xref: /openbmc/linux/crypto/drbg.c (revision 0cabf991)
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *		* with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99 
100 #include <crypto/drbg.h>
101 #include <linux/kernel.h>
102 
103 /***************************************************************
104  * Backend cipher definitions available to DRBG
105  ***************************************************************/
106 
107 /*
108  * The order of the DRBG definitions here matter: every DRBG is registered
109  * as stdrng. Each DRBG receives an increasing cra_priority values the later
110  * they are defined in this array (see drbg_fill_array).
111  *
112  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
113  * the SHA256 / AES 256 over other ciphers. Thus, the favored
114  * DRBGs are the latest entries in this array.
115  */
116 static const struct drbg_core drbg_cores[] = {
117 #ifdef CONFIG_CRYPTO_DRBG_CTR
118 	{
119 		.flags = DRBG_CTR | DRBG_STRENGTH128,
120 		.statelen = 32, /* 256 bits as defined in 10.2.1 */
121 		.blocklen_bytes = 16,
122 		.cra_name = "ctr_aes128",
123 		.backend_cra_name = "aes",
124 	}, {
125 		.flags = DRBG_CTR | DRBG_STRENGTH192,
126 		.statelen = 40, /* 320 bits as defined in 10.2.1 */
127 		.blocklen_bytes = 16,
128 		.cra_name = "ctr_aes192",
129 		.backend_cra_name = "aes",
130 	}, {
131 		.flags = DRBG_CTR | DRBG_STRENGTH256,
132 		.statelen = 48, /* 384 bits as defined in 10.2.1 */
133 		.blocklen_bytes = 16,
134 		.cra_name = "ctr_aes256",
135 		.backend_cra_name = "aes",
136 	},
137 #endif /* CONFIG_CRYPTO_DRBG_CTR */
138 #ifdef CONFIG_CRYPTO_DRBG_HASH
139 	{
140 		.flags = DRBG_HASH | DRBG_STRENGTH128,
141 		.statelen = 55, /* 440 bits */
142 		.blocklen_bytes = 20,
143 		.cra_name = "sha1",
144 		.backend_cra_name = "sha1",
145 	}, {
146 		.flags = DRBG_HASH | DRBG_STRENGTH256,
147 		.statelen = 111, /* 888 bits */
148 		.blocklen_bytes = 48,
149 		.cra_name = "sha384",
150 		.backend_cra_name = "sha384",
151 	}, {
152 		.flags = DRBG_HASH | DRBG_STRENGTH256,
153 		.statelen = 111, /* 888 bits */
154 		.blocklen_bytes = 64,
155 		.cra_name = "sha512",
156 		.backend_cra_name = "sha512",
157 	}, {
158 		.flags = DRBG_HASH | DRBG_STRENGTH256,
159 		.statelen = 55, /* 440 bits */
160 		.blocklen_bytes = 32,
161 		.cra_name = "sha256",
162 		.backend_cra_name = "sha256",
163 	},
164 #endif /* CONFIG_CRYPTO_DRBG_HASH */
165 #ifdef CONFIG_CRYPTO_DRBG_HMAC
166 	{
167 		.flags = DRBG_HMAC | DRBG_STRENGTH128,
168 		.statelen = 20, /* block length of cipher */
169 		.blocklen_bytes = 20,
170 		.cra_name = "hmac_sha1",
171 		.backend_cra_name = "hmac(sha1)",
172 	}, {
173 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
174 		.statelen = 48, /* block length of cipher */
175 		.blocklen_bytes = 48,
176 		.cra_name = "hmac_sha384",
177 		.backend_cra_name = "hmac(sha384)",
178 	}, {
179 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
180 		.statelen = 64, /* block length of cipher */
181 		.blocklen_bytes = 64,
182 		.cra_name = "hmac_sha512",
183 		.backend_cra_name = "hmac(sha512)",
184 	}, {
185 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
186 		.statelen = 32, /* block length of cipher */
187 		.blocklen_bytes = 32,
188 		.cra_name = "hmac_sha256",
189 		.backend_cra_name = "hmac(sha256)",
190 	},
191 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
192 };
193 
194 static int drbg_uninstantiate(struct drbg_state *drbg);
195 
196 /******************************************************************
197  * Generic helper functions
198  ******************************************************************/
199 
200 /*
201  * Return strength of DRBG according to SP800-90A section 8.4
202  *
203  * @flags DRBG flags reference
204  *
205  * Return: normalized strength in *bytes* value or 32 as default
206  *	   to counter programming errors
207  */
208 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
209 {
210 	switch (flags & DRBG_STRENGTH_MASK) {
211 	case DRBG_STRENGTH128:
212 		return 16;
213 	case DRBG_STRENGTH192:
214 		return 24;
215 	case DRBG_STRENGTH256:
216 		return 32;
217 	default:
218 		return 32;
219 	}
220 }
221 
222 /*
223  * FIPS 140-2 continuous self test for the noise source
224  * The test is performed on the noise source input data. Thus, the function
225  * implicitly knows the size of the buffer to be equal to the security
226  * strength.
227  *
228  * Note, this function disregards the nonce trailing the entropy data during
229  * initial seeding.
230  *
231  * drbg->drbg_mutex must have been taken.
232  *
233  * @drbg DRBG handle
234  * @entropy buffer of seed data to be checked
235  *
236  * return:
237  *	0 on success
238  *	-EAGAIN on when the CTRNG is not yet primed
239  *	< 0 on error
240  */
241 static int drbg_fips_continuous_test(struct drbg_state *drbg,
242 				     const unsigned char *entropy)
243 {
244 	unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
245 	int ret = 0;
246 
247 	if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
248 		return 0;
249 
250 	/* skip test if we test the overall system */
251 	if (list_empty(&drbg->test_data.list))
252 		return 0;
253 	/* only perform test in FIPS mode */
254 	if (!fips_enabled)
255 		return 0;
256 
257 	if (!drbg->fips_primed) {
258 		/* Priming of FIPS test */
259 		memcpy(drbg->prev, entropy, entropylen);
260 		drbg->fips_primed = true;
261 		/* priming: another round is needed */
262 		return -EAGAIN;
263 	}
264 	ret = memcmp(drbg->prev, entropy, entropylen);
265 	if (!ret)
266 		panic("DRBG continuous self test failed\n");
267 	memcpy(drbg->prev, entropy, entropylen);
268 
269 	/* the test shall pass when the two values are not equal */
270 	return 0;
271 }
272 
273 /*
274  * Convert an integer into a byte representation of this integer.
275  * The byte representation is big-endian
276  *
277  * @val value to be converted
278  * @buf buffer holding the converted integer -- caller must ensure that
279  *      buffer size is at least 32 bit
280  */
281 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
282 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
283 {
284 	struct s {
285 		__be32 conv;
286 	};
287 	struct s *conversion = (struct s *) buf;
288 
289 	conversion->conv = cpu_to_be32(val);
290 }
291 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
292 
293 /******************************************************************
294  * CTR DRBG callback functions
295  ******************************************************************/
296 
297 #ifdef CONFIG_CRYPTO_DRBG_CTR
298 #define CRYPTO_DRBG_CTR_STRING "CTR "
299 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
300 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
301 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
302 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
303 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
304 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
305 
306 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
307 				 const unsigned char *key);
308 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
309 			  const struct drbg_string *in);
310 static int drbg_init_sym_kernel(struct drbg_state *drbg);
311 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
312 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
313 			      u8 *inbuf, u32 inbuflen,
314 			      u8 *outbuf, u32 outlen);
315 #define DRBG_OUTSCRATCHLEN 256
316 
317 /* BCC function for CTR DRBG as defined in 10.4.3 */
318 static int drbg_ctr_bcc(struct drbg_state *drbg,
319 			unsigned char *out, const unsigned char *key,
320 			struct list_head *in)
321 {
322 	int ret = 0;
323 	struct drbg_string *curr = NULL;
324 	struct drbg_string data;
325 	short cnt = 0;
326 
327 	drbg_string_fill(&data, out, drbg_blocklen(drbg));
328 
329 	/* 10.4.3 step 2 / 4 */
330 	drbg_kcapi_symsetkey(drbg, key);
331 	list_for_each_entry(curr, in, list) {
332 		const unsigned char *pos = curr->buf;
333 		size_t len = curr->len;
334 		/* 10.4.3 step 4.1 */
335 		while (len) {
336 			/* 10.4.3 step 4.2 */
337 			if (drbg_blocklen(drbg) == cnt) {
338 				cnt = 0;
339 				ret = drbg_kcapi_sym(drbg, out, &data);
340 				if (ret)
341 					return ret;
342 			}
343 			out[cnt] ^= *pos;
344 			pos++;
345 			cnt++;
346 			len--;
347 		}
348 	}
349 	/* 10.4.3 step 4.2 for last block */
350 	if (cnt)
351 		ret = drbg_kcapi_sym(drbg, out, &data);
352 
353 	return ret;
354 }
355 
356 /*
357  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
358  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
359  * the scratchpad is used as follows:
360  * drbg_ctr_update:
361  *	temp
362  *		start: drbg->scratchpad
363  *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
364  *			note: the cipher writing into this variable works
365  *			blocklen-wise. Now, when the statelen is not a multiple
366  *			of blocklen, the generateion loop below "spills over"
367  *			by at most blocklen. Thus, we need to give sufficient
368  *			memory.
