops = &drbg_ctr_ops;
1169 		break;
1170 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1171 	default:
1172 		ret = -EOPNOTSUPP;
1173 		goto err;
1174 	}
1175 
1176 	ret = drbg->d_ops->crypto_init(drbg);
1177 	if (ret < 0)
1178 		goto err;
1179 
1180 	drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1181 	if (!drbg->Vbuf) {
1182 		ret = -ENOMEM;
1183 		goto fini;
1184 	}
1185 	drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1186 	drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1187 	if (!drbg->Cbuf) {
1188 		ret = -ENOMEM;
1189 		goto fini;
1190 	}
1191 	drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1192 	/* scratchpad is only generated for CTR and Hash */
1193 	if (drbg->core->flags & DRBG_HMAC)
1194 		sb_size = 0;
1195 	else if (drbg->core->flags & DRBG_CTR)
1196 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1197 			  drbg_statelen(drbg) +	/* df_data */
1198 			  drbg_blocklen(drbg) +	/* pad */
1199 			  drbg_blocklen(drbg) +	/* iv */
1200 			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1201 	else
1202 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1203 
1204 	if (0 < sb_size) {
1205 		drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1206 		if (!drbg->scratchpadbuf) {
1207 			ret = -ENOMEM;
1208 			goto fini;
1209 		}
1210 		drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1211 	}
1212 
1213 	return 0;
1214 
1215 fini:
1216 	drbg->d_ops->crypto_fini(drbg);
1217 err:
1218 	drbg_dealloc_state(drbg);
1219 	return ret;
1220 }
1221 
1222 /*************************************************************************
1223  * DRBG interface functions
1224  *************************************************************************/
1225 
1226 /*
1227  * DRBG generate function as required by SP800-90A - this function
1228  * generates random numbers
1229  *
1230  * @drbg DRBG state handle
1231  * @buf Buffer where to store the random numbers -- the buffer must already
1232  *      be pre-allocated by caller
1233  * @buflen Length of output buffer - this value defines the number of random
1234  *	   bytes pulled from DRBG
1235  * @addtl Additional input that is mixed into state, may be NULL -- note
1236  *	  the entropy is pulled by the DRBG internally unconditionally
1237  *	  as defined in SP800-90A. The additional input is mixed into
1238  *	  the state in addition to the pulled entropy.
1239  *
1240  * return: 0 when all bytes are generated; < 0 in case of an error
1241  */
1242 static int drbg_generate(struct drbg_state *drbg,
1243 			 unsigned char *buf, unsigned int buflen,
1244 			 struct drbg_string *addtl)
1245 {
1246 	int len = 0;
1247 	LIST_HEAD(addtllist);
1248 
1249 	if (!drbg->core) {
1250 		pr_devel("DRBG: not yet seeded\n");
1251 		return -EINVAL;
1252 	}
1253 	if (0 == buflen || !buf) {
1254 		pr_devel("DRBG: no output buffer provided\n");
1255 		return -EINVAL;
1256 	}
1257 	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1258 		pr_devel("DRBG: wrong format of additional information\n");
1259 		return -EINVAL;
1260 	}
1261 
1262 	/* 9.3.1 step 2 */
1263 	len = -EINVAL;
1264 	if (buflen > (drbg_max_request_bytes(drbg))) {
1265 		pr_devel("DRBG: requested random numbers too large %u\n",
1266 			 buflen);
1267 		goto err;
1268 	}
1269 
1270 	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1271 
1272 	/* 9.3.1 step 4 */
1273 	if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1274 		pr_devel("DRBG: additional information string too long %zu\n",
1275 			 addtl->len);
1276 		goto err;
1277 	}
1278 	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1279 
1280 	/*
1281 	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1282 	 * here. The spec is a bit convoluted here, we make it simpler.
