xref: /openbmc/linux/crypto/drbg.c (revision 020c5260)
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *		* with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99 
100 #include <crypto/drbg.h>
101 #include <linux/kernel.h>
102 
103 /***************************************************************
104  * Backend cipher definitions available to DRBG
105  ***************************************************************/
106 
107 /*
108  * The order of the DRBG definitions here matter: every DRBG is registered
109  * as stdrng. Each DRBG receives an increasing cra_priority values the later
110  * they are defined in this array (see drbg_fill_array).
111  *
112  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
113  * the SHA256 / AES 256 over other ciphers. Thus, the favored
114  * DRBGs are the latest entries in this array.
115  */
116 static const struct drbg_core drbg_cores[] = {
117 #ifdef CONFIG_CRYPTO_DRBG_CTR
118 	{
119 		.flags = DRBG_CTR | DRBG_STRENGTH128,
120 		.statelen = 32, /* 256 bits as defined in 10.2.1 */
121 		.blocklen_bytes = 16,
122 		.cra_name = "ctr_aes128",
123 		.backend_cra_name = "aes",
124 	}, {
125 		.flags = DRBG_CTR | DRBG_STRENGTH192,
126 		.statelen = 40, /* 320 bits as defined in 10.2.1 */
127 		.blocklen_bytes = 16,
128 		.cra_name = "ctr_aes192",
129 		.backend_cra_name = "aes",
130 	}, {
131 		.flags = DRBG_CTR | DRBG_STRENGTH256,
132 		.statelen = 48, /* 384 bits as defined in 10.2.1 */
133 		.blocklen_bytes = 16,
134 		.cra_name = "ctr_aes256",
135 		.backend_cra_name = "aes",
136 	},
137 #endif /* CONFIG_CRYPTO_DRBG_CTR */
138 #ifdef CONFIG_CRYPTO_DRBG_HASH
139 	{
140 		.flags = DRBG_HASH | DRBG_STRENGTH128,
141 		.statelen = 55, /* 440 bits */
142 		.blocklen_bytes = 20,
143 		.cra_name = "sha1",
144 		.backend_cra_name = "sha1",
145 	}, {
146 		.flags = DRBG_HASH | DRBG_STRENGTH256,
147 		.statelen = 111, /* 888 bits */
148 		.blocklen_bytes = 48,
149 		.cra_name = "sha384",
150 		.backend_cra_name = "sha384",
151 	}, {
152 		.flags = DRBG_HASH | DRBG_STRENGTH256,
153 		.statelen = 111, /* 888 bits */
154 		.blocklen_bytes = 64,
155 		.cra_name = "sha512",
156 		.backend_cra_name = "sha512",
157 	}, {
158 		.flags = DRBG_HASH | DRBG_STRENGTH256,
159 		.statelen = 55, /* 440 bits */
160 		.blocklen_bytes = 32,
161 		.cra_name = "sha256",
162 		.backend_cra_name = "sha256",
163 	},
164 #endif /* CONFIG_CRYPTO_DRBG_HASH */
165 #ifdef CONFIG_CRYPTO_DRBG_HMAC
166 	{
167 		.flags = DRBG_HMAC | DRBG_STRENGTH128,
168 		.statelen = 20, /* block length of cipher */
169 		.blocklen_bytes = 20,
170 		.cra_name = "hmac_sha1",
171 		.backend_cra_name = "hmac(sha1)",
172 	}, {
173 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
174 		.statelen = 48, /* block length of cipher */
175 		.blocklen_bytes = 48,
176 		.cra_name = "hmac_sha384",
177 		.backend_cra_name = "hmac(sha384)",
178 	}, {
179 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
180 		.statelen = 64, /* block length of cipher */
181 		.blocklen_bytes = 64,
182 		.cra_name = "hmac_sha512",
183 		.backend_cra_name = "hmac(sha512)",
184 	}, {
185 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
186 		.statelen = 32, /* block length of cipher */
187 		.blocklen_bytes = 32,
188 		.cra_name = "hmac_sha256",
189 		.backend_cra_name = "hmac(sha256)",
190 	},
191 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
192 };
193 
194 static int drbg_uninstantiate(struct drbg_state *drbg);
195 
196 /******************************************************************
197  * Generic helper functions
198  ******************************************************************/
199 
200 /*
201  * Return strength of DRBG according to SP800-90A section 8.4
202  *
203  * @flags DRBG flags reference
204  *
205  * Return: normalized strength in *bytes* value or 32 as default
206  *	   to counter programming errors
207  */
208 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
209 {
210 	switch (flags & DRBG_STRENGTH_MASK) {
211 	case DRBG_STRENGTH128:
212 		return 16;
213 	case DRBG_STRENGTH192:
214 		return 24;
215 	case DRBG_STRENGTH256:
216 		return 32;
217 	default:
218 		return 32;
219 	}
220 }
221 
222 /*
223  * Convert an integer into a byte representation of this integer.
224  * The byte representation is big-endian
225  *
226  * @val value to be converted
227  * @buf buffer holding the converted integer -- caller must ensure that
228  *      buffer size is at least 32 bit
229  */
230 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
231 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
232 {
233 	struct s {
234 		__be32 conv;
235 	};
236 	struct s *conversion = (struct s *) buf;
237 
238 	conversion->conv = cpu_to_be32(val);
239 }
240 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
241 
242 /******************************************************************
243  * CTR DRBG callback functions
244  ******************************************************************/
245 
246 #ifdef CONFIG_CRYPTO_DRBG_CTR
247 #define CRYPTO_DRBG_CTR_STRING "CTR "
248 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
249 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
250 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
251 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
252 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
253 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
254 
255 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
256 				 const unsigned char *key);
257 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
258 			  const struct drbg_string *in);
259 static int drbg_init_sym_kernel(struct drbg_state *drbg);
260 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
261 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
262 			      u8 *inbuf, u32 inbuflen,
263 			      u8 *outbuf, u32 outlen);
264 #define DRBG_CTR_NULL_LEN 128
265 #define DRBG_OUTSCRATCHLEN DRBG_CTR_NULL_LEN
266 
267 /* BCC function for CTR DRBG as defined in 10.4.3 */
268 static int drbg_ctr_bcc(struct drbg_state *drbg,
269 			unsigned char *out, const unsigned char *key,
270 			struct list_head *in)
271 {
272 	int ret = 0;
273 	struct drbg_string *curr = NULL;
274 	struct drbg_string data;
275 	short cnt = 0;
276 
277 	drbg_string_fill(&data, out, drbg_blocklen(drbg));
278 
279 	/* 10.4.3 step 2 / 4 */
280 	drbg_kcapi_symsetkey(drbg, key);
281 	list_for_each_entry(curr, in, list) {
282 		const unsigned char *pos = curr->buf;
283 		size_t len = curr->len;
284 		/* 10.4.3 step 4.1 */
285 		while (len) {
286 			/* 10.4.3 step 4.2 */
287 			if (drbg_blocklen(drbg) == cnt) {
288 				cnt = 0;
289 				ret = drbg_kcapi_sym(drbg, out, &data);
290 				if (ret)
291 					return ret;
292 			}
293 			out[cnt] ^= *pos;
294 			pos++;
295 			cnt++;
296 			len--;
297 		}
298 	}
299 	/* 10.4.3 step 4.2 for last block */
300 	if (cnt)
301 		ret = drbg_kcapi_sym(drbg, out, &data);
302 
303 	return ret;
304 }
305 
306 /*
307  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
308  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
309  * the scratchpad is used as follows:
310  * drbg_ctr_update:
311  *	temp
312  *		start: drbg->scratchpad
313  *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
314  *			note: the cipher writing into this variable works
315  *			blocklen-wise. Now, when the statelen is not a multiple
316  *			of blocklen, the generateion loop below "spills over"
317  *			by at most blocklen. Thus, we need to give sufficient
318  *			memory.
