xref: /openbmc/linux/crypto/drbg.c (revision 609e478b)
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *		* with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99 
100 #include <crypto/drbg.h>
101 
102 /***************************************************************
103  * Backend cipher definitions available to DRBG
104  ***************************************************************/
105 
106 /*
107  * The order of the DRBG definitions here matter: every DRBG is registered
108  * as stdrng. Each DRBG receives an increasing cra_priority values the later
109  * they are defined in this array (see drbg_fill_array).
110  *
111  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
112  * the SHA256 / AES 256 over other ciphers. Thus, the favored
113  * DRBGs are the latest entries in this array.
114  */
115 static const struct drbg_core drbg_cores[] = {
116 #ifdef CONFIG_CRYPTO_DRBG_CTR
117 	{
118 		.flags = DRBG_CTR | DRBG_STRENGTH128,
119 		.statelen = 32, /* 256 bits as defined in 10.2.1 */
120 		.blocklen_bytes = 16,
121 		.cra_name = "ctr_aes128",
122 		.backend_cra_name = "ecb(aes)",
123 	}, {
124 		.flags = DRBG_CTR | DRBG_STRENGTH192,
125 		.statelen = 40, /* 320 bits as defined in 10.2.1 */
126 		.blocklen_bytes = 16,
127 		.cra_name = "ctr_aes192",
128 		.backend_cra_name = "ecb(aes)",
129 	}, {
130 		.flags = DRBG_CTR | DRBG_STRENGTH256,
131 		.statelen = 48, /* 384 bits as defined in 10.2.1 */
132 		.blocklen_bytes = 16,
133 		.cra_name = "ctr_aes256",
134 		.backend_cra_name = "ecb(aes)",
135 	},
136 #endif /* CONFIG_CRYPTO_DRBG_CTR */
137 #ifdef CONFIG_CRYPTO_DRBG_HASH
138 	{
139 		.flags = DRBG_HASH | DRBG_STRENGTH128,
140 		.statelen = 55, /* 440 bits */
141 		.blocklen_bytes = 20,
142 		.cra_name = "sha1",
143 		.backend_cra_name = "sha1",
144 	}, {
145 		.flags = DRBG_HASH | DRBG_STRENGTH256,
146 		.statelen = 111, /* 888 bits */
147 		.blocklen_bytes = 48,
148 		.cra_name = "sha384",
149 		.backend_cra_name = "sha384",
150 	}, {
151 		.flags = DRBG_HASH | DRBG_STRENGTH256,
152 		.statelen = 111, /* 888 bits */
153 		.blocklen_bytes = 64,
154 		.cra_name = "sha512",
155 		.backend_cra_name = "sha512",
156 	}, {
157 		.flags = DRBG_HASH | DRBG_STRENGTH256,
158 		.statelen = 55, /* 440 bits */
159 		.blocklen_bytes = 32,
160 		.cra_name = "sha256",
161 		.backend_cra_name = "sha256",
162 	},
163 #endif /* CONFIG_CRYPTO_DRBG_HASH */
164 #ifdef CONFIG_CRYPTO_DRBG_HMAC
165 	{
166 		.flags = DRBG_HMAC | DRBG_STRENGTH128,
167 		.statelen = 20, /* block length of cipher */
168 		.blocklen_bytes = 20,
169 		.cra_name = "hmac_sha1",
170 		.backend_cra_name = "hmac(sha1)",
171 	}, {
172 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
173 		.statelen = 48, /* block length of cipher */
174 		.blocklen_bytes = 48,
175 		.cra_name = "hmac_sha384",
176 		.backend_cra_name = "hmac(sha384)",
177 	}, {
178 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
179 		.statelen = 64, /* block length of cipher */
180 		.blocklen_bytes = 64,
181 		.cra_name = "hmac_sha512",
182 		.backend_cra_name = "hmac(sha512)",
183 	}, {
184 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
185 		.statelen = 32, /* block length of cipher */
186 		.blocklen_bytes = 32,
187 		.cra_name = "hmac_sha256",
188 		.backend_cra_name = "hmac(sha256)",
189 	},
190 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
191 };
192 
193 /******************************************************************
194  * Generic helper functions
195  ******************************************************************/
196 
197 /*
198  * Return strength of DRBG according to SP800-90A section 8.4
199  *
200  * @flags DRBG flags reference
201  *
202  * Return: normalized strength in *bytes* value or 32 as default
203  *	   to counter programming errors
204  */
205 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
206 {
207 	switch (flags & DRBG_STRENGTH_MASK) {
208 	case DRBG_STRENGTH128:
209 		return 16;
210 	case DRBG_STRENGTH192:
211 		return 24;
212 	case DRBG_STRENGTH256:
213 		return 32;
214 	default:
215 		return 32;
216 	}
217 }
218 
219 /*
220  * FIPS 140-2 continuous self test
221  * The test is performed on the result of one round of the output
222  * function. Thus, the function implicitly knows the size of the
223  * buffer.
224  *
225  * The FIPS test can be called in an endless loop until it returns
226  * true. Although the code looks like a potential for a deadlock, it
227  * is not the case, because returning a false cannot mathematically
228  * occur (except once when a reseed took place and the updated state
229  * would is now set up such that the generation of new value returns
230  * an identical one -- this is most unlikely and would happen only once).
231  * Thus, if this function repeatedly returns false and thus would cause
232  * a deadlock, the integrity of the entire kernel is lost.
233  *
234  * @drbg DRBG handle
235  * @buf output buffer of random data to be checked
236  *
237  * return:
238  *	true on success
239  *	false on error
240  */
241 static bool drbg_fips_continuous_test(struct drbg_state *drbg,
242 				      const unsigned char *buf)
243 {
244 #ifdef CONFIG_CRYPTO_FIPS
245 	int ret = 0;
246 	/* skip test if we test the overall system */
247 	if (drbg->test_data)
248 		return true;
249 	/* only perform test in FIPS mode */
250 	if (0 == fips_enabled)
251 		return true;
252 	if (!drbg->fips_primed) {
253 		/* Priming of FIPS test */
254 		memcpy(drbg->prev, buf, drbg_blocklen(drbg));
255 		drbg->fips_primed = true;
256 		/* return false due to priming, i.e. another round is needed */
257 		return false;
258 	}
259 	ret = memcmp(drbg->prev, buf, drbg_blocklen(drbg));
260 	memcpy(drbg->prev, buf, drbg_blocklen(drbg));
261 	/* the test shall pass when the two compared values are not equal */
262 	return ret != 0;
263 #else
264 	return true;
265 #endif /* CONFIG_CRYPTO_FIPS */
266 }
267 
268 /*
269  * Convert an integer into a byte representation of this integer.
270  * The byte representation is big-endian
271  *
272  * @val value to be converted
273  * @buf buffer holding the converted integer -- caller must ensure that
274  *      buffer size is at least 32 bit
275  */
276 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
277 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
278 {
279 	struct s {
280 		__be32 conv;
281 	};
282 	struct s *conversion = (struct s *) buf;
283 
284 	conversion->conv = cpu_to_be32(val);
285 }
286 
287 /*
288  * Increment buffer
289  *
290  * @dst buffer to increment
291  * @add value to add
292  */
293 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
294 				const unsigned char *add, size_t addlen)
295 {
296 	/* implied: dstlen > addlen */
297 	unsigned char *dstptr;
298 	const unsigned char *addptr;
299 	unsigned int remainder = 0;
300 	size_t len = addlen;
301 
302 	dstptr = dst + (dstlen-1);
303 	addptr = add + (addlen-1);
304 	while (len) {
305 		remainder += *dstptr + *addptr;
306 		*dstptr = remainder & 0xff;
307 		remainder >>= 8;
308 		len--; dstptr--; addptr--;
309 	}
310 	len = dstlen - addlen;
311 	while (len && remainder > 0) {
312 		remainder = *dstptr + 1;
313 		*dstptr = remainder & 0xff;
314 		remainder >>= 8;
315 		len--; dstptr--;
316 	}
317 }
318 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
319 
320 /******************************************************************
321  * CTR DRBG callback functions
322  ******************************************************************/
323 
324 #ifdef CONFIG_CRYPTO_DRBG_CTR
325 #define CRYPTO_DRBG_CTR_STRING "CTR "
326 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
327 			  unsigned char *outval, const struct drbg_string *in);
328 static int drbg_init_sym_kernel(struct drbg_state *drbg);
329 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
330 
331 /* BCC function for CTR DRBG as defined in 10.4.3 */
332 static int drbg_ctr_bcc(struct drbg_state *drbg,
333 			unsigned char *out, const unsigned char *key,
334 			struct list_head *in)
335 {
336 	int ret = 0;
337 	struct drbg_string *curr = NULL;
338 	struct drbg_string data;
339 	short cnt = 0;
340 
341 	drbg_string_fill(&data, out, drbg_blocklen(drbg));
342 
343 	/* 10.4.3 step 1 */
344 	memset(out, 0, drbg_blocklen(drbg));
345 
346 	/* 10.4.3 step 2 / 4 */
347 	list_for_each_entry(curr, in, list) {
348 		const unsigned char *pos = curr->buf;
349 		size_t len = curr->len;
350 		/* 10.4.3 step 4.1 */
351 		while (len) {
352 			/* 10.4.3 step 4.2 */
353 			if (drbg_blocklen(drbg) == cnt) {
354 				cnt = 0;
355 				ret = drbg_kcapi_sym(drbg, key, out, &data);
356 				if (ret)
357 					return ret;
358 			}
359 			out[cnt] ^= *pos;
360 			pos++;
361 			cnt++;
362 			len--;
363 		}
364 	}
365 	/* 10.4.3 step 4.2 for last block */
366 	if (cnt)
367 		ret = drbg_kcapi_sym(drbg, key, out, &data);
368 
369 	return ret;
370 }
371 
372 /*
373  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
374  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
375  * the scratchpad is used as follows:
376  * drbg_ctr_update:
377  *	temp
378  *		start: drbg->scratchpad
379  *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
380  *			note: the cipher writing into this variable works
381  *			blocklen-wise. Now, when the statelen is not a multiple
382  *			of blocklen, the generateion loop below "spills over"
383  *			by at most blocklen. Thus, we need to give sufficient
384  *			memory.