1283 	 */
1284 	if (drbg->reseed_threshold < drbg->reseed_ctr)
1285 		drbg->seeded = false;
1286 
1287 	if (drbg->pr || !drbg->seeded) {
1288 		pr_devel("DRBG: reseeding before generation (prediction "
1289 			 "resistance: %s, state %s)\n",
1290 			 drbg->pr ? "true" : "false",
1291 			 drbg->seeded ? "seeded" : "unseeded");
1292 		/* 9.3.1 steps 7.1 through 7.3 */
1293 		len = drbg_seed(drbg, addtl, true);
1294 		if (len)
1295 			goto err;
1296 		/* 9.3.1 step 7.4 */
1297 		addtl = NULL;
1298 	}
1299 
1300 	if (addtl && 0 < addtl->len)
1301 		list_add_tail(&addtl->list, &addtllist);
1302 	/* 9.3.1 step 8 and 10 */
1303 	len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1304 
1305 	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1306 	drbg->reseed_ctr++;
1307 	if (0 >= len)
1308 		goto err;
1309 
1310 	/*
1311 	 * Section 11.3.3 requires to re-perform self tests after some
1312 	 * generated random numbers. The chosen value after which self
1313 	 * test is performed is arbitrary, but it should be reasonable.
1314 	 * However, we do not perform the self tests because of the following
1315 	 * reasons: it is mathematically impossible that the initial self tests
1316 	 * were successfully and the following are not. If the initial would
1317 	 * pass and the following would not, the kernel integrity is violated.
1318 	 * In this case, the entire kernel operation is questionable and it
1319 	 * is unlikely that the integrity violation only affects the
1320 	 * correct operation of the DRBG.
1321 	 *
1322 	 * Albeit the following code is commented out, it is provided in
1323 	 * case somebody has a need to implement the test of 11.3.3.
1324 	 */
1325 #if 0
1326 	if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1327 		int err = 0;
1328 		pr_devel("DRBG: start to perform self test\n");
1329 		if (drbg->core->flags & DRBG_HMAC)
1330 			err = alg_test("drbg_pr_hmac_sha256",
1331 				       "drbg_pr_hmac_sha256", 0, 0);
1332 		else if (drbg->core->flags & DRBG_CTR)
1333 			err = alg_test("drbg_pr_ctr_aes128",
1334 				       "drbg_pr_ctr_aes128", 0, 0);
1335 		else
1336 			err = alg_test("drbg_pr_sha256",
1337 				       "drbg_pr_sha256", 0, 0);
1338 		if (err) {
1339 			pr_err("DRBG: periodical self test failed\n");
1340 			/*
1341 			 * uninstantiate implies that from now on, only errors
1342 			 * are returned when reusing this DRBG cipher handle
1343 			 */
1344 			drbg_uninstantiate(drbg);
1345 			return 0;
1346 		} else {
1347 			pr_devel("DRBG: self test successful\n");
1348 		}
1349 	}
1350 #endif
1351 
1352 	/*
1353 	 * All operations were successful, return 0 as mandated by
1354 	 * the kernel crypto API interface.
1355 	 */
1356 	len = 0;
1357 err:
1358 	return len;
1359 }
1360 
1361 /*
1362  * Wrapper around drbg_generate which can pull arbitrary long strings
1363  * from the DRBG without hitting the maximum request limitation.
1364  *
1365  * Parameters: see drbg_generate
1366  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1367  *		 the entire drbg_generate_long request fails
1368  */
1369 static int drbg_generate_long(struct drbg_state *drbg,
1370 			      unsigned char *buf, unsigned int buflen,
1371 			      struct drbg_string *addtl)
1372 {
1373 	unsigned int len = 0;
1374 	unsigned int slice = 0;
1375 	do {
1376 		int err = 0;
1377 		unsigned int chunk = 0;
1378 		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1379 		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1380 		mutex_lock(&drbg->drbg_mutex);
1381 		err = drbg_generate(drbg, buf + len, chunk, addtl);
1382 		mutex_unlock(&drbg->drbg_mutex);
1383 		if (0 > err)
1384 			return err;
1385 		len += chunk;
1386 	} while (slice > 0 && (len < buflen));
1387 	return 0;
1388 }
1389 
1390 static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1391 {
1392 	struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1393 					       random_ready);
1394 
1395 	schedule_work(&drbg->seed_work);
1396 }
1397 
1398 static int drbg_prepare_hrng(struct drbg_state *drbg)
1399 {
1400 	int err;
1401 
1402 	/* We do not need an HRNG in test mode. */
1403 	if (list_empty(&drbg->test_data.list))
1404 		return 0;
1405 
1406 	INIT_WORK(&drbg->seed_work, drbg_async_seed);
1407 
1408 	drbg->random_ready.owner = THIS_MODULE;
1409 	drbg->random_ready.func = drbg_schedule_async_seed;
1410 
1411 	err = add_random_ready_callback(&drbg->random_ready);
1412 
1413 	switch (err) {
1414 	case 0:
1415 		break;
1416 
1417 	case -EALREADY:
1418 		err = 0;
1419 		/* fall through */
1420 
1421 	default:
1422 		drbg->random_ready.func = NULL;
1423 		return err;
1424 	}
1425 
1426 	drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1427 
1428 	/*
1429 	 * Require frequent reseeds until the seed source is fully
1430 	 * initialized.