319  *	df_data
320  *		start: drbg->scratchpad +
321  *				drbg_statelen(drbg) + drbg_blocklen(drbg)
322  *		length: drbg_statelen(drbg)
323  *
324  * drbg_ctr_df:
325  *	pad
326  *		start: df_data + drbg_statelen(drbg)
327  *		length: drbg_blocklen(drbg)
328  *	iv
329  *		start: pad + drbg_blocklen(drbg)
330  *		length: drbg_blocklen(drbg)
331  *	temp
332  *		start: iv + drbg_blocklen(drbg)
333  *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
334  *			note: temp is the buffer that the BCC function operates
335  *			on. BCC operates blockwise. drbg_statelen(drbg)
336  *			is sufficient when the DRBG state length is a multiple
337  *			of the block size. For AES192 (and maybe other ciphers)
338  *			this is not correct and the length for temp is
339  *			insufficient (yes, that also means for such ciphers,
340  *			the final output of all BCC rounds are truncated).
341  *			Therefore, add drbg_blocklen(drbg) to cover all
342  *			possibilities.
343  */
344 
345 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
346 static int drbg_ctr_df(struct drbg_state *drbg,
347 		       unsigned char *df_data, size_t bytes_to_return,
348 		       struct list_head *seedlist)
349 {
350 	int ret = -EFAULT;
351 	unsigned char L_N[8];
352 	/* S3 is input */
353 	struct drbg_string S1, S2, S4, cipherin;
354 	LIST_HEAD(bcc_list);
355 	unsigned char *pad = df_data + drbg_statelen(drbg);
356 	unsigned char *iv = pad + drbg_blocklen(drbg);
357 	unsigned char *temp = iv + drbg_blocklen(drbg);
358 	size_t padlen = 0;
359 	unsigned int templen = 0;
360 	/* 10.4.2 step 7 */
361 	unsigned int i = 0;
362 	/* 10.4.2 step 8 */
363 	const unsigned char *K = (unsigned char *)
364 			   "\x00\x01\x02\x03\x04\x05\x06\x07"
365 			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
366 			   "\x10\x11\x12\x13\x14\x15\x16\x17"
367 			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
368 	unsigned char *X;
369 	size_t generated_len = 0;
370 	size_t inputlen = 0;
371 	struct drbg_string *seed = NULL;
372 
373 	memset(pad, 0, drbg_blocklen(drbg));
374 	memset(iv, 0, drbg_blocklen(drbg));
375 
376 	/* 10.4.2 step 1 is implicit as we work byte-wise */
377 
378 	/* 10.4.2 step 2 */
379 	if ((512/8) < bytes_to_return)
380 		return -EINVAL;
381 
382 	/* 10.4.2 step 2 -- calculate the entire length of all input data */
383 	list_for_each_entry(seed, seedlist, list)
384 		inputlen += seed->len;
385 	drbg_cpu_to_be32(inputlen, &L_N[0]);
386 
387 	/* 10.4.2 step 3 */
388 	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
389 
390 	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
391 	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
392 	/* wrap the padlen appropriately */
393 	if (padlen)
394 		padlen = drbg_blocklen(drbg) - padlen;
395 	/*
396 	 * pad / padlen contains the 0x80 byte and the following zero bytes.
397 	 * As the calculated padlen value only covers the number of zero
398 	 * bytes, this value has to be incremented by one for the 0x80 byte.
399 	 */
400 	padlen++;
401 	pad[0] = 0x80;
402 
403 	/* 10.4.2 step 4 -- first fill the linked list and then order it */
404 	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
405 	list_add_tail(&S1.list, &bcc_list);
406 	drbg_string_fill(&S2, L_N, sizeof(L_N));
407 	list_add_tail(&S2.list, &bcc_list);
408 	list_splice_tail(seedlist, &bcc_list);
409 	drbg_string_fill(&S4, pad, padlen);
410 	list_add_tail(&S4.list, &bcc_list);
411 
412 	/* 10.4.2 step 9 */
413 	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
414 		/*
415 		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
416 		 * holds zeros after allocation -- even the increment of i
417 		 * is irrelevant as the increment remains within length of i
418 		 */
419 		drbg_cpu_to_be32(i, iv);
420 		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
421 		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
422 		if (ret)
423 			goto out;
424 		/* 10.4.2 step 9.3 */
425 		i++;
426 		templen += drbg_blocklen(drbg);
427 	}
428 
429 	/* 10.4.2 step 11 */
430 	X = temp + (drbg_keylen(drbg));
431 	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
432 
433 	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
434 
435 	/* 10.4.2 step 13 */
436 	drbg_kcapi_symsetkey(drbg, temp);
437 	while (generated_len < bytes_to_return) {
438 		short blocklen = 0;
439 		/*
440 		 * 10.4.2 step 13.1: the truncation of the key length is
441 		 * implicit as the key is only drbg_blocklen in size based on
442 		 * the implementation of the cipher function callback
443 		 */
444 		ret = drbg_kcapi_sym(drbg, X, &cipherin);
445 		if (ret)
446 			goto out;
447 		blocklen = (drbg_blocklen(drbg) <
448 				(bytes_to_return - generated_len)) ?
449 			    drbg_blocklen(drbg) :
450 				(bytes_to_return - generated_len);
451 		/* 10.4.2 step 13.2 and 14 */
452 		memcpy(df_data + generated_len, X, blocklen);
453 		generated_len += blocklen;
454 	}
455 
456 	ret = 0;
457 
458 out:
459 	memset(iv, 0, drbg_blocklen(drbg));
460 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
461 	memset(pad, 0, drbg_blocklen(drbg));
462 	return ret;
463 }
464 
465 /*
466  * update function of CTR DRBG as defined in 10.2.1.2
467  *
468  * The reseed variable has an enhanced meaning compared to the update
469  * functions of the other DRBGs as follows:
470  * 0 => initial seed from initialization
471  * 1 => reseed via drbg_seed
472  * 2 => first invocation from drbg_ctr_update when addtl is present. In
473  *      this case, the df_data scratchpad is not deleted so that it is
474  *      available for another calls to prevent calling the DF function
475  *      again.