385  *	df_data
386  *		start: drbg->scratchpad +
387  *				drbg_statelen(drbg) + drbg_blocklen(drbg)
388  *		length: drbg_statelen(drbg)
389  *
390  * drbg_ctr_df:
391  *	pad
392  *		start: df_data + drbg_statelen(drbg)
393  *		length: drbg_blocklen(drbg)
394  *	iv
395  *		start: pad + drbg_blocklen(drbg)
396  *		length: drbg_blocklen(drbg)
397  *	temp
398  *		start: iv + drbg_blocklen(drbg)
399  *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
400  *			note: temp is the buffer that the BCC function operates
401  *			on. BCC operates blockwise. drbg_statelen(drbg)
402  *			is sufficient when the DRBG state length is a multiple
403  *			of the block size. For AES192 (and maybe other ciphers)
404  *			this is not correct and the length for temp is
405  *			insufficient (yes, that also means for such ciphers,
406  *			the final output of all BCC rounds are truncated).
407  *			Therefore, add drbg_blocklen(drbg) to cover all
408  *			possibilities.
409  */
410 
411 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
412 static int drbg_ctr_df(struct drbg_state *drbg,
413 		       unsigned char *df_data, size_t bytes_to_return,
414 		       struct list_head *seedlist)
415 {
416 	int ret = -EFAULT;
417 	unsigned char L_N[8];
418 	/* S3 is input */
419 	struct drbg_string S1, S2, S4, cipherin;
420 	LIST_HEAD(bcc_list);
421 	unsigned char *pad = df_data + drbg_statelen(drbg);
422 	unsigned char *iv = pad + drbg_blocklen(drbg);
423 	unsigned char *temp = iv + drbg_blocklen(drbg);
424 	size_t padlen = 0;
425 	unsigned int templen = 0;
426 	/* 10.4.2 step 7 */
427 	unsigned int i = 0;
428 	/* 10.4.2 step 8 */
429 	const unsigned char *K = (unsigned char *)
430 			   "\x00\x01\x02\x03\x04\x05\x06\x07"
431 			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
432 			   "\x10\x11\x12\x13\x14\x15\x16\x17"
433 			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
434 	unsigned char *X;
435 	size_t generated_len = 0;
436 	size_t inputlen = 0;
437 	struct drbg_string *seed = NULL;
438 
439 	memset(pad, 0, drbg_blocklen(drbg));
440 	memset(iv, 0, drbg_blocklen(drbg));
441 	memset(temp, 0, drbg_statelen(drbg));
442 
443 	/* 10.4.2 step 1 is implicit as we work byte-wise */
444 
445 	/* 10.4.2 step 2 */
446 	if ((512/8) < bytes_to_return)
447 		return -EINVAL;
448 
449 	/* 10.4.2 step 2 -- calculate the entire length of all input data */
450 	list_for_each_entry(seed, seedlist, list)
451 		inputlen += seed->len;
452 	drbg_cpu_to_be32(inputlen, &L_N[0]);
453 
454 	/* 10.4.2 step 3 */
455 	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
456 
457 	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
458 	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
459 	/* wrap the padlen appropriately */
460 	if (padlen)
461 		padlen = drbg_blocklen(drbg) - padlen;
462 	/*
463 	 * pad / padlen contains the 0x80 byte and the following zero bytes.
464 	 * As the calculated padlen value only covers the number of zero
465 	 * bytes, this value has to be incremented by one for the 0x80 byte.
466 	 */
467 	padlen++;
468 	pad[0] = 0x80;
469 
470 	/* 10.4.2 step 4 -- first fill the linked list and then order it */
471 	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
472 	list_add_tail(&S1.list, &bcc_list);
473 	drbg_string_fill(&S2, L_N, sizeof(L_N));
474 	list_add_tail(&S2.list, &bcc_list);
475 	list_splice_tail(seedlist, &bcc_list);
476 	drbg_string_fill(&S4, pad, padlen);
477 	list_add_tail(&S4.list, &bcc_list);
478 
479 	/* 10.4.2 step 9 */
480 	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
481 		/*
482 		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
483 		 * holds zeros after allocation -- even the increment of i
484 		 * is irrelevant as the increment remains within length of i
485 		 */
486 		drbg_cpu_to_be32(i, iv);
487 		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
488 		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
489 		if (ret)
490 			goto out;
491 		/* 10.4.2 step 9.3 */
492 		i++;
493 		templen += drbg_blocklen(drbg);
494 	}
495 
496 	/* 10.4.2 step 11 */
497 	X = temp + (drbg_keylen(drbg));
498 	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
499 
500 	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
501 
502 	/* 10.4.2 step 13 */
503 	while (generated_len < bytes_to_return) {
504 		short blocklen = 0;
505 		/*
506 		 * 10.4.2 step 13.1: the truncation of the key length is
507 		 * implicit as the key is only drbg_blocklen in size based on
508 		 * the implementation of the cipher function callback
509 		 */
510 		ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
511 		if (ret)
512 			goto out;
513 		blocklen = (drbg_blocklen(drbg) <
514 				(bytes_to_return - generated_len)) ?
515 			    drbg_blocklen(drbg) :
516 				(bytes_to_return - generated_len);
517 		/* 10.4.2 step 13.2 and 14 */
518 		memcpy(df_data + generated_len, X, blocklen);
519 		generated_len += blocklen;
520 	}
521 
522 	ret = 0;
523 
524 out:
525 	memset(iv, 0, drbg_blocklen(drbg));
526 	memset(temp, 0, drbg_statelen(drbg));
527 	memset(pad, 0, drbg_blocklen(drbg));
528 	return ret;
529 }
530 
531 /*
532  * update function of CTR DRBG as defined in 10.2.1.2
533  *
534  * The reseed variable has an enhanced meaning compared to the update
535  * functions of the other DRBGs as follows:
536  * 0 => initial seed from initialization
537  * 1 => reseed via drbg_seed
538  * 2 => first invocation from drbg_ctr_update when addtl is present. In
539  *      this case, the df_data scratchpad is not deleted so that it is
540  *      available for another calls to prevent calling the DF function
541  *      again.
542  * 3 => second invocation from drbg_ctr_update. When the update function
543  *      was called with addtl, the df_data memory already contains the
544  *      DFed addtl information and we do not need to call DF again.