1431 	 */
1432 	drbg->reseed_threshold = 50;
1433 
1434 	return err;
1435 }
1436 
1437 /*
1438  * DRBG instantiation function as required by SP800-90A - this function
1439  * sets up the DRBG handle, performs the initial seeding and all sanity
1440  * checks required by SP800-90A
1441  *
1442  * @drbg memory of state -- if NULL, new memory is allocated
1443  * @pers Personalization string that is mixed into state, may be NULL -- note
1444  *	 the entropy is pulled by the DRBG internally unconditionally
1445  *	 as defined in SP800-90A. The additional input is mixed into
1446  *	 the state in addition to the pulled entropy.
1447  * @coreref reference to core
1448  * @pr prediction resistance enabled
1449  *
1450  * return
1451  *	0 on success
1452  *	error value otherwise
1453  */
1454 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1455 			    int coreref, bool pr)
1456 {
1457 	int ret;
1458 	bool reseed = true;
1459 
1460 	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1461 		 "%s\n", coreref, pr ? "enabled" : "disabled");
1462 	mutex_lock(&drbg->drbg_mutex);
1463 
1464 	/* 9.1 step 1 is implicit with the selected DRBG type */
1465 
1466 	/*
1467 	 * 9.1 step 2 is implicit as caller can select prediction resistance
1468 	 * and the flag is copied into drbg->flags --
1469 	 * all DRBG types support prediction resistance
1470 	 */
1471 
1472 	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1473 
1474 	if (!drbg->core) {
1475 		drbg->core = &drbg_cores[coreref];
1476 		drbg->pr = pr;
1477 		drbg->seeded = false;
1478 		drbg->reseed_threshold = drbg_max_requests(drbg);
1479 
1480 		ret = drbg_alloc_state(drbg);
1481 		if (ret)
1482 			goto unlock;
1483 
1484 		ret = drbg_prepare_hrng(drbg);
1485 		if (ret)
1486 			goto free_everything;
1487 
1488 		if (IS_ERR(drbg->jent)) {
1489 			ret = PTR_ERR(drbg->jent);
1490 			drbg->jent = NULL;
1491 			if (fips_enabled || ret != -ENOENT)
1492 				goto free_everything;
1493 			pr_info("DRBG: Continuing without Jitter RNG\n");
1494 		}
1495 
1496 		reseed = false;
1497 	}
1498 
1499 	ret = drbg_seed(drbg, pers, reseed);
1500 
1501 	if (ret && !reseed)
1502 		goto free_everything;
1503 
1504 	mutex_unlock(&drbg->drbg_mutex);
1505 	return ret;
1506 
1507 unlock:
1508 	mutex_unlock(&drbg->drbg_mutex);
1509 	return ret;
1510 
1511 free_everything:
1512 	mutex_unlock(&drbg->drbg_mutex);
1513 	drbg_uninstantiate(drbg);
1514 	return ret;
1515 }
1516 
1517 /*
1518  * DRBG uninstantiate function as required by SP800-90A - this function
1519  * frees all buffers and the DRBG handle
1520  *
1521  * @drbg DRBG state handle
1522  *
1523  * return
1524  *	0 on success
1525  */
1526 static int drbg_uninstantiate(struct drbg_state *drbg)
1527 {
1528 	if (drbg->random_ready.func) {
1529 		del_random_ready_callback(&drbg->random_ready);
1530 		cancel_work_sync(&drbg->seed_work);
1531 		crypto_free_rng(drbg->jent);
1532 		drbg->jent = NULL;
1533 	}
1534 
1535 	if (drbg->d_ops)
1536 		drbg->d_ops->crypto_fini(drbg);
1537 	drbg_dealloc_state(drbg);
1538 	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1539 	return 0;
1540 }
1541 
1542 /*
1543  * Helper function for setting the test data in the DRBG
1544  *
1545  * @drbg DRBG state handle
1546  * @data test data
1547  * @len test data length
1548  */
1549 static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1550 				   const u8 *data, unsigned int len)
1551 {
1552 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1553 
1554 	mutex_lock(&drbg->drbg_mutex);
1555 	drbg_string_fill(&drbg->test_data, data, len);
1556 	mutex_unlock(&drbg->drbg_mutex);
1557 }
1558 
1559 /***************************************************************
1560  * Kernel crypto API cipher invocations requested by DRBG
1561  ***************************************************************/
1562 
1563 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1564 struct sdesc {
1565 	struct shash_desc shash;
1566 	char ctx[];