369  *	df_data
370  *		start: drbg->scratchpad +
371  *				drbg_statelen(drbg) + drbg_blocklen(drbg)
372  *		length: drbg_statelen(drbg)
373  *
374  * drbg_ctr_df:
375  *	pad
376  *		start: df_data + drbg_statelen(drbg)
377  *		length: drbg_blocklen(drbg)
378  *	iv
379  *		start: pad + drbg_blocklen(drbg)
380  *		length: drbg_blocklen(drbg)
381  *	temp
382  *		start: iv + drbg_blocklen(drbg)
383  *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
384  *			note: temp is the buffer that the BCC function operates
385  *			on. BCC operates blockwise. drbg_statelen(drbg)
386  *			is sufficient when the DRBG state length is a multiple
387  *			of the block size. For AES192 (and maybe other ciphers)
388  *			this is not correct and the length for temp is
389  *			insufficient (yes, that also means for such ciphers,
390  *			the final output of all BCC rounds are truncated).
391  *			Therefore, add drbg_blocklen(drbg) to cover all
392  *			possibilities.
393  */
394 
395 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
396 static int drbg_ctr_df(struct drbg_state *drbg,
397 		       unsigned char *df_data, size_t bytes_to_return,
398 		       struct list_head *seedlist)
399 {
400 	int ret = -EFAULT;
401 	unsigned char L_N[8];
402 	/* S3 is input */
403 	struct drbg_string S1, S2, S4, cipherin;
404 	LIST_HEAD(bcc_list);
405 	unsigned char *pad = df_data + drbg_statelen(drbg);
406 	unsigned char *iv = pad + drbg_blocklen(drbg);
407 	unsigned char *temp = iv + drbg_blocklen(drbg);
408 	size_t padlen = 0;
409 	unsigned int templen = 0;
410 	/* 10.4.2 step 7 */
411 	unsigned int i = 0;
412 	/* 10.4.2 step 8 */
413 	const unsigned char *K = (unsigned char *)
414 			   "\x00\x01\x02\x03\x04\x05\x06\x07"
415 			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
416 			   "\x10\x11\x12\x13\x14\x15\x16\x17"
417 			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
418 	unsigned char *X;
419 	size_t generated_len = 0;
420 	size_t inputlen = 0;
421 	struct drbg_string *seed = NULL;
422 
423 	memset(pad, 0, drbg_blocklen(drbg));
424 	memset(iv, 0, drbg_blocklen(drbg));
425 
426 	/* 10.4.2 step 1 is implicit as we work byte-wise */
427 
428 	/* 10.4.2 step 2 */
429 	if ((512/8) < bytes_to_return)
430 		return -EINVAL;
431 
432 	/* 10.4.2 step 2 -- calculate the entire length of all input data */
433 	list_for_each_entry(seed, seedlist, list)
434 		inputlen += seed->len;
435 	drbg_cpu_to_be32(inputlen, &L_N[0]);
436 
437 	/* 10.4.2 step 3 */
438 	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
439 
440 	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
441 	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
442 	/* wrap the padlen appropriately */
443 	if (padlen)
444 		padlen = drbg_blocklen(drbg) - padlen;
445 	/*
446 	 * pad / padlen contains the 0x80 byte and the following zero bytes.
447 	 * As the calculated padlen value only covers the number of zero
448 	 * bytes, this value has to be incremented by one for the 0x80 byte.
449 	 */
450 	padlen++;
451 	pad[0] = 0x80;
452 
453 	/* 10.4.2 step 4 -- first fill the linked list and then order it */
454 	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
455 	list_add_tail(&S1.list, &bcc_list);
456 	drbg_string_fill(&S2, L_N, sizeof(L_N));
457 	list_add_tail(&S2.list, &bcc_list);
458 	list_splice_tail(seedlist, &bcc_list);
459 	drbg_string_fill(&S4, pad, padlen);
460 	list_add_tail(&S4.list, &bcc_list);
461 
462 	/* 10.4.2 step 9 */
463 	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
464 		/*
465 		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
466 		 * holds zeros after allocation -- even the increment of i
467 		 * is irrelevant as the increment remains within length of i
468 		 */
469 		drbg_cpu_to_be32(i, iv);
470 		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
471 		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
472 		if (ret)
473 			goto out;
474 		/* 10.4.2 step 9.3 */
475 		i++;
476 		templen += drbg_blocklen(drbg);
477 	}
478 
479 	/* 10.4.2 step 11 */
480 	X = temp + (drbg_keylen(drbg));
481 	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
482 
483 	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
484 
485 	/* 10.4.2 step 13 */
486 	drbg_kcapi_symsetkey(drbg, temp);
487 	while (generated_len < bytes_to_return) {
488 		short blocklen = 0;
489 		/*
490 		 * 10.4.2 step 13.1: the truncation of the key length is
491 		 * implicit as the key is only drbg_blocklen in size based on
492 		 * the implementation of the cipher function callback
493 		 */
494 		ret = drbg_kcapi_sym(drbg, X, &cipherin);
495 		if (ret)
496 			goto out;
497 		blocklen = (drbg_blocklen(drbg) <
498 				(bytes_to_return - generated_len)) ?
499 			    drbg_blocklen(drbg) :
500 				(bytes_to_return - generated_len);
501 		/* 10.4.2 step 13.2 and 14 */
502 		memcpy(df_data + generated_len, X, blocklen);
503 		generated_len += blocklen;
504 	}
505 
506 	ret = 0;
507 
508 out:
509 	memset(iv, 0, drbg_blocklen(drbg));
510 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
511 	memset(pad, 0, drbg_blocklen(drbg));
512 	return ret;
513 }
514 
515 /*
516  * update function of CTR DRBG as defined in 10.2.1.2
517  *
518  * The reseed variable has an enhanced meaning compared to the update
519  * functions of the other DRBGs as follows:
520  * 0 => initial seed from initialization
521  * 1 => reseed via drbg_seed
522  * 2 => first invocation from drbg_ctr_update when addtl is present. In
523  *      this case, the df_data scratchpad is not deleted so that it is
524  *      available for another calls to prevent calling the DF function
525  *      again.
526  * 3 => second invocation from drbg_ctr_update. When the update function
527  *      was called with addtl, the df_data memory already contains the
528  *      DFed addtl information and we do not need to call DF again.
529  */
530 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
531 			   int reseed)
532 {
533 	int ret = -EFAULT;
534 	/* 10.2.1.2 step 1 */
535 	unsigned char *temp = drbg->scratchpad;
536 	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
537 				 drbg_blocklen(drbg);
538 
539 	if (3 > reseed)
540 		memset(df_data, 0, drbg_statelen(drbg));
541 
542 	if (!reseed) {
543 		/*
544 		 * The DRBG uses the CTR mode of the underlying AES cipher. The
545 		 * CTR mode increments the counter value after the AES operation
546 		 * but SP800-90A requires that the counter is incremented before
547 		 * the AES operation. Hence, we increment it at the time we set
548 		 * it by one.