476  * 3 => second invocation from drbg_ctr_update. When the update function
477  *      was called with addtl, the df_data memory already contains the
478  *      DFed addtl information and we do not need to call DF again.
479  */
480 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
481 			   int reseed)
482 {
483 	int ret = -EFAULT;
484 	/* 10.2.1.2 step 1 */
485 	unsigned char *temp = drbg->scratchpad;
486 	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
487 				 drbg_blocklen(drbg);
488 
489 	if (3 > reseed)
490 		memset(df_data, 0, drbg_statelen(drbg));
491 
492 	if (!reseed) {
493 		/*
494 		 * The DRBG uses the CTR mode of the underlying AES cipher. The
495 		 * CTR mode increments the counter value after the AES operation
496 		 * but SP800-90A requires that the counter is incremented before
497 		 * the AES operation. Hence, we increment it at the time we set
498 		 * it by one.
499 		 */
500 		crypto_inc(drbg->V, drbg_blocklen(drbg));
501 
502 		ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
503 					     drbg_keylen(drbg));
504 		if (ret)
505 			goto out;
506 	}
507 
508 	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
509 	if (seed) {
510 		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
511 		if (ret)
512 			goto out;
513 	}
514 
515 	ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
516 				 temp, drbg_statelen(drbg));
517 	if (ret)
518 		return ret;
519 
520 	/* 10.2.1.2 step 5 */
521 	ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
522 				     drbg_keylen(drbg));
523 	if (ret)
524 		goto out;
525 	/* 10.2.1.2 step 6 */
526 	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
527 	/* See above: increment counter by one to compensate timing of CTR op */
528 	crypto_inc(drbg->V, drbg_blocklen(drbg));
529 	ret = 0;
530 
531 out:
532 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
533 	if (2 != reseed)
534 		memset(df_data, 0, drbg_statelen(drbg));
535 	return ret;
536 }
537 
538 /*
539  * scratchpad use: drbg_ctr_update is called independently from
540  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
541  */
542 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
543 static int drbg_ctr_generate(struct drbg_state *drbg,
544 			     unsigned char *buf, unsigned int buflen,
545 			     struct list_head *addtl)
546 {
547 	int ret;
548 	int len = min_t(int, buflen, INT_MAX);
549 
550 	/* 10.2.1.5.2 step 2 */
551 	if (addtl && !list_empty(addtl)) {
552 		ret = drbg_ctr_update(drbg, addtl, 2);
553 		if (ret)
554 			return 0;
555 	}
556 
557 	/* 10.2.1.5.2 step 4.1 */
558 	ret = drbg_kcapi_sym_ctr(drbg, drbg->ctr_null_value, DRBG_CTR_NULL_LEN,
559 				 buf, len);
560 	if (ret)
561 		return ret;
562 
563 	/* 10.2.1.5.2 step 6 */
564 	ret = drbg_ctr_update(drbg, NULL, 3);
565 	if (ret)
566 		len = ret;
567 
568 	return len;
569 }
570 
571 static const struct drbg_state_ops drbg_ctr_ops = {
572 	.update		= drbg_ctr_update,
573 	.generate	= drbg_ctr_generate,
574 	.crypto_init	= drbg_init_sym_kernel,
575 	.crypto_fini	= drbg_fini_sym_kernel,
576 };
577 #endif /* CONFIG_CRYPTO_DRBG_CTR */
578 
579 /******************************************************************
580  * HMAC DRBG callback functions
581  ******************************************************************/
582 
583 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
584 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
585 			   const struct list_head *in);
586 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
587 				  const unsigned char *key);
588 static int drbg_init_hash_kernel(struct drbg_state *drbg);
589 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
590 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
591 
592 #ifdef CONFIG_CRYPTO_DRBG_HMAC
593 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
594 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
595 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
596 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
597 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
598 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
599 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
600 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
601 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
602 
603 /* update function of HMAC DRBG as defined in 10.1.2.2 */
604 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
605 			    int reseed)
606 {
607 	int ret = -EFAULT;
608 	int i = 0;
609 	struct drbg_string seed1, seed2, vdata;
610 	LIST_HEAD(seedlist);
611 	LIST_HEAD(vdatalist);
612 
613 	if (!reseed) {
614 		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
615 		memset(drbg->V, 1, drbg_statelen(drbg));
616 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
617 	}
618 
619 	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
620 	list_add_tail(&seed1.list, &seedlist);
621 	/* buffer of seed2 will be filled in for loop below with one byte */
622 	drbg_string_fill(&seed2, NULL, 1);
623 	list_add_tail(&seed2.list, &seedlist);
624 	/* input data of seed is allowed to be NULL at this point */
625 	if (seed)
626 		list_splice_tail(seed, &seedlist);
627 
628 	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
629 	list_add_tail(&vdata.list, &vdatalist);
630 	for (i = 2; 0 < i; i--) {
631 		/* first round uses 0x0, second 0x1 */
632 		unsigned char prefix = DRBG_PREFIX0;
633 		if (1 == i)
634 			prefix = DRBG_PREFIX1;
635 		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
636 		seed2.buf = &prefix;
637 		ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
638 		if (ret)
639 			return ret;
640 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
641 
642 		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
643 		ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
644 		if (ret)
645 			return ret;
646 
647 		/* 10.1.2.2 step 3 */
648 		if (!seed)
649 			return ret;
650 	}
651 
652 	return 0;
653 }
654 
655 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
656 static int drbg_hmac_generate(struct drbg_state *drbg,
657 			      unsigned char *buf,
658 			      unsigned int buflen,
659 			      struct list_head *addtl)
660 {
661 	int len = 0;
662 	int ret = 0;
663 	struct drbg_string data;
664 	LIST_HEAD(datalist);
665 
666 	/* 10.1.2.5 step 2 */
667 	if (addtl && !list_empty(addtl)) {