545  */
546 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
547 			   int reseed)
548 {
549 	int ret = -EFAULT;
550 	/* 10.2.1.2 step 1 */
551 	unsigned char *temp = drbg->scratchpad;
552 	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
553 				 drbg_blocklen(drbg);
554 	unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
555 	unsigned int len = 0;
556 	struct drbg_string cipherin;
557 	unsigned char prefix = DRBG_PREFIX1;
558 
559 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
560 	if (3 > reseed)
561 		memset(df_data, 0, drbg_statelen(drbg));
562 
563 	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
564 	if (seed) {
565 		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
566 		if (ret)
567 			goto out;
568 	}
569 
570 	drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
571 	/*
572 	 * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
573 	 * zeroizes all memory during initialization
574 	 */
575 	while (len < (drbg_statelen(drbg))) {
576 		/* 10.2.1.2 step 2.1 */
577 		drbg_add_buf(drbg->V, drbg_blocklen(drbg), &prefix, 1);
578 		/*
579 		 * 10.2.1.2 step 2.2 */
580 		ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
581 		if (ret)
582 			goto out;
583 		/* 10.2.1.2 step 2.3 and 3 */
584 		len += drbg_blocklen(drbg);
585 	}
586 
587 	/* 10.2.1.2 step 4 */
588 	temp_p = temp;
589 	df_data_p = df_data;
590 	for (len = 0; len < drbg_statelen(drbg); len++) {
591 		*temp_p ^= *df_data_p;
592 		df_data_p++; temp_p++;
593 	}
594 
595 	/* 10.2.1.2 step 5 */
596 	memcpy(drbg->C, temp, drbg_keylen(drbg));
597 	/* 10.2.1.2 step 6 */
598 	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
599 	ret = 0;
600 
601 out:
602 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
603 	if (2 != reseed)
604 		memset(df_data, 0, drbg_statelen(drbg));
605 	return ret;
606 }
607 
608 /*
609  * scratchpad use: drbg_ctr_update is called independently from
610  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
611  */
612 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
613 static int drbg_ctr_generate(struct drbg_state *drbg,
614 			     unsigned char *buf, unsigned int buflen,
615 			     struct list_head *addtl)
616 {
617 	int len = 0;
618 	int ret = 0;
619 	struct drbg_string data;
620 	unsigned char prefix = DRBG_PREFIX1;
621 
622 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
623 
624 	/* 10.2.1.5.2 step 2 */
625 	if (addtl && !list_empty(addtl)) {
626 		ret = drbg_ctr_update(drbg, addtl, 2);
627 		if (ret)
628 			return 0;
629 	}
630 
631 	/* 10.2.1.5.2 step 4.1 */
632 	drbg_add_buf(drbg->V, drbg_blocklen(drbg), &prefix, 1);
633 	drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
634 	while (len < buflen) {
635 		int outlen = 0;
636 		/* 10.2.1.5.2 step 4.2 */
637 		ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
638 		if (ret) {
639 			len = ret;
640 			goto out;
641 		}
642 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
643 			  drbg_blocklen(drbg) : (buflen - len);
644 		if (!drbg_fips_continuous_test(drbg, drbg->scratchpad)) {
645 			/* 10.2.1.5.2 step 6 */
646 			drbg_add_buf(drbg->V, drbg_blocklen(drbg), &prefix, 1);
647 			continue;
648 		}
649 		/* 10.2.1.5.2 step 4.3 */
650 		memcpy(buf + len, drbg->scratchpad, outlen);
651 		len += outlen;
652 		/* 10.2.1.5.2 step 6 */
653 		if (len < buflen)
654 			drbg_add_buf(drbg->V, drbg_blocklen(drbg), &prefix, 1);
655 	}
656 
657 	/* 10.2.1.5.2 step 6 */
658 	ret = drbg_ctr_update(drbg, NULL, 3);
659 	if (ret)
660 		len = ret;
661 
662 out:
663 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
664 	return len;
665 }
666 
667 static struct drbg_state_ops drbg_ctr_ops = {
668 	.update		= drbg_ctr_update,
669 	.generate	= drbg_ctr_generate,
670 	.crypto_init	= drbg_init_sym_kernel,
671 	.crypto_fini	= drbg_fini_sym_kernel,
672 };
673 #endif /* CONFIG_CRYPTO_DRBG_CTR */
674 
675 /******************************************************************
676  * HMAC DRBG callback functions
677  ******************************************************************/
678 
679 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
680 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
681 			   unsigned char *outval, const struct list_head *in);
682 static int drbg_init_hash_kernel(struct drbg_state *drbg);
683 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
684 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
685 
686 #ifdef CONFIG_CRYPTO_DRBG_HMAC
687 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
688 /* update function of HMAC DRBG as defined in 10.1.2.2 */
689 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
690 			    int reseed)
691 {
692 	int ret = -EFAULT;
693 	int i = 0;
694 	struct drbg_string seed1, seed2, vdata;
695 	LIST_HEAD(seedlist);
696 	LIST_HEAD(vdatalist);
697 
698 	if (!reseed)
699 		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
700 		memset(drbg->V, 1, drbg_statelen(drbg));
701 
702 	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
703 	list_add_tail(&seed1.list, &seedlist);
704 	/* buffer of seed2 will be filled in for loop below with one byte */
705 	drbg_string_fill(&seed2, NULL, 1);
706 	list_add_tail(&seed2.list, &seedlist);
707 	/* input data of seed is allowed to be NULL at this point */
708 	if (seed)
709 		list_splice_tail(seed, &seedlist);
710 
711 	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
712 	list_add_tail(&vdata.list, &vdatalist);
713 	for (i = 2; 0 < i; i--) {
714 		/* first round uses 0x0, second 0x1 */
715 		unsigned char prefix = DRBG_PREFIX0;
716 		if (1 == i)
717 			prefix = DRBG_PREFIX1;
718 		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
719 		seed2.buf = &prefix;
720 		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seedlist);
721 		if (ret)
722 			return ret;
723 
724 		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
725 		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &vdatalist);
726 		if (ret)
727 			return ret;
728 
729 		/* 10.1.2.2 step 3 */
730 		if (!seed)
731 			return ret;
732 	}
733 
734 	return 0;
735 }
736 
737 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
738 static int drbg_hmac_generate(struct drbg_state *drbg,
739 			      unsigned char *buf,
740 			      unsigned int buflen,
741 			      struct list_head *addtl)
742 {
743 	int len = 0;
744 	int ret = 0;
745 	struct drbg_string data;
746 	LIST_HEAD(datalist);
747 
748 	/* 10.1.2.5 step 2 */
749 	if (addtl && !list_empty(addtl)) {
750 		ret = drbg_hmac_update(drbg, addtl, 1);
751 		if (ret)
752 			return ret;
753 	}
754 
755 	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
756 	list_add_tail(&data.list, &datalist);
757 	while (len < buflen) {
758 		unsigned int outlen = 0;
759 		/* 10.1.2.5 step 4.1 */
760 		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &datalist);
761 		if (ret)
762 			return ret;
763 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
764 			  drbg_blocklen(drbg) : (buflen - len);
765 		if (!drbg_fips_continuous_test(drbg, drbg->V))
766 			continue;
767 
768 		/* 10.1.2.5 step 4.2 */
769 		memcpy(buf + len, drbg->V, outlen);
770 		len += outlen;
771 	}
772 
773 	/* 10.1.2.5 step 6 */
774 	if (addtl && !list_empty(addtl))
775 		ret = drbg_hmac_update(drbg, addtl, 1);
776 	else
777 		ret = drbg_hmac_update(drbg, NULL, 1);
778 	if (ret)
779 		return ret;
780 
781 	return len;
782 }
783 
784 static struct drbg_state_ops drbg_hmac_ops = {
785 	.update		= drbg_hmac_update,
786 	.generate	= drbg_hmac_generate,
787 	.crypto_init	= drbg_init_hash_kernel,
788 	.crypto_fini	= drbg_fini_hash_kernel,
789 
790 };
791 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
792 
793 /******************************************************************
794  * Hash DRBG callback functions
795  ******************************************************************/
796 
797 #ifdef CONFIG_CRYPTO_DRBG_HASH
798 #define CRYPTO_DRBG_HASH_STRING "HASH "
799 /*
800  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
801  * interlinked, the scratchpad is used as follows:
802  * drbg_hash_update
803  *	start: drbg->scratchpad
804  *	length: drbg_statelen(drbg)
805  * drbg_hash_df:
806  *	start: drbg->scratchpad + drbg_statelen(drbg)
807  *	length: drbg_blocklen(drbg)
808  *
809  * drbg_hash_process_addtl uses the scratchpad, but fully completes
810  * before either of the functions mentioned before are invoked. Therefore,
811  * drbg_hash_process_addtl does not need to be specifically considered.