1567 };
1568 
1569 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1570 {
1571 	struct sdesc *sdesc;
1572 	struct crypto_shash *tfm;
1573 
1574 	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1575 	if (IS_ERR(tfm)) {
1576 		pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1577 				drbg->core->backend_cra_name);
1578 		return PTR_ERR(tfm);
1579 	}
1580 	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1581 	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1582 			GFP_KERNEL);
1583 	if (!sdesc) {
1584 		crypto_free_shash(tfm);
1585 		return -ENOMEM;
1586 	}
1587 
1588 	sdesc->shash.tfm = tfm;
1589 	sdesc->shash.flags = 0;
1590 	drbg->priv_data = sdesc;
1591 
1592 	return crypto_shash_alignmask(tfm);
1593 }
1594 
1595 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1596 {
1597 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1598 	if (sdesc) {
1599 		crypto_free_shash(sdesc->shash.tfm);
1600 		kzfree(sdesc);
1601 	}
1602 	drbg->priv_data = NULL;
1603 	return 0;
1604 }
1605 
1606 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1607 				  const unsigned char *key)
1608 {
1609 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1610 
1611 	crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1612 }
1613 
1614 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1615 			   const struct list_head *in)
1616 {
1617 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1618 	struct drbg_string *input = NULL;
1619 
1620 	crypto_shash_init(&sdesc->shash);
1621 	list_for_each_entry(input, in, list)
1622 		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1623 	return crypto_shash_final(&sdesc->shash, outval);
1624 }
1625 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1626 
1627 #ifdef CONFIG_CRYPTO_DRBG_CTR
1628 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1629 {
1630 	struct crypto_cipher *tfm =
1631 		(struct crypto_cipher *)drbg->priv_data;
1632 	if (tfm)
1633 		crypto_free_cipher(tfm);
1634 	drbg->priv_data = NULL;
1635 
1636 	if (drbg->ctr_handle)
1637 		crypto_free_skcipher(drbg->ctr_handle);
1638 	drbg->ctr_handle = NULL;
1639 
1640 	if (drbg->ctr_req)
1641 		skcipher_request_free(drbg->ctr_req);
1642 	drbg->ctr_req = NULL;
1643 
1644 	kfree(drbg->ctr_null_value_buf);
1645 	drbg->ctr_null_value = NULL;
1646 
1647 	return 0;
1648 }
1649 
1650 static void drbg_skcipher_cb(struct crypto_async_request *req, int error)
1651 {
1652 	struct drbg_state *drbg = req->data;
1653 
1654 	if (error == -EINPROGRESS)
1655 		return;
1656 	drbg->ctr_async_err = error;
1657 	complete(&drbg->ctr_completion);
1658 }
1659 
1660 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1661 {
1662 	struct crypto_cipher *tfm;
1663 	struct crypto_skcipher *sk_tfm;
1664 	struct skcipher_request *req;
1665 	unsigned int alignmask;
1666 	char ctr_name[CRYPTO_MAX_ALG_NAME];
1667 
1668 	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1669 	if (IS_ERR(tfm)) {
1670 		pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1671 				drbg->core->backend_cra_name);
1672 		return PTR_ERR(tfm);
1673 	}
1674 	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1675 	drbg->priv_data = tfm;
1676 
1677 	if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1678 	    drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1679 		drbg_fini_sym_kernel(drbg);
1680 		return -EINVAL;
1681 	}
1682 	sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1683 	if (IS_ERR(sk_tfm)) {
1684 		pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1685 				ctr_name);
1686 		drbg_fini_sym_kernel(drbg);
1687 		return PTR_ERR(sk_tfm);
1688 	}
1689 	drbg->ctr_handle = sk_tfm;
1690 
1691 	req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1692 	if (!req) {
1693 		pr_info("DRBG: could not allocate request queue\n");
1694 		drbg_fini_sym_kernel(drbg);
1695 		return -ENOMEM;
1696 	}
1697 	drbg->ctr_req = req;
1698 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1699 					drbg_skcipher_cb, drbg);