668 		ret = drbg_hmac_update(drbg, addtl, 1);
669 		if (ret)
670 			return ret;
671 	}
672 
673 	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
674 	list_add_tail(&data.list, &datalist);
675 	while (len < buflen) {
676 		unsigned int outlen = 0;
677 		/* 10.1.2.5 step 4.1 */
678 		ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
679 		if (ret)
680 			return ret;
681 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
682 			  drbg_blocklen(drbg) : (buflen - len);
683 
684 		/* 10.1.2.5 step 4.2 */
685 		memcpy(buf + len, drbg->V, outlen);
686 		len += outlen;
687 	}
688 
689 	/* 10.1.2.5 step 6 */
690 	if (addtl && !list_empty(addtl))
691 		ret = drbg_hmac_update(drbg, addtl, 1);
692 	else
693 		ret = drbg_hmac_update(drbg, NULL, 1);
694 	if (ret)
695 		return ret;
696 
697 	return len;
698 }
699 
700 static const struct drbg_state_ops drbg_hmac_ops = {
701 	.update		= drbg_hmac_update,
702 	.generate	= drbg_hmac_generate,
703 	.crypto_init	= drbg_init_hash_kernel,
704 	.crypto_fini	= drbg_fini_hash_kernel,
705 };
706 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
707 
708 /******************************************************************
709  * Hash DRBG callback functions
710  ******************************************************************/
711 
712 #ifdef CONFIG_CRYPTO_DRBG_HASH
713 #define CRYPTO_DRBG_HASH_STRING "HASH "
714 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
715 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
716 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
717 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
718 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
719 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
720 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
721 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
722 
723 /*
724  * Increment buffer
725  *
726  * @dst buffer to increment
727  * @add value to add
728  */
729 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
730 				const unsigned char *add, size_t addlen)
731 {
732 	/* implied: dstlen > addlen */
733 	unsigned char *dstptr;
734 	const unsigned char *addptr;
735 	unsigned int remainder = 0;
736 	size_t len = addlen;
737 
738 	dstptr = dst + (dstlen-1);
739 	addptr = add + (addlen-1);
740 	while (len) {
741 		remainder += *dstptr + *addptr;
742 		*dstptr = remainder & 0xff;
743 		remainder >>= 8;
744 		len--; dstptr--; addptr--;
745 	}
746 	len = dstlen - addlen;
747 	while (len && remainder > 0) {
748 		remainder = *dstptr + 1;
749 		*dstptr = remainder & 0xff;
750 		remainder >>= 8;
751 		len--; dstptr--;
752 	}
753 }
754 
755 /*
756  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
757  * interlinked, the scratchpad is used as follows:
758  * drbg_hash_update
759  *	start: drbg->scratchpad
760  *	length: drbg_statelen(drbg)
761  * drbg_hash_df:
762  *	start: drbg->scratchpad + drbg_statelen(drbg)
763  *	length: drbg_blocklen(drbg)
764  *
765  * drbg_hash_process_addtl uses the scratchpad, but fully completes
766  * before either of the functions mentioned before are invoked. Therefore,
767  * drbg_hash_process_addtl does not need to be specifically considered.
768  */
769 
770 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
771 static int drbg_hash_df(struct drbg_state *drbg,
772 			unsigned char *outval, size_t outlen,
773 			struct list_head *entropylist)
774 {
775 	int ret = 0;
776 	size_t len = 0;
777 	unsigned char input[5];
778 	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
779 	struct drbg_string data;
780 
781 	/* 10.4.1 step 3 */
782 	input[0] = 1;
783 	drbg_cpu_to_be32((outlen * 8), &input[1]);
784 
785 	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
786 	drbg_string_fill(&data, input, 5);
787 	list_add(&data.list, entropylist);
788 
789 	/* 10.4.1 step 4 */
790 	while (len < outlen) {
791 		short blocklen = 0;
792 		/* 10.4.1 step 4.1 */
793 		ret = drbg_kcapi_hash(drbg, tmp, entropylist);
794 		if (ret)
795 			goto out;
796 		/* 10.4.1 step 4.2 */
797 		input[0]++;
798 		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
799 			    drbg_blocklen(drbg) : (outlen - len);
800 		memcpy(outval + len, tmp, blocklen);
801 		len += blocklen;
802 	}
803 
804 out:
805 	memset(tmp, 0, drbg_blocklen(drbg));
806 	return ret;
807 }
808 
809 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
810 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
811 			    int reseed)
812 {
813 	int ret = 0;
814 	struct drbg_string data1, data2;
815 	LIST_HEAD(datalist);
816 	LIST_HEAD(datalist2);
817 	unsigned char *V = drbg->scratchpad;
818 	unsigned char prefix = DRBG_PREFIX1;
819 
820 	if (!seed)
821 		return -EINVAL;
822 
823 	if (reseed) {
824 		/* 10.1.1.3 step 1 */
825 		memcpy(V, drbg->V, drbg_statelen(drbg));
826 		drbg_string_fill(&data1, &prefix, 1);
827 		list_add_tail(&data1.list, &datalist);
828 		drbg_string_fill(&data2, V, drbg_statelen(drbg));
829 		list_add_tail(&data2.list, &datalist);
830 	}
831 	list_splice_tail(seed, &datalist);
832 
833 	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
834 	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
835 	if (ret)
836 		goto out;
837 
838 	/* 10.1.1.2 / 10.1.1.3 step 4  */
839 	prefix = DRBG_PREFIX0;
840 	drbg_string_fill(&data1, &prefix, 1);
841 	list_add_tail(&data1.list, &datalist2);
842 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
843 	list_add_tail(&data2.list, &datalist2);
844 	/* 10.1.1.2 / 10.1.1.3 step 4 */
845 	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
846 
847 out:
848 	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
849 	return ret;
850 }
851 
852 /* processing of additional information string for Hash DRBG */
853 static int drbg_hash_process_addtl(struct drbg_state *drbg,
854 				   struct list_head *addtl)
855 {
856 	int ret = 0;
857 	struct drbg_string data1, data2;
858 	LIST_HEAD(datalist);
859 	unsigned char prefix = DRBG_PREFIX2;
860 
861 	/* 10.1.1.4 step 2 */
862 	if (!addtl || list_empty(addtl))
863 		return 0;
864 
865 	/* 10.1.1.4 step 2a */
866 	drbg_string_fill(&data1, &prefix, 1);
867 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
868 	list_add_tail(&data1.list, &datalist);
869 	list_add_tail(&data2.list, &datalist);
870 	list_splice_tail(addtl, &datalist);
871 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