549 		 */
550 		crypto_inc(drbg->V, drbg_blocklen(drbg));
551 
552 		ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
553 					     drbg_keylen(drbg));
554 		if (ret)
555 			goto out;
556 	}
557 
558 	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
559 	if (seed) {
560 		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
561 		if (ret)
562 			goto out;
563 	}
564 
565 	ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
566 				 temp, drbg_statelen(drbg));
567 	if (ret)
568 		return ret;
569 
570 	/* 10.2.1.2 step 5 */
571 	ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
572 				     drbg_keylen(drbg));
573 	if (ret)
574 		goto out;
575 	/* 10.2.1.2 step 6 */
576 	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
577 	/* See above: increment counter by one to compensate timing of CTR op */
578 	crypto_inc(drbg->V, drbg_blocklen(drbg));
579 	ret = 0;
580 
581 out:
582 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
583 	if (2 != reseed)
584 		memset(df_data, 0, drbg_statelen(drbg));
585 	return ret;
586 }
587 
588 /*
589  * scratchpad use: drbg_ctr_update is called independently from
590  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
591  */
592 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
593 static int drbg_ctr_generate(struct drbg_state *drbg,
594 			     unsigned char *buf, unsigned int buflen,
595 			     struct list_head *addtl)
596 {
597 	int ret;
598 	int len = min_t(int, buflen, INT_MAX);
599 
600 	/* 10.2.1.5.2 step 2 */
601 	if (addtl && !list_empty(addtl)) {
602 		ret = drbg_ctr_update(drbg, addtl, 2);
603 		if (ret)
604 			return 0;
605 	}
606 
607 	/* 10.2.1.5.2 step 4.1 */
608 	ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
609 	if (ret)
610 		return ret;
611 
612 	/* 10.2.1.5.2 step 6 */
613 	ret = drbg_ctr_update(drbg, NULL, 3);
614 	if (ret)
615 		len = ret;
616 
617 	return len;
618 }
619 
620 static const struct drbg_state_ops drbg_ctr_ops = {
621 	.update		= drbg_ctr_update,
622 	.generate	= drbg_ctr_generate,
623 	.crypto_init	= drbg_init_sym_kernel,
624 	.crypto_fini	= drbg_fini_sym_kernel,
625 };
626 #endif /* CONFIG_CRYPTO_DRBG_CTR */
627 
628 /******************************************************************
629  * HMAC DRBG callback functions
630  ******************************************************************/
631 
632 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
633 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
634 			   const struct list_head *in);
635 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
636 				  const unsigned char *key);
637 static int drbg_init_hash_kernel(struct drbg_state *drbg);
638 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
639 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
640 
641 #ifdef CONFIG_CRYPTO_DRBG_HMAC
642 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
643 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
644 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
645 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
646 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
647 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
648 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
649 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
650 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
651 
652 /* update function of HMAC DRBG as defined in 10.1.2.2 */
653 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
654 			    int reseed)
655 {
656 	int ret = -EFAULT;
657 	int i = 0;
658 	struct drbg_string seed1, seed2, vdata;
659 	LIST_HEAD(seedlist);
660 	LIST_HEAD(vdatalist);
661 
662 	if (!reseed) {
663 		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
664 		memset(drbg->V, 1, drbg_statelen(drbg));
665 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
666 	}
667 
668 	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
669 	list_add_tail(&seed1.list, &seedlist);
670 	/* buffer of seed2 will be filled in for loop below with one byte */
671 	drbg_string_fill(&seed2, NULL, 1);
672 	list_add_tail(&seed2.list, &seedlist);
673 	/* input data of seed is allowed to be NULL at this point */
674 	if (seed)
675 		list_splice_tail(seed, &seedlist);
676 
677 	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
678 	list_add_tail(&vdata.list, &vdatalist);
679 	for (i = 2; 0 < i; i--) {
680 		/* first round uses 0x0, second 0x1 */
681 		unsigned char prefix = DRBG_PREFIX0;
682 		if (1 == i)
683 			prefix = DRBG_PREFIX1;
684 		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
685 		seed2.buf = &prefix;
686 		ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
687 		if (ret)
688 			return ret;
689 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
690 
691 		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
692 		ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
693 		if (ret)
694 			return ret;
695 
696 		/* 10.1.2.2 step 3 */
697 		if (!seed)
698 			return ret;
699 	}
700 
701 	return 0;
702 }
703 
704 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
705 static int drbg_hmac_generate(struct drbg_state *drbg,
706 			      unsigned char *buf,
707 			      unsigned int buflen,
708 			      struct list_head *addtl)
709 {
710 	int len = 0;
711 	int ret = 0;
712 	struct drbg_string data;
713 	LIST_HEAD(datalist);
714 
715 	/* 10.1.2.5 step 2 */
716 	if (addtl && !list_empty(addtl)) {
717 		ret = drbg_hmac_update(drbg, addtl, 1);
718 		if (ret)
719 			return ret;
720 	}
721 
722 	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
723 	list_add_tail(&data.list, &datalist);
724 	while (len < buflen) {
725 		unsigned int outlen = 0;
726 		/* 10.1.2.5 step 4.1 */
727 		ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
728 		if (ret)
729 			return ret;
730 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
731 			  drbg_blocklen(drbg) : (buflen - len);
732 
733 		/* 10.1.2.5 step 4.2 */
734 		memcpy(buf + len, drbg->V, outlen);
735 		len += outlen;
736 	}
737 
738 	/* 10.1.2.5 step 6 */
739 	if (addtl && !list_empty(addtl))
740 		ret = drbg_hmac_update(drbg, addtl, 1);
741 	else
742 		ret = drbg_hmac_update(drbg, NULL, 1);
743 	if (ret)
744 		return ret;
745 
746 	return len;
747 }
748 
749 static const struct drbg_state_ops drbg_hmac_ops = {
750 	.update		= drbg_hmac_update,
751 	.generate	= drbg_hmac_generate,
752 	.crypto_init	= drbg_init_hash_kernel,
753 	.crypto_fini	= drbg_fini_hash_kernel,
754 };
755 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
756 
757 /******************************************************************
758  * Hash DRBG callback functions
759  ******************************************************************/
760 
761 #ifdef CONFIG_CRYPTO_DRBG_HASH
762 #define CRYPTO_DRBG_HASH_STRING "HASH "
763 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
764 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
765 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
766 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
767 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
768 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
769 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
770 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
771 
772 /*
773  * Increment buffer
774  *
775  * @dst buffer to increment
776  * @add value to add
777  */
778 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
779 				const unsigned char *add, size_t addlen)
780 {
781 	/* implied: dstlen > addlen */
782 	unsigned char *dstptr;
783 	const unsigned char *addptr;
784 	unsigned int remainder = 0;
785 	size_t len = addlen;
786 
787 	dstptr = dst + (dstlen-1);
788 	addptr = add + (addlen-1);
789 	while (len) {
790 		remainder += *dstptr + *addptr;
791 		*dstptr = remainder & 0xff;
792 		remainder >>= 8;
793 		len--; dstptr--; addptr--;
794 	}
795 	len = dstlen - addlen;
796 	while (len && remainder > 0) {
797 		remainder = *dstptr + 1;
798 		*dstptr = remainder & 0xff;
799 		remainder >>= 8;
800 		len--; dstptr--;
801 	}
802 }
803 
804 /*
805  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
806  * interlinked, the scratchpad is used as follows:
807  * drbg_hash_update
808  *	start: drbg->scratchpad
809  *	length: drbg_statelen(drbg)
810  * drbg_hash_df:
811  *	start: drbg->scratchpad + drbg_statelen(drbg)
812  *	length: drbg_blocklen(drbg)
813  *
814  * drbg_hash_process_addtl uses the scratchpad, but fully completes
815  * before either of the functions mentioned before are invoked. Therefore,
816  * drbg_hash_process_addtl does not need to be specifically considered.