812  */
813 
814 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
815 static int drbg_hash_df(struct drbg_state *drbg,
816 			unsigned char *outval, size_t outlen,
817 			struct list_head *entropylist)
818 {
819 	int ret = 0;
820 	size_t len = 0;
821 	unsigned char input[5];
822 	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
823 	struct drbg_string data;
824 
825 	memset(tmp, 0, drbg_blocklen(drbg));
826 
827 	/* 10.4.1 step 3 */
828 	input[0] = 1;
829 	drbg_cpu_to_be32((outlen * 8), &input[1]);
830 
831 	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
832 	drbg_string_fill(&data, input, 5);
833 	list_add(&data.list, entropylist);
834 
835 	/* 10.4.1 step 4 */
836 	while (len < outlen) {
837 		short blocklen = 0;
838 		/* 10.4.1 step 4.1 */
839 		ret = drbg_kcapi_hash(drbg, NULL, tmp, entropylist);
840 		if (ret)
841 			goto out;
842 		/* 10.4.1 step 4.2 */
843 		input[0]++;
844 		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
845 			    drbg_blocklen(drbg) : (outlen - len);
846 		memcpy(outval + len, tmp, blocklen);
847 		len += blocklen;
848 	}
849 
850 out:
851 	memset(tmp, 0, drbg_blocklen(drbg));
852 	return ret;
853 }
854 
855 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
856 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
857 			    int reseed)
858 {
859 	int ret = 0;
860 	struct drbg_string data1, data2;
861 	LIST_HEAD(datalist);
862 	LIST_HEAD(datalist2);
863 	unsigned char *V = drbg->scratchpad;
864 	unsigned char prefix = DRBG_PREFIX1;
865 
866 	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
867 	if (!seed)
868 		return -EINVAL;
869 
870 	if (reseed) {
871 		/* 10.1.1.3 step 1 */
872 		memcpy(V, drbg->V, drbg_statelen(drbg));
873 		drbg_string_fill(&data1, &prefix, 1);
874 		list_add_tail(&data1.list, &datalist);
875 		drbg_string_fill(&data2, V, drbg_statelen(drbg));
876 		list_add_tail(&data2.list, &datalist);
877 	}
878 	list_splice_tail(seed, &datalist);
879 
880 	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
881 	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
882 	if (ret)
883 		goto out;
884 
885 	/* 10.1.1.2 / 10.1.1.3 step 4  */
886 	prefix = DRBG_PREFIX0;
887 	drbg_string_fill(&data1, &prefix, 1);
888 	list_add_tail(&data1.list, &datalist2);
889 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
890 	list_add_tail(&data2.list, &datalist2);
891 	/* 10.1.1.2 / 10.1.1.3 step 4 */
892 	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
893 
894 out:
895 	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
896 	return ret;
897 }
898 
899 /* processing of additional information string for Hash DRBG */
900 static int drbg_hash_process_addtl(struct drbg_state *drbg,
901 				   struct list_head *addtl)
902 {
903 	int ret = 0;
904 	struct drbg_string data1, data2;
905 	LIST_HEAD(datalist);
906 	unsigned char prefix = DRBG_PREFIX2;
907 
908 	/* this is value w as per documentation */
909 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
910 
911 	/* 10.1.1.4 step 2 */
912 	if (!addtl || list_empty(addtl))
913 		return 0;
914 
915 	/* 10.1.1.4 step 2a */
916 	drbg_string_fill(&data1, &prefix, 1);
917 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
918 	list_add_tail(&data1.list, &datalist);
919 	list_add_tail(&data2.list, &datalist);
920 	list_splice_tail(addtl, &datalist);
921 	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
922 	if (ret)
923 		goto out;
924 
925 	/* 10.1.1.4 step 2b */
926 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
927 		     drbg->scratchpad, drbg_blocklen(drbg));
928 
929 out:
930 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
931 	return ret;
932 }
933 
934 /* Hashgen defined in 10.1.1.4 */
935 static int drbg_hash_hashgen(struct drbg_state *drbg,
936 			     unsigned char *buf,
937 			     unsigned int buflen)
938 {
939 	int len = 0;
940 	int ret = 0;
941 	unsigned char *src = drbg->scratchpad;
942 	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
943 	struct drbg_string data;
944 	LIST_HEAD(datalist);
945 	unsigned char prefix = DRBG_PREFIX1;
946 
947 	memset(src, 0, drbg_statelen(drbg));
948 	memset(dst, 0, drbg_blocklen(drbg));
949 
950 	/* 10.1.1.4 step hashgen 2 */
951 	memcpy(src, drbg->V, drbg_statelen(drbg));
952 
953 	drbg_string_fill(&data, src, drbg_statelen(drbg));
954 	list_add_tail(&data.list, &datalist);
955 	while (len < buflen) {
956 		unsigned int outlen = 0;
957 		/* 10.1.1.4 step hashgen 4.1 */
958 		ret = drbg_kcapi_hash(drbg, NULL, dst, &datalist);
959 		if (ret) {
960 			len = ret;
961 			goto out;
962 		}
963 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
964 			  drbg_blocklen(drbg) : (buflen - len);
965 		if (!drbg_fips_continuous_test(drbg, dst)) {
966 			drbg_add_buf(src, drbg_statelen(drbg), &prefix, 1);
967 			continue;
968 		}
969 		/* 10.1.1.4 step hashgen 4.2 */
970 		memcpy(buf + len, dst, outlen);
971 		len += outlen;
972 		/* 10.1.1.4 hashgen step 4.3 */
973 		if (len < buflen)
974 			drbg_add_buf(src, drbg_statelen(drbg), &prefix, 1);
975 	}
976 
977 out:
978 	memset(drbg->scratchpad, 0,
979 	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
980 	return len;
981 }
982 
983 /* generate function for Hash DRBG as defined in  10.1.1.4 */
984 static int drbg_hash_generate(struct drbg_state *drbg,
985 			      unsigned char *buf, unsigned int buflen,
986 			      struct list_head *addtl)
987 {
988 	int len = 0;
989 	int ret = 0;
990 	union {
991 		unsigned char req[8];
992 		__be64 req_int;
993 	} u;
994 	unsigned char prefix = DRBG_PREFIX3;
995 	struct drbg_string data1, data2;
996 	LIST_HEAD(datalist);
997 
998 	/* 10.1.1.4 step 2 */
999 	ret = drbg_hash_process_addtl(drbg, addtl);
1000 	if (ret)
1001 		return ret;
1002 	/* 10.1.1.4 step 3 */
1003 	len = drbg_hash_hashgen(drbg, buf, buflen);
1004 
1005 	/* this is the value H as documented in 10.1.1.4 */
1006 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1007 	/* 10.1.1.4 step 4 */
1008 	drbg_string_fill(&data1, &prefix, 1);
1009 	list_add_tail(&data1.list, &datalist);
1010 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1011 	list_add_tail(&data2.list, &datalist);
1012 	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
1013 	if (ret) {
1014 		len = ret;
1015 		goto out;
1016 	}
1017 
1018 	/* 10.1.1.4 step 5 */
1019 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1020 		     drbg->scratchpad, drbg_blocklen(drbg));
1021 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1022 		     drbg->C, drbg_statelen(drbg));
1023 	u.req_int = cpu_to_be64(drbg->reseed_ctr);
1024 	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1025 
1026 out:
1027 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1028 	return len;
1029 }
1030 
1031 /*
1032  * scratchpad usage: as update and generate are used isolated, both
1033  * can use the scratchpad
1034  */
1035 static struct drbg_state_ops drbg_hash_ops = {
1036 	.update		= drbg_hash_update,
1037 	.generate	= drbg_hash_generate,
1038 	.crypto_init	= drbg_init_hash_kernel,
1039 	.crypto_fini	= drbg_fini_hash_kernel,
1040 };
1041 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1042 
1043 /******************************************************************
1044  * Functions common for DRBG implementations
1045  ******************************************************************/
1046 
1047 /*
1048  * Seeding or reseeding of the DRBG
1049  *
1050  * @drbg: DRBG state struct
1051  * @pers: personalization / additional information buffer
1052  * @reseed: 0 for initial seed process, 1 for reseeding
1053  *
1054  * return:
1055  *	0 on success
1056  *	error value otherwise
1057  */
1058 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1059 		     bool reseed)
1060 {
1061 	int ret = 0;
1062 	unsigned char *entropy = NULL;
1063 	size_t entropylen = 0;
1064 	struct drbg_string data1;
1065 	LIST_HEAD(seedlist);
1066 
1067 	/* 9.1 / 9.2 / 9.3.1 step 3 */
1068 	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1069 		pr_devel("DRBG: personalization string too long %zu\n",
1070 			 pers->len);
1071 		return -EINVAL;
1072 	}
1073 
1074 	if (drbg->test_data && drbg->test_data->testentropy) {
1075 		drbg_string_fill(&data1, drbg->test_data->testentropy->buf,
1076 				 drbg->test_data->testentropy->len);
1077 		pr_devel("DRBG: using test entropy\n");
1078 	} else {
1079 		/*
1080 		 * Gather entropy equal to the security strength of the DRBG.