872 	if (ret)
873 		goto out;
874 
875 	/* 10.1.1.4 step 2b */
876 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
877 		     drbg->scratchpad, drbg_blocklen(drbg));
878 
879 out:
880 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
881 	return ret;
882 }
883 
884 /* Hashgen defined in 10.1.1.4 */
885 static int drbg_hash_hashgen(struct drbg_state *drbg,
886 			     unsigned char *buf,
887 			     unsigned int buflen)
888 {
889 	int len = 0;
890 	int ret = 0;
891 	unsigned char *src = drbg->scratchpad;
892 	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
893 	struct drbg_string data;
894 	LIST_HEAD(datalist);
895 
896 	/* 10.1.1.4 step hashgen 2 */
897 	memcpy(src, drbg->V, drbg_statelen(drbg));
898 
899 	drbg_string_fill(&data, src, drbg_statelen(drbg));
900 	list_add_tail(&data.list, &datalist);
901 	while (len < buflen) {
902 		unsigned int outlen = 0;
903 		/* 10.1.1.4 step hashgen 4.1 */
904 		ret = drbg_kcapi_hash(drbg, dst, &datalist);
905 		if (ret) {
906 			len = ret;
907 			goto out;
908 		}
909 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
910 			  drbg_blocklen(drbg) : (buflen - len);
911 		/* 10.1.1.4 step hashgen 4.2 */
912 		memcpy(buf + len, dst, outlen);
913 		len += outlen;
914 		/* 10.1.1.4 hashgen step 4.3 */
915 		if (len < buflen)
916 			crypto_inc(src, drbg_statelen(drbg));
917 	}
918 
919 out:
920 	memset(drbg->scratchpad, 0,
921 	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
922 	return len;
923 }
924 
925 /* generate function for Hash DRBG as defined in  10.1.1.4 */
926 static int drbg_hash_generate(struct drbg_state *drbg,
927 			      unsigned char *buf, unsigned int buflen,
928 			      struct list_head *addtl)
929 {
930 	int len = 0;
931 	int ret = 0;
932 	union {
933 		unsigned char req[8];
934 		__be64 req_int;
935 	} u;
936 	unsigned char prefix = DRBG_PREFIX3;
937 	struct drbg_string data1, data2;
938 	LIST_HEAD(datalist);
939 
940 	/* 10.1.1.4 step 2 */
941 	ret = drbg_hash_process_addtl(drbg, addtl);
942 	if (ret)
943 		return ret;
944 	/* 10.1.1.4 step 3 */
945 	len = drbg_hash_hashgen(drbg, buf, buflen);
946 
947 	/* this is the value H as documented in 10.1.1.4 */
948 	/* 10.1.1.4 step 4 */
949 	drbg_string_fill(&data1, &prefix, 1);
950 	list_add_tail(&data1.list, &datalist);
951 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
952 	list_add_tail(&data2.list, &datalist);
953 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
954 	if (ret) {
955 		len = ret;
956 		goto out;
957 	}
958 
959 	/* 10.1.1.4 step 5 */
960 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
961 		     drbg->scratchpad, drbg_blocklen(drbg));
962 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
963 		     drbg->C, drbg_statelen(drbg));
964 	u.req_int = cpu_to_be64(drbg->reseed_ctr);
965 	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
966 
967 out:
968 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
969 	return len;
970 }
971 
972 /*
973  * scratchpad usage: as update and generate are used isolated, both
974  * can use the scratchpad
975  */
976 static const struct drbg_state_ops drbg_hash_ops = {
977 	.update		= drbg_hash_update,
978 	.generate	= drbg_hash_generate,
979 	.crypto_init	= drbg_init_hash_kernel,
980 	.crypto_fini	= drbg_fini_hash_kernel,
981 };
982 #endif /* CONFIG_CRYPTO_DRBG_HASH */
983 
984 /******************************************************************
985  * Functions common for DRBG implementations
986  ******************************************************************/
987 
988 static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
989 			      int reseed)
990 {
991 	int ret = drbg->d_ops->update(drbg, seed, reseed);
992 
993 	if (ret)
994 		return ret;
995 
996 	drbg->seeded = true;
997 	/* 10.1.1.2 / 10.1.1.3 step 5 */
998 	drbg->reseed_ctr = 1;
999 
1000 	return ret;
1001 }
1002 
1003 static void drbg_async_seed(struct work_struct *work)
1004 {
1005 	struct drbg_string data;
1006 	LIST_HEAD(seedlist);
1007 	struct drbg_state *drbg = container_of(work, struct drbg_state,
1008 					       seed_work);
1009 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1010 	unsigned char entropy[32];
1011 
1012 	BUG_ON(!entropylen);
1013 	BUG_ON(entropylen > sizeof(entropy));
1014 	get_random_bytes(entropy, entropylen);
1015 
1016 	drbg_string_fill(&data, entropy, entropylen);
1017 	list_add_tail(&data.list, &seedlist);
1018 
1019 	mutex_lock(&drbg->drbg_mutex);
1020 
1021 	/* If nonblocking pool is initialized, deactivate Jitter RNG */
1022 	crypto_free_rng(drbg->jent);
1023 	drbg->jent = NULL;
1024 
1025 	/* Set seeded to false so that if __drbg_seed fails the
1026 	 * next generate call will trigger a reseed.
1027 	 */
1028 	drbg->seeded = false;
1029 
1030 	__drbg_seed(drbg, &seedlist, true);
1031 
1032 	if (drbg->seeded)
1033 		drbg->reseed_threshold = drbg_max_requests(drbg);
1034 
1035 	mutex_unlock(&drbg->drbg_mutex);
1036 
1037 	memzero_explicit(entropy, entropylen);
1038 }
1039 
1040 /*
1041  * Seeding or reseeding of the DRBG
1042  *
1043  * @drbg: DRBG state struct
1044  * @pers: personalization / additional information buffer
1045  * @reseed: 0 for initial seed process, 1 for reseeding
1046  *
1047  * return:
1048  *	0 on success
1049  *	error value otherwise
1050  */
1051 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1052 		     bool reseed)
1053 {
1054 	int ret;
1055 	unsigned char entropy[((32 + 16) * 2)];
1056 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1057 	struct drbg_string data1;
1058 	LIST_HEAD(seedlist);
1059 
1060 	/* 9.1 / 9.2 / 9.3.1 step 3 */
1061 	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1062 		pr_devel("DRBG: personalization string too long %zu\n",
1063 			 pers->len);
1064 		return -EINVAL;
1065 	}
1066 
1067 	if (list_empty(&drbg->test_data.list)) {
1068 		drbg_string_fill(&data1, drbg->test_data.buf,
1069 				 drbg->test_data.len);
1070 		pr_devel("DRBG: using test entropy\n");
1071 	} else {
1072 		/*
1073 		 * Gather entropy equal to the security strength of the DRBG.
1074 		 * With a derivation function, a nonce is required in addition
1075 		 * to the entropy. A nonce must be at least 1/2 of the security
1076 		 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1077 		 * of the strength. The consideration of a nonce is only
1078 		 * applicable during initial seeding.