1700 
1701 	alignmask = crypto_skcipher_alignmask(sk_tfm);
1702 	drbg->ctr_null_value_buf = kzalloc(DRBG_CTR_NULL_LEN + alignmask,
1703 					   GFP_KERNEL);
1704 	if (!drbg->ctr_null_value_buf) {
1705 		drbg_fini_sym_kernel(drbg);
1706 		return -ENOMEM;
1707 	}
1708 	drbg->ctr_null_value = (u8 *)PTR_ALIGN(drbg->ctr_null_value_buf,
1709 					       alignmask + 1);
1710 
1711 	return alignmask;
1712 }
1713 
1714 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1715 				 const unsigned char *key)
1716 {
1717 	struct crypto_cipher *tfm =
1718 		(struct crypto_cipher *)drbg->priv_data;
1719 
1720 	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1721 }
1722 
1723 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1724 			  const struct drbg_string *in)
1725 {
1726 	struct crypto_cipher *tfm =
1727 		(struct crypto_cipher *)drbg->priv_data;
1728 
1729 	/* there is only component in *in */
1730 	BUG_ON(in->len < drbg_blocklen(drbg));
1731 	crypto_cipher_encrypt_one(tfm, outval, in->buf);
1732 	return 0;
1733 }
1734 
1735 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1736 			      u8 *inbuf, u32 inlen,
1737 			      u8 *outbuf, u32 outlen)
1738 {
1739 	struct scatterlist sg_in;
1740 
1741 	sg_init_one(&sg_in, inbuf, inlen);
1742 
1743 	while (outlen) {
1744 		u32 cryptlen = min_t(u32, inlen, outlen);
1745 		struct scatterlist sg_out;
1746 		int ret;
1747 
1748 		sg_init_one(&sg_out, outbuf, cryptlen);
1749 		skcipher_request_set_crypt(drbg->ctr_req, &sg_in, &sg_out,
1750 					   cryptlen, drbg->V);
1751 		ret = crypto_skcipher_encrypt(drbg->ctr_req);
1752 		switch (ret) {
1753 		case 0:
1754 			break;
1755 		case -EINPROGRESS:
1756 		case -EBUSY:
1757 			ret = wait_for_completion_interruptible(
1758 				&drbg->ctr_completion);
1759 			if (!ret && !drbg->ctr_async_err) {
1760 				reinit_completion(&drbg->ctr_completion);
1761 				break;
1762 			}
1763 		default:
1764 			return ret;
1765 		}
1766 		init_completion(&drbg->ctr_completion);
1767 
1768 		outlen -= cryptlen;
1769 	}
1770 
1771 	return 0;
1772 }
1773 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1774 
1775 /***************************************************************
1776  * Kernel crypto API interface to register DRBG
1777  ***************************************************************/
1778 
1779 /*
1780  * Look up the DRBG flags by given kernel crypto API cra_name
1781  * The code uses the drbg_cores definition to do this
1782  *
1783  * @cra_name kernel crypto API cra_name
1784  * @coreref reference to integer which is filled with the pointer to
1785  *  the applicable core
1786  * @pr reference for setting prediction resistance
1787  *
1788  * return: flags
1789  */
1790 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1791 					 int *coreref, bool *pr)
1792 {
1793 	int i = 0;
1794 	size_t start = 0;
1795 	int len = 0;
1796 
1797 	*pr = true;
1798 	/* disassemble the names */
1799 	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1800 		start = 10;
1801 		*pr = false;
1802 	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1803 		start = 8;
1804 	} else {
1805 		return;
1806 	}
1807 
1808 	/* remove the first part */
1809 	len = strlen(cra_driver_name) - start;
1810 	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1811 		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1812 			    len)) {
1813 			*coreref = i;
1814 			return;
1815 		}
1816 	}
1817 }
1818 
1819 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1820 {
1821 	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1822 
1823 	mutex_init(&drbg->drbg_mutex);
1824 
1825 	return 0;
1826 }
1827 
1828 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1829 {
1830 	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1831 }
1832 
1833 /*
1834  * Generate random numbers invoked by the kernel crypto API:
1835  * The API of the kernel crypto API is extended as follows:
1836  *
1837  * src is additional input supplied to the RNG.