817  */
818 
819 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
820 static int drbg_hash_df(struct drbg_state *drbg,
821 			unsigned char *outval, size_t outlen,
822 			struct list_head *entropylist)
823 {
824 	int ret = 0;
825 	size_t len = 0;
826 	unsigned char input[5];
827 	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
828 	struct drbg_string data;
829 
830 	/* 10.4.1 step 3 */
831 	input[0] = 1;
832 	drbg_cpu_to_be32((outlen * 8), &input[1]);
833 
834 	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
835 	drbg_string_fill(&data, input, 5);
836 	list_add(&data.list, entropylist);
837 
838 	/* 10.4.1 step 4 */
839 	while (len < outlen) {
840 		short blocklen = 0;
841 		/* 10.4.1 step 4.1 */
842 		ret = drbg_kcapi_hash(drbg, tmp, entropylist);
843 		if (ret)
844 			goto out;
845 		/* 10.4.1 step 4.2 */
846 		input[0]++;
847 		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
848 			    drbg_blocklen(drbg) : (outlen - len);
849 		memcpy(outval + len, tmp, blocklen);
850 		len += blocklen;
851 	}
852 
853 out:
854 	memset(tmp, 0, drbg_blocklen(drbg));
855 	return ret;
856 }
857 
858 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
859 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
860 			    int reseed)
861 {
862 	int ret = 0;
863 	struct drbg_string data1, data2;
864 	LIST_HEAD(datalist);
865 	LIST_HEAD(datalist2);
866 	unsigned char *V = drbg->scratchpad;
867 	unsigned char prefix = DRBG_PREFIX1;
868 
869 	if (!seed)
870 		return -EINVAL;
871 
872 	if (reseed) {
873 		/* 10.1.1.3 step 1 */
874 		memcpy(V, drbg->V, drbg_statelen(drbg));
875 		drbg_string_fill(&data1, &prefix, 1);
876 		list_add_tail(&data1.list, &datalist);
877 		drbg_string_fill(&data2, V, drbg_statelen(drbg));
878 		list_add_tail(&data2.list, &datalist);
879 	}
880 	list_splice_tail(seed, &datalist);
881 
882 	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
883 	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
884 	if (ret)
885 		goto out;
886 
887 	/* 10.1.1.2 / 10.1.1.3 step 4  */
888 	prefix = DRBG_PREFIX0;
889 	drbg_string_fill(&data1, &prefix, 1);
890 	list_add_tail(&data1.list, &datalist2);
891 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
892 	list_add_tail(&data2.list, &datalist2);
893 	/* 10.1.1.2 / 10.1.1.3 step 4 */
894 	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
895 
896 out:
897 	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
898 	return ret;
899 }
900 
901 /* processing of additional information string for Hash DRBG */
902 static int drbg_hash_process_addtl(struct drbg_state *drbg,
903 				   struct list_head *addtl)
904 {
905 	int ret = 0;
906 	struct drbg_string data1, data2;
907 	LIST_HEAD(datalist);
908 	unsigned char prefix = DRBG_PREFIX2;
909 
910 	/* 10.1.1.4 step 2 */
911 	if (!addtl || list_empty(addtl))
912 		return 0;
913 
914 	/* 10.1.1.4 step 2a */
915 	drbg_string_fill(&data1, &prefix, 1);
916 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
917 	list_add_tail(&data1.list, &datalist);
918 	list_add_tail(&data2.list, &datalist);
919 	list_splice_tail(addtl, &datalist);
920 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
921 	if (ret)
922 		goto out;
923 
924 	/* 10.1.1.4 step 2b */
925 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
926 		     drbg->scratchpad, drbg_blocklen(drbg));
927 
928 out:
929 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
930 	return ret;
931 }
932 
933 /* Hashgen defined in 10.1.1.4 */
934 static int drbg_hash_hashgen(struct drbg_state *drbg,
935 			     unsigned char *buf,
936 			     unsigned int buflen)
937 {
938 	int len = 0;
939 	int ret = 0;
940 	unsigned char *src = drbg->scratchpad;
941 	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
942 	struct drbg_string data;
943 	LIST_HEAD(datalist);
944 
945 	/* 10.1.1.4 step hashgen 2 */
946 	memcpy(src, drbg->V, drbg_statelen(drbg));
947 
948 	drbg_string_fill(&data, src, drbg_statelen(drbg));
949 	list_add_tail(&data.list, &datalist);
950 	while (len < buflen) {
951 		unsigned int outlen = 0;
952 		/* 10.1.1.4 step hashgen 4.1 */
953 		ret = drbg_kcapi_hash(drbg, dst, &datalist);
954 		if (ret) {
955 			len = ret;
956 			goto out;
957 		}
958 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
959 			  drbg_blocklen(drbg) : (buflen - len);
960 		/* 10.1.1.4 step hashgen 4.2 */
961 		memcpy(buf + len, dst, outlen);
962 		len += outlen;
963 		/* 10.1.1.4 hashgen step 4.3 */
964 		if (len < buflen)
965 			crypto_inc(src, drbg_statelen(drbg));
966 	}
967 
968 out:
969 	memset(drbg->scratchpad, 0,
970 	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
971 	return len;
972 }
973 
974 /* generate function for Hash DRBG as defined in  10.1.1.4 */
975 static int drbg_hash_generate(struct drbg_state *drbg,
976 			      unsigned char *buf, unsigned int buflen,
977 			      struct list_head *addtl)
978 {
979 	int len = 0;
980 	int ret = 0;
981 	union {
982 		unsigned char req[8];
983 		__be64 req_int;
984 	} u;
985 	unsigned char prefix = DRBG_PREFIX3;
986 	struct drbg_string data1, data2;
987 	LIST_HEAD(datalist);
988 
989 	/* 10.1.1.4 step 2 */
990 	ret = drbg_hash_process_addtl(drbg, addtl);
991 	if (ret)
992 		return ret;
993 	/* 10.1.1.4 step 3 */
994 	len = drbg_hash_hashgen(drbg, buf, buflen);
995 
996 	/* this is the value H as documented in 10.1.1.4 */
997 	/* 10.1.1.4 step 4 */
998 	drbg_string_fill(&data1, &prefix, 1);
999 	list_add_tail(&data1.list, &datalist);
1000 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1001 	list_add_tail(&data2.list, &datalist);
1002 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
1003 	if (ret) {
1004 		len = ret;
1005 		goto out;
1006 	}
1007 
1008 	/* 10.1.1.4 step 5 */
1009 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1010 		     drbg->scratchpad, drbg_blocklen(drbg));
1011 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1012 		     drbg->C, drbg_statelen(drbg));
1013 	u.req_int = cpu_to_be64(drbg->reseed_ctr);
1014 	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1015 
1016 out:
1017 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1018 	return len;
1019 }
1020 
1021 /*
1022  * scratchpad usage: as update and generate are used isolated, both
1023  * can use the scratchpad
1024  */
1025 static const struct drbg_state_ops drbg_hash_ops = {
1026 	.update		= drbg_hash_update,
1027 	.generate	= drbg_hash_generate,
1028 	.crypto_init	= drbg_init_hash_kernel,
1029 	.crypto_fini	= drbg_fini_hash_kernel,
1030 };
1031 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1032 
1033 /******************************************************************
1034  * Functions common for DRBG implementations
1035  ******************************************************************/
1036 
1037 static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1038 			      int reseed)
1039 {
1040 	int ret = drbg->d_ops->update(drbg, seed, reseed);
1041 
1042 	if (ret)
1043 		return ret;
1044 
1045 	drbg->seeded = true;
1046 	/* 10.1.1.2 / 10.1.1.3 step 5 */
1047 	drbg->reseed_ctr = 1;
1048 
1049 	return ret;
1050 }
1051 
1052 static inline int drbg_get_random_bytes(struct drbg_state *drbg,
1053 					unsigned char *entropy,
1054 					unsigned int entropylen)
1055 {
1056 	int ret;
1057 
1058 	do {
1059 		get_random_bytes(entropy, entropylen);
1060 		ret = drbg_fips_continuous_test(drbg, entropy);
1061 		if (ret && ret != -EAGAIN)
1062 			return ret;
1063 	} while (ret);
1064 
1065 	return 0;
1066 }
1067 
1068 static void drbg_async_seed(struct work_struct *work)
1069 {
1070 	struct drbg_string data;
1071 	LIST_HEAD(seedlist);
1072 	struct drbg_state *drbg = container_of(work, struct drbg_state,
1073 					       seed_work);
1074 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1075 	unsigned char entropy[32];
1076 	int ret;
1077 
1078 	BUG_ON(!entropylen);
1079 	BUG_ON(entropylen > sizeof(entropy));
1080 
1081 	drbg_string_fill(&data, entropy, entropylen);
1082 	list_add_tail(&data.list, &seedlist);
1083 
1084 	mutex_lock(&drbg->drbg_mutex);
1085 
1086 	ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1087 	if (ret)
1088 		goto unlock;
1089 
1090 	/* Set seeded to false so that if __drbg_seed fails the
1091 	 * next generate call will trigger a reseed.
1092 	 */
1093 	drbg->seeded = false;
1094 
1095 	__drbg_seed(drbg, &seedlist, true);
1096 
1097 	if (drbg->seeded)
1098 		drbg->reseed_threshold = drbg_max_requests(drbg);
1099 
1100 unlock:
1101 	mutex_unlock(&drbg->drbg_mutex);
1102 
1103 	memzero_explicit(entropy, entropylen);
1104 }
1105 
1106 /*
1107  * Seeding or reseeding of the DRBG
1108  *
1109  * @drbg: DRBG state struct
1110  * @pers: personalization / additional information buffer
1111  * @reseed: 0 for initial seed process, 1 for reseeding
1112  *
1113  * return:
1114  *	0 on success
1115  *	error value otherwise
1116  */
1117 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1118 		     bool reseed)
1119 {
1120 	int ret;
1121 	unsigned char entropy[((32 + 16) * 2)];
1122 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1123 	struct drbg_string data1;
1124 	LIST_HEAD(seedlist);
1125 
1126 	/* 9.1 / 9.2 / 9.3.1 step 3 */
1127 	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1128 		pr_devel("DRBG: personalization string too long %zu\n",
1129 			 pers->len);
1130 		return -EINVAL;
1131 	}
1132 
1133 	if (list_empty(&drbg->test_data.list)) {
1134 		drbg_string_fill(&data1, drbg->test_data.buf,
1135 				 drbg->test_data.len);
1136 		pr_devel("DRBG: using test entropy\n");
1137 	} else {
1138 		/*
1139 		 * Gather entropy equal to the security strength of the DRBG.