1081 		 * With a derivation function, a nonce is required in addition
1082 		 * to the entropy. A nonce must be at least 1/2 of the security
1083 		 * strength of the DRBG in size. Thus, entropy * nonce is 3/2
1084 		 * of the strength. The consideration of a nonce is only
1085 		 * applicable during initial seeding.
1086 		 */
1087 		entropylen = drbg_sec_strength(drbg->core->flags);
1088 		if (!entropylen)
1089 			return -EFAULT;
1090 		if (!reseed)
1091 			entropylen = ((entropylen + 1) / 2) * 3;
1092 		pr_devel("DRBG: (re)seeding with %zu bytes of entropy\n",
1093 			 entropylen);
1094 		entropy = kzalloc(entropylen, GFP_KERNEL);
1095 		if (!entropy)
1096 			return -ENOMEM;
1097 		get_random_bytes(entropy, entropylen);
1098 		drbg_string_fill(&data1, entropy, entropylen);
1099 	}
1100 	list_add_tail(&data1.list, &seedlist);
1101 
1102 	/*
1103 	 * concatenation of entropy with personalization str / addtl input)
1104 	 * the variable pers is directly handed in by the caller, so check its
1105 	 * contents whether it is appropriate
1106 	 */
1107 	if (pers && pers->buf && 0 < pers->len) {
1108 		list_add_tail(&pers->list, &seedlist);
1109 		pr_devel("DRBG: using personalization string\n");
1110 	}
1111 
1112 	if (!reseed) {
1113 		memset(drbg->V, 0, drbg_statelen(drbg));
1114 		memset(drbg->C, 0, drbg_statelen(drbg));
1115 	}
1116 
1117 	ret = drbg->d_ops->update(drbg, &seedlist, reseed);
1118 	if (ret)
1119 		goto out;
1120 
1121 	drbg->seeded = true;
1122 	/* 10.1.1.2 / 10.1.1.3 step 5 */
1123 	drbg->reseed_ctr = 1;
1124 
1125 out:
1126 	kzfree(entropy);
1127 	return ret;
1128 }
1129 
1130 /* Free all substructures in a DRBG state without the DRBG state structure */
1131 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1132 {
1133 	if (!drbg)
1134 		return;
1135 	kzfree(drbg->V);
1136 	drbg->V = NULL;
1137 	kzfree(drbg->C);
1138 	drbg->C = NULL;
1139 	kzfree(drbg->scratchpad);
1140 	drbg->scratchpad = NULL;
1141 	drbg->reseed_ctr = 0;
1142 #ifdef CONFIG_CRYPTO_FIPS
1143 	kzfree(drbg->prev);
1144 	drbg->prev = NULL;
1145 	drbg->fips_primed = false;
1146 #endif
1147 }
1148 
1149 /*
1150  * Allocate all sub-structures for a DRBG state.
1151  * The DRBG state structure must already be allocated.
1152  */
1153 static inline int drbg_alloc_state(struct drbg_state *drbg)
1154 {
1155 	int ret = -ENOMEM;
1156 	unsigned int sb_size = 0;
1157 
1158 	drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1159 	if (!drbg->V)
1160 		goto err;
1161 	drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1162 	if (!drbg->C)
1163 		goto err;
1164 #ifdef CONFIG_CRYPTO_FIPS
1165 	drbg->prev = kmalloc(drbg_blocklen(drbg), GFP_KERNEL);
1166 	if (!drbg->prev)
1167 		goto err;
1168 	drbg->fips_primed = false;
1169 #endif
1170 	/* scratchpad is only generated for CTR and Hash */
1171 	if (drbg->core->flags & DRBG_HMAC)
1172 		sb_size = 0;
1173 	else if (drbg->core->flags & DRBG_CTR)
1174 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1175 			  drbg_statelen(drbg) +	/* df_data */
1176 			  drbg_blocklen(drbg) +	/* pad */
1177 			  drbg_blocklen(drbg) +	/* iv */
1178 			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1179 	else
1180 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1181 
1182 	if (0 < sb_size) {
1183 		drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
1184 		if (!drbg->scratchpad)
1185 			goto err;
1186 	}
1187 	spin_lock_init(&drbg->drbg_lock);
1188 	return 0;
1189 
1190 err:
1191 	drbg_dealloc_state(drbg);
1192 	return ret;
1193 }
1194 
1195 /*
1196  * Strategy to avoid holding long term locks: generate a shadow copy of DRBG
1197  * and perform all operations on this shadow copy. After finishing, restore
1198  * the updated state of the shadow copy into original drbg state. This way,
1199  * only the read and write operations of the original drbg state must be
1200  * locked
1201  */
1202 static inline void drbg_copy_drbg(struct drbg_state *src,
1203 				  struct drbg_state *dst)
1204 {
1205 	if (!src || !dst)
1206 		return;
1207 	memcpy(dst->V, src->V, drbg_statelen(src));
1208 	memcpy(dst->C, src->C, drbg_statelen(src));
1209 	dst->reseed_ctr = src->reseed_ctr;
1210 	dst->seeded = src->seeded;
1211 	dst->pr = src->pr;
1212 #ifdef CONFIG_CRYPTO_FIPS
1213 	dst->fips_primed = src->fips_primed;
1214 	memcpy(dst->prev, src->prev, drbg_blocklen(src));
1215 #endif
1216 	/*
1217 	 * Not copied:
1218 	 * scratchpad is initialized drbg_alloc_state;
1219 	 * priv_data is initialized with call to crypto_init;
1220 	 * d_ops and core are set outside, as these parameters are const;
1221 	 * test_data is set outside to prevent it being copied back.
1222 	 */
1223 }
1224 
1225 static int drbg_make_shadow(struct drbg_state *drbg, struct drbg_state **shadow)
1226 {
1227 	int ret = -ENOMEM;
1228 	struct drbg_state *tmp = NULL;
1229 
1230 	tmp = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1231 	if (!tmp)
1232 		return -ENOMEM;
1233 
1234 	/* read-only data as they are defined as const, no lock needed */
1235 	tmp->core = drbg->core;
1236 	tmp->d_ops = drbg->d_ops;
1237 
1238 	ret = drbg_alloc_state(tmp);
1239 	if (ret)
1240 		goto err;
1241 
1242 	spin_lock_bh(&drbg->drbg_lock);
1243 	drbg_copy_drbg(drbg, tmp);
1244 	/* only make a link to the test buffer, as we only read that data */
1245 	tmp->test_data = drbg->test_data;
1246 	spin_unlock_bh(&drbg->drbg_lock);
1247 	*shadow = tmp;
1248 	return 0;
1249 
1250 err:
1251 	kzfree(tmp);
1252 	return ret;
1253 }
1254 
1255 static void drbg_restore_shadow(struct drbg_state *drbg,
1256 				struct drbg_state **shadow)
1257 {
1258 	struct drbg_state *tmp = *shadow;
1259 
1260 	spin_lock_bh(&drbg->drbg_lock);
1261 	drbg_copy_drbg(tmp, drbg);
1262 	spin_unlock_bh(&drbg->drbg_lock);
1263 	drbg_dealloc_state(tmp);
1264 	kzfree(tmp);
1265 	*shadow = NULL;
1266 }
1267 
1268 /*************************************************************************
1269  * DRBG interface functions
1270  *************************************************************************/
1271 
1272 /*
1273  * DRBG generate function as required by SP800-90A - this function
1274  * generates random numbers
1275  *
1276  * @drbg DRBG state handle
1277  * @buf Buffer where to store the random numbers -- the buffer must already
1278  *      be pre-allocated by caller
1279  * @buflen Length of output buffer - this value defines the number of random
1280  *	   bytes pulled from DRBG
1281  * @addtl Additional input that is mixed into state, may be NULL -- note
1282  *	  the entropy is pulled by the DRBG internally unconditionally
1283  *	  as defined in SP800-90A. The additional input is mixed into
1284  *	  the state in addition to the pulled entropy.