1838  * slen is the length of src.
1839  * dst is the output buffer where random data is to be stored.
1840  * dlen is the length of dst.
1841  */
1842 static int drbg_kcapi_random(struct crypto_rng *tfm,
1843 			     const u8 *src, unsigned int slen,
1844 			     u8 *dst, unsigned int dlen)
1845 {
1846 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1847 	struct drbg_string *addtl = NULL;
1848 	struct drbg_string string;
1849 
1850 	if (slen) {
1851 		/* linked list variable is now local to allow modification */
1852 		drbg_string_fill(&string, src, slen);
1853 		addtl = &string;
1854 	}
1855 
1856 	return drbg_generate_long(drbg, dst, dlen, addtl);
1857 }
1858 
1859 /*
1860  * Seed the DRBG invoked by the kernel crypto API
1861  */
1862 static int drbg_kcapi_seed(struct crypto_rng *tfm,
1863 			   const u8 *seed, unsigned int slen)
1864 {
1865 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1866 	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1867 	bool pr = false;
1868 	struct drbg_string string;
1869 	struct drbg_string *seed_string = NULL;
1870 	int coreref = 0;
1871 
1872 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1873 			      &pr);
1874 	if (0 < slen) {
1875 		drbg_string_fill(&string, seed, slen);
1876 		seed_string = &string;
1877 	}
1878 
1879 	return drbg_instantiate(drbg, seed_string, coreref, pr);
1880 }
1881 
1882 /***************************************************************
1883  * Kernel module: code to load the module
1884  ***************************************************************/
1885 
1886 /*
1887  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1888  * of the error handling.
1889  *
1890  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1891  * as seed source of get_random_bytes does not fail.
1892  *
1893  * Note 2: There is no sensible way of testing the reseed counter
1894  * enforcement, so skip it.
1895  */
1896 static inline int __init drbg_healthcheck_sanity(void)
1897 {
1898 	int len = 0;
1899 #define OUTBUFLEN 16
1900 	unsigned char buf[OUTBUFLEN];
1901 	struct drbg_state *drbg = NULL;
1902 	int ret = -EFAULT;
1903 	int rc = -EFAULT;
1904 	bool pr = false;
1905 	int coreref = 0;
1906 	struct drbg_string addtl;
1907 	size_t max_addtllen, max_request_bytes;
1908 
1909 	/* only perform test in FIPS mode */
1910 	if (!fips_enabled)
1911 		return 0;
1912 
1913 #ifdef CONFIG_CRYPTO_DRBG_CTR
1914 	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1915 #elif defined CONFIG_CRYPTO_DRBG_HASH
1916 	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1917 #else
1918 	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1919 #endif
1920 
1921 	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1922 	if (!drbg)
1923 		return -ENOMEM;
1924 
1925 	mutex_init(&drbg->drbg_mutex);
1926 	drbg->core = &drbg_cores[coreref];
1927 	drbg->reseed_threshold = drbg_max_requests(drbg);
1928 
1929 	/*
1930 	 * if the following tests fail, it is likely that there is a buffer
1931 	 * overflow as buf is much smaller than the requested or provided
1932 	 * string lengths -- in case the error handling does not succeed
1933 	 * we may get an OOPS. And we want to get an OOPS as this is a
1934 	 * grave bug.