1140 		 * With a derivation function, a nonce is required in addition
1141 		 * to the entropy. A nonce must be at least 1/2 of the security
1142 		 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1143 		 * of the strength. The consideration of a nonce is only
1144 		 * applicable during initial seeding.
1145 		 */
1146 		BUG_ON(!entropylen);
1147 		if (!reseed)
1148 			entropylen = ((entropylen + 1) / 2) * 3;
1149 		BUG_ON((entropylen * 2) > sizeof(entropy));
1150 
1151 		/* Get seed from in-kernel /dev/urandom */
1152 		ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1153 		if (ret)
1154 			goto out;
1155 
1156 		if (!drbg->jent) {
1157 			drbg_string_fill(&data1, entropy, entropylen);
1158 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1159 				 entropylen);
1160 		} else {
1161 			/* Get seed from Jitter RNG */
1162 			ret = crypto_rng_get_bytes(drbg->jent,
1163 						   entropy + entropylen,
1164 						   entropylen);
1165 			if (ret) {
1166 				pr_devel("DRBG: jent failed with %d\n", ret);
1167 
1168 				/*
1169 				 * Do not treat the transient failure of the
1170 				 * Jitter RNG as an error that needs to be
1171 				 * reported. The combined number of the
1172 				 * maximum reseed threshold times the maximum
1173 				 * number of Jitter RNG transient errors is
1174 				 * less than the reseed threshold required by
1175 				 * SP800-90A allowing us to treat the
1176 				 * transient errors as such.
1177 				 *
1178 				 * However, we mandate that at least the first
1179 				 * seeding operation must succeed with the
1180 				 * Jitter RNG.
1181 				 */
1182 				if (!reseed || ret != -EAGAIN)
1183 					goto out;
1184 			}
1185 
1186 			drbg_string_fill(&data1, entropy, entropylen * 2);
1187 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1188 				 entropylen * 2);
1189 		}
1190 	}
1191 	list_add_tail(&data1.list, &seedlist);
1192 
1193 	/*
1194 	 * concatenation of entropy with personalization str / addtl input)
1195 	 * the variable pers is directly handed in by the caller, so check its
1196 	 * contents whether it is appropriate
1197 	 */
1198 	if (pers && pers->buf && 0 < pers->len) {
1199 		list_add_tail(&pers->list, &seedlist);
1200 		pr_devel("DRBG: using personalization string\n");
1201 	}
1202 
1203 	if (!reseed) {
1204 		memset(drbg->V, 0, drbg_statelen(drbg));
1205 		memset(drbg->C, 0, drbg_statelen(drbg));
1206 	}
1207 
1208 	ret = __drbg_seed(drbg, &seedlist, reseed);
1209 
1210 out:
1211 	memzero_explicit(entropy, entropylen * 2);
1212 
1213 	return ret;
1214 }
1215 
1216 /* Free all substructures in a DRBG state without the DRBG state structure */
1217 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1218 {
1219 	if (!drbg)
1220 		return;
1221 	kfree_sensitive(drbg->Vbuf);
1222 	drbg->Vbuf = NULL;
1223 	drbg->V = NULL;
1224 	kfree_sensitive(drbg->Cbuf);
1225 	drbg->Cbuf = NULL;
1226 	drbg->C = NULL;
1227 	kfree_sensitive(drbg->scratchpadbuf);
1228 	drbg->scratchpadbuf = NULL;
1229 	drbg->reseed_ctr = 0;
1230 	drbg->d_ops = NULL;
1231 	drbg->core = NULL;
1232 	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1233 		kfree_sensitive(drbg->prev);
1234 		drbg->prev = NULL;
1235 		drbg->fips_primed = false;
1236 	}
1237 }
1238 
1239 /*
1240  * Allocate all sub-structures for a DRBG state.
1241  * The DRBG state structure must already be allocated.
1242  */
1243 static inline int drbg_alloc_state(struct drbg_state *drbg)
1244 {
1245 	int ret = -ENOMEM;
1246 	unsigned int sb_size = 0;
1247 
1248 	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1249 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1250 	case DRBG_HMAC:
1251 		drbg->d_ops = &drbg_hmac_ops;
1252 		break;
1253 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1254 #ifdef CONFIG_CRYPTO_DRBG_HASH
1255 	case DRBG_HASH:
1256 		drbg->d_ops = &drbg_hash_ops;
1257 		break;
1258 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1259 #ifdef CONFIG_CRYPTO_DRBG_CTR
1260 	case DRBG_CTR:
1261 		drbg->d_ops = &drbg_ctr_ops;
1262 		break;
1263 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1264 	default:
1265 		ret = -EOPNOTSUPP;
1266 		goto err;
1267 	}
1268 
1269 	ret = drbg->d_ops->crypto_init(drbg);
1270 	if (ret < 0)
1271 		goto err;
1272 
1273 	drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1274 	if (!drbg->Vbuf) {
1275 		ret = -ENOMEM;
1276 		goto fini;
1277 	}
1278 	drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1279 	drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1280 	if (!drbg->Cbuf) {
1281 		ret = -ENOMEM;
1282 		goto fini;
1283 	}
1284 	drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1285 	/* scratchpad is only generated for CTR and Hash */
1286 	if (drbg->core->flags & DRBG_HMAC)
1287 		sb_size = 0;
1288 	else if (drbg->core->flags & DRBG_CTR)
1289 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1290 			  drbg_statelen(drbg) +	/* df_data */
1291 			  drbg_blocklen(drbg) +	/* pad */
1292 			  drbg_blocklen(drbg) +	/* iv */
1293 			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1294 	else
1295 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1296 
1297 	if (0 < sb_size) {
1298 		drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1299 		if (!drbg->scratchpadbuf) {
1300 			ret = -ENOMEM;
1301 			goto fini;
1302 		}
1303 		drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1304 	}
1305 
1306 	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1307 		drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
1308 				     GFP_KERNEL);
1309 		if (!drbg->prev) {
1310 			ret = -ENOMEM;
1311 			goto fini;
1312 		}
1313 		drbg->fips_primed = false;
1314 	}
1315 
1316 	return 0;
1317 
1318 fini:
1319 	drbg->d_ops->crypto_fini(drbg);
1320 err:
1321 	drbg_dealloc_state(drbg);
1322 	return ret;
1323 }
1324 
1325 /*************************************************************************
1326  * DRBG interface functions
1327  *************************************************************************/
1328 
1329 /*
1330  * DRBG generate function as required by SP800-90A - this function
1331  * generates random numbers
1332  *
1333  * @drbg DRBG state handle
1334  * @buf Buffer where to store the random numbers -- the buffer must already
1335  *      be pre-allocated by caller
1336  * @buflen Length of output buffer - this value defines the number of random
1337  *	   bytes pulled from DRBG
1338  * @addtl Additional input that is mixed into state, may be NULL -- note
1339  *	  the entropy is pulled by the DRBG internally unconditionally
1340  *	  as defined in SP800-90A. The additional input is mixed into
1341  *	  the state in addition to the pulled entropy.
1342  *
1343  * return: 0 when all bytes are generated; < 0 in case of an error
1344  */
1345 static int drbg_generate(struct drbg_state *drbg,
1346 			 unsigned char *buf, unsigned int buflen,
1347 			 struct drbg_string *addtl)
1348 {
1349 	int len = 0;
1350 	LIST_HEAD(addtllist);
1351 
1352 	if (!drbg->core) {
1353 		pr_devel("DRBG: not yet seeded\n");
1354 		return -EINVAL;
1355 	}
1356 	if (0 == buflen || !buf) {
1357 		pr_devel("DRBG: no output buffer provided\n");
1358 		return -EINVAL;
1359 	}
1360 	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1361 		pr_devel("DRBG: wrong format of additional information\n");
1362 		return -EINVAL;
1363 	}
1364 
1365 	/* 9.3.1 step 2 */
1366 	len = -EINVAL;
1367 	if (buflen > (drbg_max_request_bytes(drbg))) {
1368 		pr_devel("DRBG: requested random numbers too large %u\n",
1369 			 buflen);
1370 		goto err;
1371 	}
1372 
1373 	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1374 
1375 	/* 9.3.1 step 4 */
1376 	if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1377 		pr_devel("DRBG: additional information string too long %zu\n",
1378 			 addtl->len);
1379 		goto err;
1380 	}
1381 	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1382 
1383 	/*
1384 	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1385 	 * here. The spec is a bit convoluted here, we make it simpler.