1079 		 */
1080 		BUG_ON(!entropylen);
1081 		if (!reseed)
1082 			entropylen = ((entropylen + 1) / 2) * 3;
1083 		BUG_ON((entropylen * 2) > sizeof(entropy));
1084 
1085 		/* Get seed from in-kernel /dev/urandom */
1086 		get_random_bytes(entropy, entropylen);
1087 
1088 		if (!drbg->jent) {
1089 			drbg_string_fill(&data1, entropy, entropylen);
1090 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1091 				 entropylen);
1092 		} else {
1093 			/* Get seed from Jitter RNG */
1094 			ret = crypto_rng_get_bytes(drbg->jent,
1095 						   entropy + entropylen,
1096 						   entropylen);
1097 			if (ret) {
1098 				pr_devel("DRBG: jent failed with %d\n", ret);
1099 				return ret;
1100 			}
1101 
1102 			drbg_string_fill(&data1, entropy, entropylen * 2);
1103 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1104 				 entropylen * 2);
1105 		}
1106 	}
1107 	list_add_tail(&data1.list, &seedlist);
1108 
1109 	/*
1110 	 * concatenation of entropy with personalization str / addtl input)
1111 	 * the variable pers is directly handed in by the caller, so check its
1112 	 * contents whether it is appropriate
1113 	 */
1114 	if (pers && pers->buf && 0 < pers->len) {
1115 		list_add_tail(&pers->list, &seedlist);
1116 		pr_devel("DRBG: using personalization string\n");
1117 	}
1118 
1119 	if (!reseed) {
1120 		memset(drbg->V, 0, drbg_statelen(drbg));
1121 		memset(drbg->C, 0, drbg_statelen(drbg));
1122 	}
1123 
1124 	ret = __drbg_seed(drbg, &seedlist, reseed);
1125 
1126 	memzero_explicit(entropy, entropylen * 2);
1127 
1128 	return ret;
1129 }
1130 
1131 /* Free all substructures in a DRBG state without the DRBG state structure */
1132 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1133 {
1134 	if (!drbg)
1135 		return;
1136 	kzfree(drbg->V);
1137 	drbg->Vbuf = NULL;
1138 	kzfree(drbg->C);
1139 	drbg->Cbuf = NULL;
1140 	kzfree(drbg->scratchpadbuf);
1141 	drbg->scratchpadbuf = NULL;
1142 	drbg->reseed_ctr = 0;
1143 	drbg->d_ops = NULL;
1144 	drbg->core = NULL;
1145 }
1146 
1147 /*
1148  * Allocate all sub-structures for a DRBG state.
1149  * The DRBG state structure must already be allocated.
1150  */
1151 static inline int drbg_alloc_state(struct drbg_state *drbg)
1152 {
1153 	int ret = -ENOMEM;
1154 	unsigned int sb_size = 0;
1155 
1156 	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1157 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1158 	case DRBG_HMAC:
1159 		drbg->d_ops = &drbg_hmac_ops;
1160 		break;
1161 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1162 #ifdef CONFIG_CRYPTO_DRBG_HASH
1163 	case DRBG_HASH:
1164 		drbg->d_ops = &drbg_hash_ops;
1165 		break;
1166 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1167 #ifdef CONFIG_CRYPTO_DRBG_CTR
1168 	case DRBG_CTR:
1169 		drbg->d_ops = &drbg_ctr_ops;
1170 		break;
1171 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1172 	default:
1173 		ret = -EOPNOTSUPP;
1174 		goto err;
1175 	}
1176 
1177 	ret = drbg->d_ops->crypto_init(drbg);
1178 	if (ret < 0)
1179 		goto err;
1180 
1181 	drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1182 	if (!drbg->Vbuf) {
1183 		ret = -ENOMEM;
1184 		goto fini;
1185 	}
1186 	drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1187 	drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1188 	if (!drbg->Cbuf) {
1189 		ret = -ENOMEM;
1190 		goto fini;
1191 	}
1192 	drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1193 	/* scratchpad is only generated for CTR and Hash */
1194 	if (drbg->core->flags & DRBG_HMAC)
1195 		sb_size = 0;
1196 	else if (drbg->core->flags & DRBG_CTR)
1197 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1198 			  drbg_statelen(drbg) +	/* df_data */
1199 			  drbg_blocklen(drbg) +	/* pad */
1200 			  drbg_blocklen(drbg) +	/* iv */
1201 			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1202 	else
1203 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1204 
1205 	if (0 < sb_size) {
1206 		drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1207 		if (!drbg->scratchpadbuf) {
1208 			ret = -ENOMEM;
1209 			goto fini;
1210 		}
1211 		drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1212 	}
1213 
1214 	return 0;
1215 
1216 fini:
1217 	drbg->d_ops->crypto_fini(drbg);
1218 err:
1219 	drbg_dealloc_state(drbg);
1220 	return ret;
1221 }
1222 
1223 /*************************************************************************
1224  * DRBG interface functions
1225  *************************************************************************/
1226 
1227 /*
1228  * DRBG generate function as required by SP800-90A - this function
1229  * generates random numbers
1230  *
1231  * @drbg DRBG state handle
1232  * @buf Buffer where to store the random numbers -- the buffer must already
1233  *      be pre-allocated by caller
1234  * @buflen Length of output buffer - this value defines the number of random
1235  *	   bytes pulled from DRBG
1236  * @addtl Additional input that is mixed into state, may be NULL -- note
1237  *	  the entropy is pulled by the DRBG internally unconditionally
1238  *	  as defined in SP800-90A. The additional input is mixed into
1239  *	  the state in addition to the pulled entropy.
1240  *
1241  * return: 0 when all bytes are generated; < 0 in case of an error
1242  */
1243 static int drbg_generate(struct drbg_state *drbg,
1244 			 unsigned char *buf, unsigned int buflen,
1245 			 struct drbg_string *addtl)
1246 {
1247 	int len = 0;
1248 	LIST_HEAD(addtllist);
1249 
1250 	if (!drbg->core) {
1251 		pr_devel("DRBG: not yet seeded\n");
1252 		return -EINVAL;
1253 	}
1254 	if (0 == buflen || !buf) {
1255 		pr_devel("DRBG: no output buffer provided\n");
1256 		return -EINVAL;
1257 	}
1258 	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1259 		pr_devel("DRBG: wrong format of additional information\n");
1260 		return -EINVAL;
1261 	}
1262 
1263 	/* 9.3.1 step 2 */
1264 	len = -EINVAL;
1265 	if (buflen > (drbg_max_request_bytes(drbg))) {
1266 		pr_devel("DRBG: requested random numbers too large %u\n",
1267 			 buflen);
1268 		goto err;
1269 	}
1270 
1271 	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1272 
1273 	/* 9.3.1 step 4 */
1274 	if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1275 		pr_devel("DRBG: additional information string too long %zu\n",
1276 			 addtl->len);
1277 		goto err;
1278 	}
1279 	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1280 
1281 	/*
1282 	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1283 	 * here. The spec is a bit convoluted here, we make it simpler.