1285  *
1286  * return: generated number of bytes
1287  */
1288 static int drbg_generate(struct drbg_state *drbg,
1289 			 unsigned char *buf, unsigned int buflen,
1290 			 struct drbg_string *addtl)
1291 {
1292 	int len = 0;
1293 	struct drbg_state *shadow = NULL;
1294 	LIST_HEAD(addtllist);
1295 	struct drbg_string timestamp;
1296 	union {
1297 		cycles_t cycles;
1298 		unsigned char char_cycles[sizeof(cycles_t)];
1299 	} now;
1300 
1301 	if (0 == buflen || !buf) {
1302 		pr_devel("DRBG: no output buffer provided\n");
1303 		return -EINVAL;
1304 	}
1305 	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1306 		pr_devel("DRBG: wrong format of additional information\n");
1307 		return -EINVAL;
1308 	}
1309 
1310 	len = drbg_make_shadow(drbg, &shadow);
1311 	if (len) {
1312 		pr_devel("DRBG: shadow copy cannot be generated\n");
1313 		return len;
1314 	}
1315 
1316 	/* 9.3.1 step 2 */
1317 	len = -EINVAL;
1318 	if (buflen > (drbg_max_request_bytes(shadow))) {
1319 		pr_devel("DRBG: requested random numbers too large %u\n",
1320 			 buflen);
1321 		goto err;
1322 	}
1323 
1324 	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1325 
1326 	/* 9.3.1 step 4 */
1327 	if (addtl && addtl->len > (drbg_max_addtl(shadow))) {
1328 		pr_devel("DRBG: additional information string too long %zu\n",
1329 			 addtl->len);
1330 		goto err;
1331 	}
1332 	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1333 
1334 	/*
1335 	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1336 	 * here. The spec is a bit convoluted here, we make it simpler.
1337 	 */
1338 	if ((drbg_max_requests(shadow)) < shadow->reseed_ctr)
1339 		shadow->seeded = false;
1340 
1341 	/* allocate cipher handle */
1342 	len = shadow->d_ops->crypto_init(shadow);
1343 	if (len)
1344 		goto err;
1345 
1346 	if (shadow->pr || !shadow->seeded) {
1347 		pr_devel("DRBG: reseeding before generation (prediction "
1348 			 "resistance: %s, state %s)\n",
1349 			 drbg->pr ? "true" : "false",
1350 			 drbg->seeded ? "seeded" : "unseeded");
1351 		/* 9.3.1 steps 7.1 through 7.3 */
1352 		len = drbg_seed(shadow, addtl, true);
1353 		if (len)
1354 			goto err;
1355 		/* 9.3.1 step 7.4 */
1356 		addtl = NULL;
1357 	}
1358 
1359 	/*
1360 	 * Mix the time stamp into the DRBG state if the DRBG is not in
1361 	 * test mode. If there are two callers invoking the DRBG at the same
1362 	 * time, i.e. before the first caller merges its shadow state back,
1363 	 * both callers would obtain the same random number stream without
1364 	 * changing the state here.
1365 	 */
1366 	if (!drbg->test_data) {
1367 		now.cycles = random_get_entropy();
1368 		drbg_string_fill(&timestamp, now.char_cycles, sizeof(cycles_t));
1369 		list_add_tail(&timestamp.list, &addtllist);
1370 	}
1371 	if (addtl && 0 < addtl->len)
1372 		list_add_tail(&addtl->list, &addtllist);
1373 	/* 9.3.1 step 8 and 10 */
1374 	len = shadow->d_ops->generate(shadow, buf, buflen, &addtllist);
1375 
1376 	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1377 	shadow->reseed_ctr++;
1378 	if (0 >= len)
1379 		goto err;
1380 
1381 	/*
1382 	 * Section 11.3.3 requires to re-perform self tests after some
1383 	 * generated random numbers. The chosen value after which self
1384 	 * test is performed is arbitrary, but it should be reasonable.
1385 	 * However, we do not perform the self tests because of the following
1386 	 * reasons: it is mathematically impossible that the initial self tests
1387 	 * were successfully and the following are not. If the initial would
1388 	 * pass and the following would not, the kernel integrity is violated.
1389 	 * In this case, the entire kernel operation is questionable and it
1390 	 * is unlikely that the integrity violation only affects the
1391 	 * correct operation of the DRBG.
1392 	 *
1393 	 * Albeit the following code is commented out, it is provided in
1394 	 * case somebody has a need to implement the test of 11.3.3.
1395 	 */
1396 #if 0
1397 	if (shadow->reseed_ctr && !(shadow->reseed_ctr % 4096)) {
1398 		int err = 0;
1399 		pr_devel("DRBG: start to perform self test\n");
1400 		if (drbg->core->flags & DRBG_HMAC)
1401 			err = alg_test("drbg_pr_hmac_sha256",
1402 				       "drbg_pr_hmac_sha256", 0, 0);
1403 		else if (drbg->core->flags & DRBG_CTR)
1404 			err = alg_test("drbg_pr_ctr_aes128",
1405 				       "drbg_pr_ctr_aes128", 0, 0);
1406 		else
1407 			err = alg_test("drbg_pr_sha256",
1408 				       "drbg_pr_sha256", 0, 0);
1409 		if (err) {
1410 			pr_err("DRBG: periodical self test failed\n");
1411 			/*
1412 			 * uninstantiate implies that from now on, only errors
1413 			 * are returned when reusing this DRBG cipher handle
1414 			 */
1415 			drbg_uninstantiate(drbg);
1416 			drbg_dealloc_state(shadow);
1417 			kzfree(shadow);
1418 			return 0;
1419 		} else {
1420 			pr_devel("DRBG: self test successful\n");
1421 		}
1422 	}
1423 #endif
1424 
1425 err:
1426 	shadow->d_ops->crypto_fini(shadow);
1427 	drbg_restore_shadow(drbg, &shadow);
1428 	return len;
1429 }
1430 
1431 /*
1432  * Wrapper around drbg_generate which can pull arbitrary long strings
1433  * from the DRBG without hitting the maximum request limitation.
1434  *
1435  * Parameters: see drbg_generate
1436  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1437  *		 the entire drbg_generate_long request fails
1438  */
1439 static int drbg_generate_long(struct drbg_state *drbg,
1440 			      unsigned char *buf, unsigned int buflen,
1441 			      struct drbg_string *addtl)
1442 {
1443 	int len = 0;
1444 	unsigned int slice = 0;
1445 	do {
1446 		int tmplen = 0;
1447 		unsigned int chunk = 0;
1448 		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1449 		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1450 		tmplen = drbg_generate(drbg, buf + len, chunk, addtl);
1451 		if (0 >= tmplen)
1452 			return tmplen;
1453 		len += tmplen;
1454 	} while (slice > 0 && (len < buflen));
1455 	return len;
1456 }
1457 
1458 /*
1459  * DRBG instantiation function as required by SP800-90A - this function
1460  * sets up the DRBG handle, performs the initial seeding and all sanity
1461  * checks required by SP800-90A
1462  *
1463  * @drbg memory of state -- if NULL, new memory is allocated
1464  * @pers Personalization string that is mixed into state, may be NULL -- note
1465  *	 the entropy is pulled by the DRBG internally unconditionally
1466  *	 as defined in SP800-90A. The additional input is mixed into
1467  *	 the state in addition to the pulled entropy.