1386 	 */
1387 	if (drbg->reseed_threshold < drbg->reseed_ctr)
1388 		drbg->seeded = false;
1389 
1390 	if (drbg->pr || !drbg->seeded) {
1391 		pr_devel("DRBG: reseeding before generation (prediction "
1392 			 "resistance: %s, state %s)\n",
1393 			 drbg->pr ? "true" : "false",
1394 			 drbg->seeded ? "seeded" : "unseeded");
1395 		/* 9.3.1 steps 7.1 through 7.3 */
1396 		len = drbg_seed(drbg, addtl, true);
1397 		if (len)
1398 			goto err;
1399 		/* 9.3.1 step 7.4 */
1400 		addtl = NULL;
1401 	}
1402 
1403 	if (addtl && 0 < addtl->len)
1404 		list_add_tail(&addtl->list, &addtllist);
1405 	/* 9.3.1 step 8 and 10 */
1406 	len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1407 
1408 	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1409 	drbg->reseed_ctr++;
1410 	if (0 >= len)
1411 		goto err;
1412 
1413 	/*
1414 	 * Section 11.3.3 requires to re-perform self tests after some
1415 	 * generated random numbers. The chosen value after which self
1416 	 * test is performed is arbitrary, but it should be reasonable.
1417 	 * However, we do not perform the self tests because of the following
1418 	 * reasons: it is mathematically impossible that the initial self tests
1419 	 * were successfully and the following are not. If the initial would
1420 	 * pass and the following would not, the kernel integrity is violated.
1421 	 * In this case, the entire kernel operation is questionable and it
1422 	 * is unlikely that the integrity violation only affects the
1423 	 * correct operation of the DRBG.
1424 	 *
1425 	 * Albeit the following code is commented out, it is provided in
1426 	 * case somebody has a need to implement the test of 11.3.3.
1427 	 */
1428 #if 0
1429 	if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1430 		int err = 0;
1431 		pr_devel("DRBG: start to perform self test\n");
1432 		if (drbg->core->flags & DRBG_HMAC)
1433 			err = alg_test("drbg_pr_hmac_sha256",
1434 				       "drbg_pr_hmac_sha256", 0, 0);
1435 		else if (drbg->core->flags & DRBG_CTR)
1436 			err = alg_test("drbg_pr_ctr_aes128",
1437 				       "drbg_pr_ctr_aes128", 0, 0);
1438 		else
1439 			err = alg_test("drbg_pr_sha256",
1440 				       "drbg_pr_sha256", 0, 0);
1441 		if (err) {
1442 			pr_err("DRBG: periodical self test failed\n");
1443 			/*
1444 			 * uninstantiate implies that from now on, only errors
1445 			 * are returned when reusing this DRBG cipher handle
1446 			 */
1447 			drbg_uninstantiate(drbg);
1448 			return 0;
1449 		} else {
1450 			pr_devel("DRBG: self test successful\n");
1451 		}
1452 	}
1453 #endif
1454 
1455 	/*
1456 	 * All operations were successful, return 0 as mandated by
1457 	 * the kernel crypto API interface.
1458 	 */
1459 	len = 0;
1460 err:
1461 	return len;
1462 }
1463 
1464 /*
1465  * Wrapper around drbg_generate which can pull arbitrary long strings
1466  * from the DRBG without hitting the maximum request limitation.
1467  *
1468  * Parameters: see drbg_generate
1469  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1470  *		 the entire drbg_generate_long request fails
1471  */
1472 static int drbg_generate_long(struct drbg_state *drbg,
1473 			      unsigned char *buf, unsigned int buflen,
1474 			      struct drbg_string *addtl)
1475 {
1476 	unsigned int len = 0;
1477 	unsigned int slice = 0;
1478 	do {
1479 		int err = 0;
1480 		unsigned int chunk = 0;
1481 		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1482 		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1483 		mutex_lock(&drbg->drbg_mutex);
1484 		err = drbg_generate(drbg, buf + len, chunk, addtl);
1485 		mutex_unlock(&drbg->drbg_mutex);
1486 		if (0 > err)
1487 			return err;
1488 		len += chunk;
1489 	} while (slice > 0 && (len < buflen));
1490 	return 0;
1491 }
1492 
1493 static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1494 {
1495 	struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1496 					       random_ready);
1497 
1498 	schedule_work(&drbg->seed_work);
1499 }
1500 
1501 static int drbg_prepare_hrng(struct drbg_state *drbg)
1502 {
1503 	int err;
1504 
1505 	/* We do not need an HRNG in test mode. */
1506 	if (list_empty(&drbg->test_data.list))
1507 		return 0;
1508 
1509 	drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1510 
1511 	INIT_WORK(&drbg->seed_work, drbg_async_seed);
1512 
1513 	drbg->random_ready.owner = THIS_MODULE;
1514 	drbg->random_ready.func = drbg_schedule_async_seed;
1515 
1516 	err = add_random_ready_callback(&drbg->random_ready);
1517 
1518 	switch (err) {
1519 	case 0:
1520 		break;
1521 
1522 	case -EALREADY:
1523 		err = 0;
1524 		/* fall through */
1525 
1526 	default:
1527 		drbg->random_ready.func = NULL;
1528 		return err;
1529 	}
1530 
1531 	/*
1532 	 * Require frequent reseeds until the seed source is fully
1533 	 * initialized.
1534 	 */
1535 	drbg->reseed_threshold = 50;
1536 
1537 	return err;
1538 }
1539 
1540 /*
1541  * DRBG instantiation function as required by SP800-90A - this function
1542  * sets up the DRBG handle, performs the initial seeding and all sanity
1543  * checks required by SP800-90A
1544  *
1545  * @drbg memory of state -- if NULL, new memory is allocated
1546  * @pers Personalization string that is mixed into state, may be NULL -- note
1547  *	 the entropy is pulled by the DRBG internally unconditionally
1548  *	 as defined in SP800-90A. The additional input is mixed into
1549  *	 the state in addition to the pulled entropy.