1284 	 */
1285 	if (drbg->reseed_threshold < drbg->reseed_ctr)
1286 		drbg->seeded = false;
1287 
1288 	if (drbg->pr || !drbg->seeded) {
1289 		pr_devel("DRBG: reseeding before generation (prediction "
1290 			 "resistance: %s, state %s)\n",
1291 			 drbg->pr ? "true" : "false",
1292 			 drbg->seeded ? "seeded" : "unseeded");
1293 		/* 9.3.1 steps 7.1 through 7.3 */
1294 		len = drbg_seed(drbg, addtl, true);
1295 		if (len)
1296 			goto err;
1297 		/* 9.3.1 step 7.4 */
1298 		addtl = NULL;
1299 	}
1300 
1301 	if (addtl && 0 < addtl->len)
1302 		list_add_tail(&addtl->list, &addtllist);
1303 	/* 9.3.1 step 8 and 10 */
1304 	len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1305 
1306 	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1307 	drbg->reseed_ctr++;
1308 	if (0 >= len)
1309 		goto err;
1310 
1311 	/*
1312 	 * Section 11.3.3 requires to re-perform self tests after some
1313 	 * generated random numbers. The chosen value after which self
1314 	 * test is performed is arbitrary, but it should be reasonable.
1315 	 * However, we do not perform the self tests because of the following
1316 	 * reasons: it is mathematically impossible that the initial self tests
1317 	 * were successfully and the following are not. If the initial would
1318 	 * pass and the following would not, the kernel integrity is violated.
1319 	 * In this case, the entire kernel operation is questionable and it
1320 	 * is unlikely that the integrity violation only affects the
1321 	 * correct operation of the DRBG.
1322 	 *
1323 	 * Albeit the following code is commented out, it is provided in
1324 	 * case somebody has a need to implement the test of 11.3.3.
1325 	 */
1326 #if 0
1327 	if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1328 		int err = 0;
1329 		pr_devel("DRBG: start to perform self test\n");
1330 		if (drbg->core->flags & DRBG_HMAC)
1331 			err = alg_test("drbg_pr_hmac_sha256",
1332 				       "drbg_pr_hmac_sha256", 0, 0);
1333 		else if (drbg->core->flags & DRBG_CTR)
1334 			err = alg_test("drbg_pr_ctr_aes128",
1335 				       "drbg_pr_ctr_aes128", 0, 0);
1336 		else
1337 			err = alg_test("drbg_pr_sha256",
1338 				       "drbg_pr_sha256", 0, 0);
1339 		if (err) {
1340 			pr_err("DRBG: periodical self test failed\n");
1341 			/*
1342 			 * uninstantiate implies that from now on, only errors
1343 			 * are returned when reusing this DRBG cipher handle
1344 			 */
1345 			drbg_uninstantiate(drbg);
1346 			return 0;
1347 		} else {
1348 			pr_devel("DRBG: self test successful\n");
1349 		}
1350 	}
1351 #endif
1352 
1353 	/*
1354 	 * All operations were successful, return 0 as mandated by
1355 	 * the kernel crypto API interface.
1356 	 */
1357 	len = 0;
1358 err:
1359 	return len;
1360 }
1361 
1362 /*
1363  * Wrapper around drbg_generate which can pull arbitrary long strings
1364  * from the DRBG without hitting the maximum request limitation.
1365  *
1366  * Parameters: see drbg_generate
1367  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1368  *		 the entire drbg_generate_long request fails
1369  */
1370 static int drbg_generate_long(struct drbg_state *drbg,
1371 			      unsigned char *buf, unsigned int buflen,
1372 			      struct drbg_string *addtl)
1373 {
1374 	unsigned int len = 0;
1375 	unsigned int slice = 0;
1376 	do {
1377 		int err = 0;
1378 		unsigned int chunk = 0;
1379 		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1380 		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1381 		mutex_lock(&drbg->drbg_mutex);
1382 		err = drbg_generate(drbg, buf + len, chunk, addtl);
1383 		mutex_unlock(&drbg->drbg_mutex);
1384 		if (0 > err)
1385 			return err;
1386 		len += chunk;
1387 	} while (slice > 0 && (len < buflen));
1388 	return 0;
1389 }
1390 
1391 static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1392 {
1393 	struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1394 					       random_ready);
1395 
1396 	schedule_work(&drbg->seed_work);
1397 }
1398 
1399 static int drbg_prepare_hrng(struct drbg_state *drbg)
1400 {
1401 	int err;
1402 
1403 	/* We do not need an HRNG in test mode. */
1404 	if (list_empty(&drbg->test_data.list))
1405 		return 0;
1406 
1407 	INIT_WORK(&drbg->seed_work, drbg_async_seed);
1408 
1409 	drbg->random_ready.owner = THIS_MODULE;
1410 	drbg->random_ready.func = drbg_schedule_async_seed;
1411 
1412 	err = add_random_ready_callback(&drbg->random_ready);
1413 
1414 	switch (err) {
1415 	case 0:
1416 		break;
1417 
1418 	case -EALREADY:
1419 		err = 0;
1420 		/* fall through */
1421 
1422 	default:
1423 		drbg->random_ready.func = NULL;
1424 		return err;
1425 	}
1426 
1427 	drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1428 
1429 	/*
1430 	 * Require frequent reseeds until the seed source is fully
1431 	 * initialized.
1432 	 */
1433 	drbg->reseed_threshold = 50;
1434 
1435 	return err;
1436 }
1437 
1438 /*
1439  * DRBG instantiation function as required by SP800-90A - this function
1440  * sets up the DRBG handle, performs the initial seeding and all sanity
1441  * checks required by SP800-90A
1442  *
1443  * @drbg memory of state -- if NULL, new memory is allocated
1444  * @pers Personalization string that is mixed into state, may be NULL -- note
1445  *	 the entropy is pulled by the DRBG internally unconditionally
1446  *	 as defined in SP800-90A. The additional input is mixed into
1447  *	 the state in addition to the pulled entropy.