1468  * @coreref reference to core
1469  * @pr prediction resistance enabled
1470  *
1471  * return
1472  *	0 on success
1473  *	error value otherwise
1474  */
1475 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1476 			    int coreref, bool pr)
1477 {
1478 	int ret = -ENOMEM;
1479 
1480 	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1481 		 "%s\n", coreref, pr ? "enabled" : "disabled");
1482 	drbg->core = &drbg_cores[coreref];
1483 	drbg->pr = pr;
1484 	drbg->seeded = false;
1485 	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1486 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1487 	case DRBG_HMAC:
1488 		drbg->d_ops = &drbg_hmac_ops;
1489 		break;
1490 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1491 #ifdef CONFIG_CRYPTO_DRBG_HASH
1492 	case DRBG_HASH:
1493 		drbg->d_ops = &drbg_hash_ops;
1494 		break;
1495 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1496 #ifdef CONFIG_CRYPTO_DRBG_CTR
1497 	case DRBG_CTR:
1498 		drbg->d_ops = &drbg_ctr_ops;
1499 		break;
1500 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1501 	default:
1502 		return -EOPNOTSUPP;
1503 	}
1504 
1505 	/* 9.1 step 1 is implicit with the selected DRBG type */
1506 
1507 	/*
1508 	 * 9.1 step 2 is implicit as caller can select prediction resistance
1509 	 * and the flag is copied into drbg->flags --
1510 	 * all DRBG types support prediction resistance
1511 	 */
1512 
1513 	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1514 
1515 	ret = drbg_alloc_state(drbg);
1516 	if (ret)
1517 		return ret;
1518 
1519 	ret = -EFAULT;
1520 	if (drbg->d_ops->crypto_init(drbg))
1521 		goto err;
1522 	ret = drbg_seed(drbg, pers, false);
1523 	drbg->d_ops->crypto_fini(drbg);
1524 	if (ret)
1525 		goto err;
1526 
1527 	return 0;
1528 
1529 err:
1530 	drbg_dealloc_state(drbg);
1531 	return ret;
1532 }
1533 
1534 /*
1535  * DRBG uninstantiate function as required by SP800-90A - this function
1536  * frees all buffers and the DRBG handle
1537  *
1538  * @drbg DRBG state handle
1539  *
1540  * return
1541  *	0 on success
1542  */
1543 static int drbg_uninstantiate(struct drbg_state *drbg)
1544 {
1545 	spin_lock_bh(&drbg->drbg_lock);
1546 	drbg_dealloc_state(drbg);
1547 	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1548 	spin_unlock_bh(&drbg->drbg_lock);
1549 	return 0;
1550 }
1551 
1552 /*
1553  * Helper function for setting the test data in the DRBG
1554  *
1555  * @drbg DRBG state handle
1556  * @test_data test data to sets
1557  */
1558 static inline void drbg_set_testdata(struct drbg_state *drbg,
1559 				     struct drbg_test_data *test_data)
1560 {
1561 	if (!test_data || !test_data->testentropy)
1562 		return;
1563 	spin_lock_bh(&drbg->drbg_lock);
1564 	drbg->test_data = test_data;
1565 	spin_unlock_bh(&drbg->drbg_lock);
1566 }
1567 
1568 /***************************************************************
1569  * Kernel crypto API cipher invocations requested by DRBG
1570  ***************************************************************/
1571 
1572 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1573 struct sdesc {
1574 	struct shash_desc shash;
1575 	char ctx[];
1576 };
1577 
1578 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1579 {
1580 	struct sdesc *sdesc;
1581 	struct crypto_shash *tfm;
1582 
1583 	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1584 	if (IS_ERR(tfm)) {
1585 		pr_info("DRBG: could not allocate digest TFM handle\n");
1586 		return PTR_ERR(tfm);
1587 	}
1588 	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1589 	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1590 			GFP_KERNEL);
1591 	if (!sdesc) {
1592 		crypto_free_shash(tfm);
1593 		return -ENOMEM;
1594 	}
1595 
1596 	sdesc->shash.tfm = tfm;
1597 	sdesc->shash.flags = 0;
1598 	drbg->priv_data = sdesc;
1599 	return 0;
1600 }
1601 
1602 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1603 {
1604 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1605 	if (sdesc) {
1606 		crypto_free_shash(sdesc->shash.tfm);
1607 		kzfree(sdesc);
1608 	}
1609 	drbg->priv_data = NULL;
1610 	return 0;
1611 }
1612 
1613 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
1614 			   unsigned char *outval, const struct list_head *in)
1615 {
1616 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1617 	struct drbg_string *input = NULL;
1618 
1619 	if (key)
1620 		crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1621 	crypto_shash_init(&sdesc->shash);
1622 	list_for_each_entry(input, in, list)
1623 		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1624 	return crypto_shash_final(&sdesc->shash, outval);
1625 }
1626 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1627 
1628 #ifdef CONFIG_CRYPTO_DRBG_CTR
1629 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1630 {
1631 	int ret = 0;
1632 	struct crypto_blkcipher *tfm;
1633 
1634 	tfm = crypto_alloc_blkcipher(drbg->core->backend_cra_name, 0, 0);
1635 	if (IS_ERR(tfm)) {
1636 		pr_info("DRBG: could not allocate cipher TFM handle\n");
1637 		return PTR_ERR(tfm);
1638 	}
1639 	BUG_ON(drbg_blocklen(drbg) != crypto_blkcipher_blocksize(tfm));
1640 	drbg->priv_data = tfm;
1641 	return ret;
1642 }
1643 
1644 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1645 {
1646 	struct crypto_blkcipher *tfm =
1647 		(struct crypto_blkcipher *)drbg->priv_data;
1648 	if (tfm)
1649 		crypto_free_blkcipher(tfm);
1650 	drbg->priv_data = NULL;
1651 	return 0;
1652 }
1653 
1654 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
1655 			  unsigned char *outval, const struct drbg_string *in)
1656 {
1657 	int ret = 0;
1658 	struct scatterlist sg_in, sg_out;
1659 	struct blkcipher_desc desc;
1660 	struct crypto_blkcipher *tfm =
1661 		(struct crypto_blkcipher *)drbg->priv_data;
1662 
1663 	desc.tfm = tfm;
1664 	desc.flags = 0;
1665 	crypto_blkcipher_setkey(tfm, key, (drbg_keylen(drbg)));
1666 	/* there is only component in *in */
1667 	sg_init_one(&sg_in, in->buf, in->len);
1668 	sg_init_one(&sg_out, outval, drbg_blocklen(drbg));
1669 	ret = crypto_blkcipher_encrypt(&desc, &sg_out, &sg_in, in->len);
1670 
1671 	return ret;
1672 }
1673 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1674 
1675 /***************************************************************
1676  * Kernel crypto API interface to register DRBG
1677  ***************************************************************/
1678 
1679 /*
1680  * Look up the DRBG flags by given kernel crypto API cra_name
1681  * The code uses the drbg_cores definition to do this
1682  *
1683  * @cra_name kernel crypto API cra_name
1684  * @coreref reference to integer which is filled with the pointer to
1685  *  the applicable core
1686  * @pr reference for setting prediction resistance
1687  *
1688  * return: flags
1689  */
1690 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1691 					 int *coreref, bool *pr)
1692 {
1693 	int i = 0;
1694 	size_t start = 0;
1695 	int len = 0;
1696 
1697 	*pr = true;
1698 	/* disassemble the names */
1699 	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1700 		start = 10;
1701 		*pr = false;
1702 	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1703 		start = 8;
1704 	} else {
1705 		return;
1706 	}
1707 
1708 	/* remove the first part */
1709 	len = strlen(cra_driver_name) - start;
1710 	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1711 		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1712 			    len)) {
1713 			*coreref = i;
1714 			return;
1715 		}
1716 	}
1717 }
1718 
1719 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1720 {
1721 	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1722 	bool pr = false;
1723 	int coreref = 0;
1724 
1725 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm), &coreref, &pr);
1726 	/*
1727 	 * when personalization string is needed, the caller must call reset
1728 	 * and provide the personalization string as seed information
1729 	 */
1730 	return drbg_instantiate(drbg, NULL, coreref, pr);
1731 }
1732 
1733 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1734 {
1735 	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1736 }
1737 
1738 /*
1739  * Generate random numbers invoked by the kernel crypto API:
1740  * The API of the kernel crypto API is extended as follows:
1741  *
1742  * If dlen is larger than zero, rdata is interpreted as the output buffer
1743  * where random data is to be stored.
1744  *
1745  * If dlen is zero, rdata is interpreted as a pointer to a struct drbg_gen
1746  * which holds the additional information string that is used for the
1747  * DRBG generation process. The output buffer that is to be used to store
1748  * data is also pointed to by struct drbg_gen.