1550  * @coreref reference to core
1551  * @pr prediction resistance enabled
1552  *
1553  * return
1554  *	0 on success
1555  *	error value otherwise
1556  */
1557 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1558 			    int coreref, bool pr)
1559 {
1560 	int ret;
1561 	bool reseed = true;
1562 
1563 	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1564 		 "%s\n", coreref, pr ? "enabled" : "disabled");
1565 	mutex_lock(&drbg->drbg_mutex);
1566 
1567 	/* 9.1 step 1 is implicit with the selected DRBG type */
1568 
1569 	/*
1570 	 * 9.1 step 2 is implicit as caller can select prediction resistance
1571 	 * and the flag is copied into drbg->flags --
1572 	 * all DRBG types support prediction resistance
1573 	 */
1574 
1575 	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1576 
1577 	if (!drbg->core) {
1578 		drbg->core = &drbg_cores[coreref];
1579 		drbg->pr = pr;
1580 		drbg->seeded = false;
1581 		drbg->reseed_threshold = drbg_max_requests(drbg);
1582 
1583 		ret = drbg_alloc_state(drbg);
1584 		if (ret)
1585 			goto unlock;
1586 
1587 		ret = drbg_prepare_hrng(drbg);
1588 		if (ret)
1589 			goto free_everything;
1590 
1591 		if (IS_ERR(drbg->jent)) {
1592 			ret = PTR_ERR(drbg->jent);
1593 			drbg->jent = NULL;
1594 			if (fips_enabled || ret != -ENOENT)
1595 				goto free_everything;
1596 			pr_info("DRBG: Continuing without Jitter RNG\n");
1597 		}
1598 
1599 		reseed = false;
1600 	}
1601 
1602 	ret = drbg_seed(drbg, pers, reseed);
1603 
1604 	if (ret && !reseed)
1605 		goto free_everything;
1606 
1607 	mutex_unlock(&drbg->drbg_mutex);
1608 	return ret;
1609 
1610 unlock:
1611 	mutex_unlock(&drbg->drbg_mutex);
1612 	return ret;
1613 
1614 free_everything:
1615 	mutex_unlock(&drbg->drbg_mutex);
1616 	drbg_uninstantiate(drbg);
1617 	return ret;
1618 }
1619 
1620 /*
1621  * DRBG uninstantiate function as required by SP800-90A - this function
1622  * frees all buffers and the DRBG handle
1623  *
1624  * @drbg DRBG state handle
1625  *
1626  * return
1627  *	0 on success
1628  */
1629 static int drbg_uninstantiate(struct drbg_state *drbg)
1630 {
1631 	if (drbg->random_ready.func) {
1632 		del_random_ready_callback(&drbg->random_ready);
1633 		cancel_work_sync(&drbg->seed_work);
1634 	}
1635 
1636 	if (!IS_ERR_OR_NULL(drbg->jent))
1637 		crypto_free_rng(drbg->jent);
1638 	drbg->jent = NULL;
1639 
1640 	if (drbg->d_ops)
1641 		drbg->d_ops->crypto_fini(drbg);
1642 	drbg_dealloc_state(drbg);
1643 	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1644 	return 0;
1645 }
1646 
1647 /*
1648  * Helper function for setting the test data in the DRBG
1649  *
1650  * @drbg DRBG state handle
1651  * @data test data
1652  * @len test data length
1653  */
1654 static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1655 				   const u8 *data, unsigned int len)
1656 {
1657 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1658 
1659 	mutex_lock(&drbg->drbg_mutex);
1660 	drbg_string_fill(&drbg->test_data, data, len);
1661 	mutex_unlock(&drbg->drbg_mutex);
1662 }
1663 
1664 /***************************************************************
1665  * Kernel crypto API cipher invocations requested by DRBG
1666  ***************************************************************/
1667 
1668 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1669 struct sdesc {
1670 	struct shash_desc shash;
1671 	char ctx[];
1672 };
1673 
1674 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1675 {
1676 	struct sdesc *sdesc;
1677 	struct crypto_shash *tfm;
1678 
1679 	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1680 	if (IS_ERR(tfm)) {
1681 		pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1682 				drbg->core->backend_cra_name);
1683 		return PTR_ERR(tfm);
1684 	}
1685 	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1686 	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1687 			GFP_KERNEL);
1688 	if (!sdesc) {
1689 		crypto_free_shash(tfm);
1690 		return -ENOMEM;
1691 	}
1692 
1693 	sdesc->shash.tfm = tfm;
1694 	drbg->priv_data = sdesc;
1695 
1696 	return crypto_shash_alignmask(tfm);
1697 }
1698 
1699 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1700 {
1701 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1702 	if (sdesc) {
1703 		crypto_free_shash(sdesc->shash.tfm);
1704 		kfree_sensitive(sdesc);
1705 	}
1706 	drbg->priv_data = NULL;
1707 	return 0;
1708 }
1709 
1710 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1711 				  const unsigned char *key)
1712 {
1713 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1714 
1715 	crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1716 }
1717 
1718 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1719 			   const struct list_head *in)
1720 {
1721 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1722 	struct drbg_string *input = NULL;
1723 
1724 	crypto_shash_init(&sdesc->shash);
1725 	list_for_each_entry(input, in, list)
1726 		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1727 	return crypto_shash_final(&sdesc->shash, outval);
1728 }
1729 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1730 
1731 #ifdef CONFIG_CRYPTO_DRBG_CTR
1732 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1733 {
1734 	struct crypto_cipher *tfm =
1735 		(struct crypto_cipher *)drbg->priv_data;
1736 	if (tfm)
1737 		crypto_free_cipher(tfm);
1738 	drbg->priv_data = NULL;
1739 
1740 	if (drbg->ctr_handle)
1741 		crypto_free_skcipher(drbg->ctr_handle);
1742 	drbg->ctr_handle = NULL;
1743 
1744 	if (drbg->ctr_req)
1745 		skcipher_request_free(drbg->ctr_req);
1746 	drbg->ctr_req = NULL;
1747 
1748 	kfree(drbg->outscratchpadbuf);
1749 	drbg->outscratchpadbuf = NULL;
1750 
1751 	return 0;
1752 }
1753 
1754 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1755 {
1756 	struct crypto_cipher *tfm;
1757 	struct crypto_skcipher *sk_tfm;
1758 	struct skcipher_request *req;
1759 	unsigned int alignmask;
1760 	char ctr_name[CRYPTO_MAX_ALG_NAME];
1761 
1762 	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1763 	if (IS_ERR(tfm)) {
1764 		pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1765 				drbg->core->backend_cra_name);
1766 		return PTR_ERR(tfm);
1767 	}
1768 	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1769 	drbg->priv_data = tfm;
1770 
1771 	if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1772 	    drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1773 		drbg_fini_sym_kernel(drbg);
1774 		return -EINVAL;
1775 	}
1776 	sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1777 	if (IS_ERR(sk_tfm)) {
1778 		pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1779 				ctr_name);
1780 		drbg_fini_sym_kernel(drbg);
1781 		return PTR_ERR(sk_tfm);
1782 	}
1783 	drbg->ctr_handle = sk_tfm;
1784 	crypto_init_wait(&drbg->ctr_wait);
1785 
1786 	req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1787 	if (!req) {
1788 		pr_info("DRBG: could not allocate request queue\n");
1789 		drbg_fini_sym_kernel(drbg);
1790 		return -ENOMEM;
1791 	}
1792 	drbg->ctr_req = req;
1793 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
1794 						CRYPTO_TFM_REQ_MAY_SLEEP,
1795 					crypto_req_done, &drbg->ctr_wait);
1796 
1797 	alignmask = crypto_skcipher_alignmask(sk_tfm);
1798 	drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1799 					 GFP_KERNEL);
1800 	if (!drbg->outscratchpadbuf) {
1801 		drbg_fini_sym_kernel(drbg);
1802 		return -ENOMEM;
1803 	}
1804 	drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1805 					      alignmask + 1);
1806 
1807 	sg_init_table(&drbg->sg_in, 1);
1808 	sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1809 
1810 	return alignmask;
1811 }
1812 
1813 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1814 				 const unsigned char *key)
1815 {
1816 	struct crypto_cipher *tfm =
1817 		(struct crypto_cipher *)drbg->priv_data;
1818 
1819 	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1820 }
1821 
1822 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1823 			  const struct drbg_string *in)
1824 {
1825 	struct crypto_cipher *tfm =
1826 		(struct crypto_cipher *)drbg->priv_data;
1827 
1828 	/* there is only component in *in */
1829 	BUG_ON(in->len < drbg_blocklen(drbg));
1830 	crypto_cipher_encrypt_one(tfm, outval, in->buf);
1831 	return 0;
1832 }
1833 
1834 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1835 			      u8 *inbuf, u32 inlen,
1836 			      u8 *outbuf, u32 outlen)
1837 {
1838 	struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
1839 	u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
1840 	int ret;
1841 
1842 	if (inbuf) {
1843 		/* Use caller-provided input buffer */
1844 		sg_set_buf(sg_in, inbuf, inlen);
1845 	} else {
1846 		/* Use scratchpad for in-place operation */
1847 		inlen = scratchpad_use;
1848 		memset(drbg->outscratchpad, 0, scratchpad_use);
1849 		sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
1850 	}
1851 
1852 	while (outlen) {
1853 		u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1854 
1855 		/* Output buffer may not be valid for SGL, use scratchpad */
1856 		skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
1857 					   cryptlen, drbg->V);
1858 		ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
1859 					&drbg->ctr_wait);
1860 		if (ret)
1861 			goto out;
1862 
1863 		crypto_init_wait(&drbg->ctr_wait);
1864 
1865 		memcpy(outbuf, drbg->outscratchpad, cryptlen);
1866 		memzero_explicit(drbg->outscratchpad, cryptlen);
1867 
1868 		outlen -= cryptlen;
1869 		outbuf += cryptlen;
1870 	}
1871 	ret = 0;
1872 
1873 out:
1874 	return ret;
1875 }
1876 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1877 
1878 /***************************************************************
1879  * Kernel crypto API interface to register DRBG
1880  ***************************************************************/
1881 
1882 /*
1883  * Look up the DRBG flags by given kernel crypto API cra_name
1884  * The code uses the drbg_cores definition to do this
1885  *
1886  * @cra_name kernel crypto API cra_name
1887  * @coreref reference to integer which is filled with the pointer to
1888  *  the applicable core
1889  * @pr reference for setting prediction resistance
1890  *
1891  * return: flags
1892  */
1893 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1894 					 int *coreref, bool *pr)
1895 {
1896 	int i = 0;
1897 	size_t start = 0;
1898 	int len = 0;
1899 
1900 	*pr = true;
1901 	/* disassemble the names */
1902 	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1903 		start = 10;
1904 		*pr = false;
1905 	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1906 		start = 8;
1907 	} else {
1908 		return;
1909 	}
1910 
1911 	/* remove the first part */
1912 	len = strlen(cra_driver_name) - start;
1913 	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1914 		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1915 			    len)) {
1916 			*coreref = i;
1917 			return;
1918 		}
1919 	}
1920 }
1921 
1922 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1923 {
1924 	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1925 
1926 	mutex_init(&drbg->drbg_mutex);
1927 
1928 	return 0;
1929 }
1930 
1931 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1932 {
1933 	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1934 }
1935 
1936 /*
1937  * Generate random numbers invoked by the kernel crypto API:
1938  * The API of the kernel crypto API is extended as follows:
1939  *
1940  * src is additional input supplied to the RNG.