1935 	 */
1936 
1937 	max_addtllen = drbg_max_addtl(drbg);
1938 	max_request_bytes = drbg_max_request_bytes(drbg);
1939 	drbg_string_fill(&addtl, buf, max_addtllen + 1);
1940 	/* overflow addtllen with additonal info string */
1941 	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1942 	BUG_ON(0 < len);
1943 	/* overflow max_bits */
1944 	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1945 	BUG_ON(0 < len);
1946 
1947 	/* overflow max addtllen with personalization string */
1948 	ret = drbg_seed(drbg, &addtl, false);
1949 	BUG_ON(0 == ret);
1950 	/* all tests passed */
1951 	rc = 0;
1952 
1953 	pr_devel("DRBG: Sanity tests for failure code paths successfully "
1954 		 "completed\n");
1955 
1956 	kfree(drbg);
1957 	return rc;
1958 }
1959 
1960 static struct rng_alg drbg_algs[22];
1961 
1962 /*
1963  * Fill the array drbg_algs used to register the different DRBGs
1964  * with the kernel crypto API. To fill the array, the information
1965  * from drbg_cores[] is used.
1966  */
1967 static inline void __init drbg_fill_array(struct rng_alg *alg,
1968 					  const struct drbg_core *core, int pr)
1969 {
1970 	int pos = 0;
1971 	static int priority = 200;
1972 
1973 	memcpy(alg->base.cra_name, "stdrng", 6);
1974 	if (pr) {
1975 		memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
1976 		pos = 8;
1977 	} else {
1978 		memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
1979 		pos = 10;
1980 	}
1981 	memcpy(alg->base.cra_driver_name + pos, core->cra_name,
1982 	       strlen(core->cra_name));
1983 
1984 	alg->base.cra_priority = priority;
1985 	priority++;
1986 	/*
1987 	 * If FIPS mode enabled, the selected DRBG shall have the
1988 	 * highest cra_priority over other stdrng instances to ensure
1989 	 * it is selected.
1990 	 */
1991 	if (fips_enabled)
1992 		alg->base.cra_priority += 200;
1993 
1994 	alg->base.cra_ctxsize 	= sizeof(struct drbg_state);
1995 	alg->base.cra_module	= THIS_MODULE;
1996 	alg->base.cra_init	= drbg_kcapi_init;
1997 	alg->base.cra_exit	= drbg_kcapi_cleanup;
1998 	alg->generate		= drbg_kcapi_random;
1999 	alg->seed		= drbg_kcapi_seed;
2000 	alg->set_ent		= drbg_kcapi_set_entropy;
2001 	alg->seedsize		= 0;
2002 }
2003 
2004 static int __init drbg_init(void)
2005 {
2006 	unsigned int i = 0; /* pointer to drbg_algs */
2007 	unsigned int j = 0; /* pointer to drbg_cores */
2008 	int ret;
2009 
2010 	ret = drbg_healthcheck_sanity();
2011 	if (ret)
2012 		return ret;
2013 
2014 	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2015 		pr_info("DRBG: Cannot register all DRBG types"
2016 			"(slots needed: %zu, slots available: %zu)\n",
2017 			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2018 		return -EFAULT;
2019 	}
2020 
2021 	/*
2022 	 * each DRBG definition can be used with PR and without PR, thus
2023 	 * we instantiate each DRBG in drbg_cores[] twice.
2024 	 *
2025 	 * As the order of placing them into the drbg_algs array matters
2026 	 * (the later DRBGs receive a higher cra_priority) we register the
2027 	 * prediction resistance DRBGs first as the should not be too
2028 	 * interesting.
2029 	 */
2030 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2031 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2032 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2033 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2034 	return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2035 }
2036 
2037 static void __exit drbg_exit(void)
2038 {
2039 	crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2040 }
2041 
2042 module_init(drbg_init);
2043 module_exit(drbg_exit);
2044 #ifndef CRYPTO_DRBG_HASH_STRING
2045 #define CRYPTO_DRBG_HASH_STRING ""
2046 #endif
2047 #ifndef CRYPTO_DRBG_HMAC_STRING
2048 #define CRYPTO_DRBG_HMAC_STRING ""
2049 #endif
2050 #ifndef CRYPTO_DRBG_CTR_STRING
2051 #define CRYPTO_DRBG_CTR_STRING ""
2052 #endif
2053 MODULE_LICENSE("GPL");
2054 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2055 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2056 		   "using following cores: "
2057 		   CRYPTO_DRBG_HASH_STRING
2058 		   CRYPTO_DRBG_HMAC_STRING
2059 		   CRYPTO_DRBG_CTR_STRING);
2060 MODULE_ALIAS_CRYPTO("stdrng");
2061