1749  */
1750 static int drbg_kcapi_random(struct crypto_rng *tfm, u8 *rdata,
1751 			     unsigned int dlen)
1752 {
1753 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1754 	if (0 < dlen) {
1755 		return drbg_generate_long(drbg, rdata, dlen, NULL);
1756 	} else {
1757 		struct drbg_gen *data = (struct drbg_gen *)rdata;
1758 		struct drbg_string addtl;
1759 		/* catch NULL pointer */
1760 		if (!data)
1761 			return 0;
1762 		drbg_set_testdata(drbg, data->test_data);
1763 		/* linked list variable is now local to allow modification */
1764 		drbg_string_fill(&addtl, data->addtl->buf, data->addtl->len);
1765 		return drbg_generate_long(drbg, data->outbuf, data->outlen,
1766 					  &addtl);
1767 	}
1768 }
1769 
1770 /*
1771  * Reset the DRBG invoked by the kernel crypto API
1772  * The reset implies a full re-initialization of the DRBG. Similar to the
1773  * generate function of drbg_kcapi_random, this function extends the
1774  * kernel crypto API interface with struct drbg_gen
1775  */
1776 static int drbg_kcapi_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
1777 {
1778 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1779 	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1780 	bool pr = false;
1781 	struct drbg_string seed_string;
1782 	int coreref = 0;
1783 
1784 	drbg_uninstantiate(drbg);
1785 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1786 			      &pr);
1787 	if (0 < slen) {
1788 		drbg_string_fill(&seed_string, seed, slen);
1789 		return drbg_instantiate(drbg, &seed_string, coreref, pr);
1790 	} else {
1791 		struct drbg_gen *data = (struct drbg_gen *)seed;
1792 		/* allow invocation of API call with NULL, 0 */
1793 		if (!data)
1794 			return drbg_instantiate(drbg, NULL, coreref, pr);
1795 		drbg_set_testdata(drbg, data->test_data);
1796 		/* linked list variable is now local to allow modification */
1797 		drbg_string_fill(&seed_string, data->addtl->buf,
1798 				 data->addtl->len);
1799 		return drbg_instantiate(drbg, &seed_string, coreref, pr);
1800 	}
1801 }
1802 
1803 /***************************************************************
1804  * Kernel module: code to load the module
1805  ***************************************************************/
1806 
1807 /*
1808  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1809  * of the error handling.
1810  *
1811  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1812  * as seed source of get_random_bytes does not fail.
1813  *
1814  * Note 2: There is no sensible way of testing the reseed counter
1815  * enforcement, so skip it.
1816  */
1817 static inline int __init drbg_healthcheck_sanity(void)
1818 {
1819 #ifdef CONFIG_CRYPTO_FIPS
1820 	int len = 0;
1821 #define OUTBUFLEN 16
1822 	unsigned char buf[OUTBUFLEN];
1823 	struct drbg_state *drbg = NULL;
1824 	int ret = -EFAULT;
1825 	int rc = -EFAULT;
1826 	bool pr = false;
1827 	int coreref = 0;
1828 	struct drbg_string addtl;
1829 	size_t max_addtllen, max_request_bytes;
1830 
1831 	/* only perform test in FIPS mode */
1832 	if (!fips_enabled)
1833 		return 0;
1834 
1835 #ifdef CONFIG_CRYPTO_DRBG_CTR
1836 	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1837 #elif defined CONFIG_CRYPTO_DRBG_HASH
1838 	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1839 #else
1840 	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1841 #endif
1842 
1843 	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1844 	if (!drbg)
1845 		return -ENOMEM;
1846 
1847 	/*
1848 	 * if the following tests fail, it is likely that there is a buffer
1849 	 * overflow as buf is much smaller than the requested or provided
1850 	 * string lengths -- in case the error handling does not succeed
1851 	 * we may get an OOPS. And we want to get an OOPS as this is a
1852 	 * grave bug.
1853 	 */
1854 
1855 	/* get a valid instance of DRBG for following tests */
1856 	ret = drbg_instantiate(drbg, NULL, coreref, pr);
1857 	if (ret) {
1858 		rc = ret;
1859 		goto outbuf;
1860 	}
1861 	max_addtllen = drbg_max_addtl(drbg);
1862 	max_request_bytes = drbg_max_request_bytes(drbg);
1863 	drbg_string_fill(&addtl, buf, max_addtllen + 1);
1864 	/* overflow addtllen with additonal info string */
1865 	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1866 	BUG_ON(0 < len);
1867 	/* overflow max_bits */
1868 	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1869 	BUG_ON(0 < len);
1870 	drbg_uninstantiate(drbg);
1871 
1872 	/* overflow max addtllen with personalization string */
1873 	ret = drbg_instantiate(drbg, &addtl, coreref, pr);
1874 	BUG_ON(0 == ret);
1875 	/* all tests passed */
1876 	rc = 0;
1877 
1878 	pr_devel("DRBG: Sanity tests for failure code paths successfully "
1879 		 "completed\n");
1880 
1881 	drbg_uninstantiate(drbg);
1882 outbuf:
1883 	kzfree(drbg);
1884 	return rc;
1885 #else /* CONFIG_CRYPTO_FIPS */
1886 	return 0;
1887 #endif /* CONFIG_CRYPTO_FIPS */
1888 }
1889 
1890 static struct crypto_alg drbg_algs[22];
1891 
1892 /*
1893  * Fill the array drbg_algs used to register the different DRBGs
1894  * with the kernel crypto API. To fill the array, the information
1895  * from drbg_cores[] is used.
1896  */
1897 static inline void __init drbg_fill_array(struct crypto_alg *alg,
1898 					  const struct drbg_core *core, int pr)
1899 {
1900 	int pos = 0;
1901 	static int priority = 100;
1902 
1903 	memset(alg, 0, sizeof(struct crypto_alg));
1904 	memcpy(alg->cra_name, "stdrng", 6);
1905 	if (pr) {
1906 		memcpy(alg->cra_driver_name, "drbg_pr_", 8);
1907 		pos = 8;
1908 	} else {
1909 		memcpy(alg->cra_driver_name, "drbg_nopr_", 10);
1910 		pos = 10;
1911 	}
1912 	memcpy(alg->cra_driver_name + pos, core->cra_name,
1913 	       strlen(core->cra_name));
1914 
1915 	alg->cra_priority = priority;
1916 	priority++;
1917 	/*
1918 	 * If FIPS mode enabled, the selected DRBG shall have the
1919 	 * highest cra_priority over other stdrng instances to ensure
1920 	 * it is selected.
1921 	 */
1922 	if (fips_enabled)
1923 		alg->cra_priority += 200;
1924 
1925 	alg->cra_flags		= CRYPTO_ALG_TYPE_RNG;
1926 	alg->cra_ctxsize 	= sizeof(struct drbg_state);
1927 	alg->cra_type		= &crypto_rng_type;
1928 	alg->cra_module		= THIS_MODULE;
1929 	alg->cra_init		= drbg_kcapi_init;
1930 	alg->cra_exit		= drbg_kcapi_cleanup;
1931 	alg->cra_u.rng.rng_make_random	= drbg_kcapi_random;
1932 	alg->cra_u.rng.rng_reset	= drbg_kcapi_reset;
1933 	alg->cra_u.rng.seedsize	= 0;
1934 }
1935 
1936 static int __init drbg_init(void)
1937 {
1938 	unsigned int i = 0; /* pointer to drbg_algs */
1939 	unsigned int j = 0; /* pointer to drbg_cores */
1940 	int ret = -EFAULT;
1941 
1942 	ret = drbg_healthcheck_sanity();
1943 	if (ret)
1944 		return ret;
1945 
1946 	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
1947 		pr_info("DRBG: Cannot register all DRBG types"
1948 			"(slots needed: %zu, slots available: %zu)\n",
1949 			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
1950 		return ret;
1951 	}
1952 
1953 	/*
1954 	 * each DRBG definition can be used with PR and without PR, thus
1955 	 * we instantiate each DRBG in drbg_cores[] twice.
1956 	 *
1957 	 * As the order of placing them into the drbg_algs array matters
1958 	 * (the later DRBGs receive a higher cra_priority) we register the
1959 	 * prediction resistance DRBGs first as the should not be too
1960 	 * interesting.
1961 	 */
1962 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1963 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
1964 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1965 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
1966 	return crypto_register_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1967 }
1968 
1969 static void __exit drbg_exit(void)
1970 {
1971 	crypto_unregister_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1972 }
1973 
1974 module_init(drbg_init);
1975 module_exit(drbg_exit);
1976 #ifndef CRYPTO_DRBG_HASH_STRING
1977 #define CRYPTO_DRBG_HASH_STRING ""
1978 #endif
1979 #ifndef CRYPTO_DRBG_HMAC_STRING
1980 #define CRYPTO_DRBG_HMAC_STRING ""
1981 #endif
1982 #ifndef CRYPTO_DRBG_CTR_STRING
1983 #define CRYPTO_DRBG_CTR_STRING ""
1984 #endif
1985 MODULE_LICENSE("GPL");
1986 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
1987 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
1988 		   "using following cores: "
1989 		   CRYPTO_DRBG_HASH_STRING
1990 		   CRYPTO_DRBG_HMAC_STRING
1991 		   CRYPTO_DRBG_CTR_STRING);
1992