1941  * slen is the length of src.
1942  * dst is the output buffer where random data is to be stored.
1943  * dlen is the length of dst.
1944  */
1945 static int drbg_kcapi_random(struct crypto_rng *tfm,
1946 			     const u8 *src, unsigned int slen,
1947 			     u8 *dst, unsigned int dlen)
1948 {
1949 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1950 	struct drbg_string *addtl = NULL;
1951 	struct drbg_string string;
1952 
1953 	if (slen) {
1954 		/* linked list variable is now local to allow modification */
1955 		drbg_string_fill(&string, src, slen);
1956 		addtl = &string;
1957 	}
1958 
1959 	return drbg_generate_long(drbg, dst, dlen, addtl);
1960 }
1961 
1962 /*
1963  * Seed the DRBG invoked by the kernel crypto API
1964  */
1965 static int drbg_kcapi_seed(struct crypto_rng *tfm,
1966 			   const u8 *seed, unsigned int slen)
1967 {
1968 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1969 	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1970 	bool pr = false;
1971 	struct drbg_string string;
1972 	struct drbg_string *seed_string = NULL;
1973 	int coreref = 0;
1974 
1975 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1976 			      &pr);
1977 	if (0 < slen) {
1978 		drbg_string_fill(&string, seed, slen);
1979 		seed_string = &string;
1980 	}
1981 
1982 	return drbg_instantiate(drbg, seed_string, coreref, pr);
1983 }
1984 
1985 /***************************************************************
1986  * Kernel module: code to load the module
1987  ***************************************************************/
1988 
1989 /*
1990  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1991  * of the error handling.
1992  *
1993  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1994  * as seed source of get_random_bytes does not fail.
1995  *
1996  * Note 2: There is no sensible way of testing the reseed counter
1997  * enforcement, so skip it.
1998  */
1999 static inline int __init drbg_healthcheck_sanity(void)
2000 {
2001 	int len = 0;
2002 #define OUTBUFLEN 16
2003 	unsigned char buf[OUTBUFLEN];
2004 	struct drbg_state *drbg = NULL;
2005 	int ret = -EFAULT;
2006 	int rc = -EFAULT;
2007 	bool pr = false;
2008 	int coreref = 0;
2009 	struct drbg_string addtl;
2010 	size_t max_addtllen, max_request_bytes;
2011 
2012 	/* only perform test in FIPS mode */
2013 	if (!fips_enabled)
2014 		return 0;
2015 
2016 #ifdef CONFIG_CRYPTO_DRBG_CTR
2017 	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
2018 #elif defined CONFIG_CRYPTO_DRBG_HASH
2019 	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
2020 #else
2021 	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
2022 #endif
2023 
2024 	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
2025 	if (!drbg)
2026 		return -ENOMEM;
2027 
2028 	mutex_init(&drbg->drbg_mutex);
2029 	drbg->core = &drbg_cores[coreref];
2030 	drbg->reseed_threshold = drbg_max_requests(drbg);
2031 
2032 	/*
2033 	 * if the following tests fail, it is likely that there is a buffer
2034 	 * overflow as buf is much smaller than the requested or provided
2035 	 * string lengths -- in case the error handling does not succeed
2036 	 * we may get an OOPS. And we want to get an OOPS as this is a
2037 	 * grave bug.
2038 	 */
2039 
2040 	max_addtllen = drbg_max_addtl(drbg);
2041 	max_request_bytes = drbg_max_request_bytes(drbg);
2042 	drbg_string_fill(&addtl, buf, max_addtllen + 1);
2043 	/* overflow addtllen with additonal info string */
2044 	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
2045 	BUG_ON(0 < len);
2046 	/* overflow max_bits */
2047 	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
2048 	BUG_ON(0 < len);
2049 
2050 	/* overflow max addtllen with personalization string */
2051 	ret = drbg_seed(drbg, &addtl, false);
2052 	BUG_ON(0 == ret);
2053 	/* all tests passed */
2054 	rc = 0;
2055 
2056 	pr_devel("DRBG: Sanity tests for failure code paths successfully "
2057 		 "completed\n");
2058 
2059 	kfree(drbg);
2060 	return rc;
2061 }
2062 
2063 static struct rng_alg drbg_algs[22];
2064 
2065 /*
2066  * Fill the array drbg_algs used to register the different DRBGs
2067  * with the kernel crypto API. To fill the array, the information
2068  * from drbg_cores[] is used.
2069  */
2070 static inline void __init drbg_fill_array(struct rng_alg *alg,
2071 					  const struct drbg_core *core, int pr)
2072 {
2073 	int pos = 0;
2074 	static int priority = 200;
2075 
2076 	memcpy(alg->base.cra_name, "stdrng", 6);
2077 	if (pr) {
2078 		memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
2079 		pos = 8;
2080 	} else {
2081 		memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
2082 		pos = 10;
2083 	}
2084 	memcpy(alg->base.cra_driver_name + pos, core->cra_name,
2085 	       strlen(core->cra_name));
2086 
2087 	alg->base.cra_priority = priority;
2088 	priority++;
2089 	/*
2090 	 * If FIPS mode enabled, the selected DRBG shall have the
2091 	 * highest cra_priority over other stdrng instances to ensure
2092 	 * it is selected.
2093 	 */
2094 	if (fips_enabled)
2095 		alg->base.cra_priority += 200;
2096 
2097 	alg->base.cra_ctxsize 	= sizeof(struct drbg_state);
2098 	alg->base.cra_module	= THIS_MODULE;
2099 	alg->base.cra_init	= drbg_kcapi_init;
2100 	alg->base.cra_exit	= drbg_kcapi_cleanup;
2101 	alg->generate		= drbg_kcapi_random;
2102 	alg->seed		= drbg_kcapi_seed;
2103 	alg->set_ent		= drbg_kcapi_set_entropy;
2104 	alg->seedsize		= 0;
2105 }
2106 
2107 static int __init drbg_init(void)
2108 {
2109 	unsigned int i = 0; /* pointer to drbg_algs */
2110 	unsigned int j = 0; /* pointer to drbg_cores */
2111 	int ret;
2112 
2113 	ret = drbg_healthcheck_sanity();
2114 	if (ret)
2115 		return ret;
2116 
2117 	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2118 		pr_info("DRBG: Cannot register all DRBG types"
2119 			"(slots needed: %zu, slots available: %zu)\n",
2120 			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2121 		return -EFAULT;
2122 	}
2123 
2124 	/*
2125 	 * each DRBG definition can be used with PR and without PR, thus
2126 	 * we instantiate each DRBG in drbg_cores[] twice.
2127 	 *
2128 	 * As the order of placing them into the drbg_algs array matters
2129 	 * (the later DRBGs receive a higher cra_priority) we register the
2130 	 * prediction resistance DRBGs first as the should not be too
2131 	 * interesting.
2132 	 */
2133 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2134 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2135 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2136 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2137 	return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2138 }
2139 
2140 static void __exit drbg_exit(void)
2141 {
2142 	crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2143 }
2144 
2145 subsys_initcall(drbg_init);
2146 module_exit(drbg_exit);
2147 #ifndef CRYPTO_DRBG_HASH_STRING
2148 #define CRYPTO_DRBG_HASH_STRING ""
2149 #endif
2150 #ifndef CRYPTO_DRBG_HMAC_STRING
2151 #define CRYPTO_DRBG_HMAC_STRING ""
2152 #endif
2153 #ifndef CRYPTO_DRBG_CTR_STRING
2154 #define CRYPTO_DRBG_CTR_STRING ""
2155 #endif
2156 MODULE_LICENSE("GPL");
2157 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2158 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2159 		   "using following cores: "
2160 		   CRYPTO_DRBG_HASH_STRING
2161 		   CRYPTO_DRBG_HMAC_STRING
2162 		   CRYPTO_DRBG_CTR_STRING);
2163 MODULE_ALIAS_CRYPTO("stdrng");
2164