1448  * @coreref reference to core
1449  * @pr prediction resistance enabled
1450  *
1451  * return
1452  *	0 on success
1453  *	error value otherwise
1454  */
1455 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1456 			    int coreref, bool pr)
1457 {
1458 	int ret;
1459 	bool reseed = true;
1460 
1461 	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1462 		 "%s\n", coreref, pr ? "enabled" : "disabled");
1463 	mutex_lock(&drbg->drbg_mutex);
1464 
1465 	/* 9.1 step 1 is implicit with the selected DRBG type */
1466 
1467 	/*
1468 	 * 9.1 step 2 is implicit as caller can select prediction resistance
1469 	 * and the flag is copied into drbg->flags --
1470 	 * all DRBG types support prediction resistance
1471 	 */
1472 
1473 	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1474 
1475 	if (!drbg->core) {
1476 		drbg->core = &drbg_cores[coreref];
1477 		drbg->pr = pr;
1478 		drbg->seeded = false;
1479 		drbg->reseed_threshold = drbg_max_requests(drbg);
1480 
1481 		ret = drbg_alloc_state(drbg);
1482 		if (ret)
1483 			goto unlock;
1484 
1485 		ret = drbg_prepare_hrng(drbg);
1486 		if (ret)
1487 			goto free_everything;
1488 
1489 		if (IS_ERR(drbg->jent)) {
1490 			ret = PTR_ERR(drbg->jent);
1491 			drbg->jent = NULL;
1492 			if (fips_enabled || ret != -ENOENT)
1493 				goto free_everything;
1494 			pr_info("DRBG: Continuing without Jitter RNG\n");
1495 		}
1496 
1497 		reseed = false;
1498 	}
1499 
1500 	ret = drbg_seed(drbg, pers, reseed);
1501 
1502 	if (ret && !reseed)
1503 		goto free_everything;
1504 
1505 	mutex_unlock(&drbg->drbg_mutex);
1506 	return ret;
1507 
1508 unlock:
1509 	mutex_unlock(&drbg->drbg_mutex);
1510 	return ret;
1511 
1512 free_everything:
1513 	mutex_unlock(&drbg->drbg_mutex);
1514 	drbg_uninstantiate(drbg);
1515 	return ret;
1516 }
1517 
1518 /*
1519  * DRBG uninstantiate function as required by SP800-90A - this function
1520  * frees all buffers and the DRBG handle
1521  *
1522  * @drbg DRBG state handle
1523  *
1524  * return
1525  *	0 on success
1526  */
1527 static int drbg_uninstantiate(struct drbg_state *drbg)
1528 {
1529 	if (drbg->random_ready.func) {
1530 		del_random_ready_callback(&drbg->random_ready);
1531 		cancel_work_sync(&drbg->seed_work);
1532 		crypto_free_rng(drbg->jent);
1533 		drbg->jent = NULL;
1534 	}
1535 
1536 	if (drbg->d_ops)
1537 		drbg->d_ops->crypto_fini(drbg);
1538 	drbg_dealloc_state(drbg);
1539 	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1540 	return 0;
1541 }
1542 
1543 /*
1544  * Helper function for setting the test data in the DRBG
1545  *
1546  * @drbg DRBG state handle
1547  * @data test data
1548  * @len test data length
1549  */
1550 static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1551 				   const u8 *data, unsigned int len)
1552 {
1553 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1554 
1555 	mutex_lock(&drbg->drbg_mutex);
1556 	drbg_string_fill(&drbg->test_data, data, len);
1557 	mutex_unlock(&drbg->drbg_mutex);
1558 }
1559 
1560 /***************************************************************
1561  * Kernel crypto API cipher invocations requested by DRBG
1562  ***************************************************************/
1563 
1564 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1565 struct sdesc {
1566 	struct shash_desc shash;
1567 	char ctx[];
1568 };
1569 
1570 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1571 {
1572 	struct sdesc *sdesc;
1573 	struct crypto_shash *tfm;
1574 
1575 	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1576 	if (IS_ERR(tfm)) {
1577 		pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1578 				drbg->core->backend_cra_name);
1579 		return PTR_ERR(tfm);
1580 	}
1581 	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1582 	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1583 			GFP_KERNEL);
1584 	if (!sdesc) {
1585 		crypto_free_shash(tfm);
1586 		return -ENOMEM;
1587 	}
1588 
1589 	sdesc->shash.tfm = tfm;
1590 	sdesc->shash.flags = 0;
1591 	drbg->priv_data = sdesc;
1592 
1593 	return crypto_shash_alignmask(tfm);
1594 }
1595 
1596 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1597 {
1598 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1599 	if (sdesc) {
1600 		crypto_free_shash(sdesc->shash.tfm);
1601 		kzfree(sdesc);
1602 	}
1603 	drbg->priv_data = NULL;
1604 	return 0;
1605 }
1606 
1607 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1608 				  const unsigned char *key)
1609 {
1610 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1611 
1612 	crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1613 }
1614 
1615 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1616 			   const struct list_head *in)
1617 {
1618 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1619 	struct drbg_string *input = NULL;
1620 
1621 	crypto_shash_init(&sdesc->shash);
1622 	list_for_each_entry(input, in, list)
1623 		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1624 	return crypto_shash_final(&sdesc->shash, outval);
1625 }
1626 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1627 
1628 #ifdef CONFIG_CRYPTO_DRBG_CTR
1629 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1630 {
1631 	struct crypto_cipher *tfm =
1632 		(struct crypto_cipher *)drbg->priv_data;
1633 	if (tfm)
1634 		crypto_free_cipher(tfm);
1635 	drbg->priv_data = NULL;
1636 
1637 	if (drbg->ctr_handle)
1638 		crypto_free_skcipher(drbg->ctr_handle);
1639 	drbg->ctr_handle = NULL;
1640 
1641 	if (drbg->ctr_req)
1642 		skcipher_request_free(drbg->ctr_req);
1643 	drbg->ctr_req = NULL;
1644 
1645 	kfree(drbg->ctr_null_value_buf);
1646 	drbg->ctr_null_value = NULL;
1647 
1648 	kfree(drbg->outscratchpadbuf);
1649 	drbg->outscratchpadbuf = NULL;
1650 
1651 	return 0;
1652 }
1653 
1654 static void drbg_skcipher_cb(struct crypto_async_request *req, int error)
1655 {
1656 	struct drbg_state *drbg = req->data;
1657 
1658 	if (error == -EINPROGRESS)
1659 		return;
1660 	drbg->ctr_async_err = error;
1661 	complete(&drbg->ctr_completion);
1662 }
1663 
1664 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1665 {
1666 	struct crypto_cipher *tfm;
1667 	struct crypto_skcipher *sk_tfm;
1668 	struct skcipher_request *req;
1669 	unsigned int alignmask;
1670 	char ctr_name[CRYPTO_MAX_ALG_NAME];
1671 
1672 	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1673 	if (IS_ERR(tfm)) {
1674 		pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1675 				drbg->core->backend_cra_name);
1676 		return PTR_ERR(tfm);
1677 	}
1678 	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1679 	drbg->priv_data = tfm;
1680 
1681 	if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1682 	    drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1683 		drbg_fini_sym_kernel(drbg);
1684 		return -EINVAL;
1685 	}
1686 	sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1687 	if (IS_ERR(sk_tfm)) {
1688 		pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1689 				ctr_name);
1690 		drbg_fini_sym_kernel(drbg);
1691 		return PTR_ERR(sk_tfm);
1692 	}
1693 	drbg->ctr_handle = sk_tfm;
1694 
1695 	req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1696 	if (!req) {
1697 		pr_info("DRBG: could not allocate request queue\n");
1698 		drbg_fini_sym_kernel(drbg);
1699 		return -ENOMEM;
1700 	}
1701 	drbg->ctr_req = req;
1702 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1703 					drbg_skcipher_cb, drbg);
1704 
1705 	alignmask = crypto_skcipher_alignmask(sk_tfm);
1706 	drbg->ctr_null_value_buf = kzalloc(DRBG_CTR_NULL_LEN + alignmask,
1707 					   GFP_KERNEL);
1708 	if (!drbg->ctr_null_value_buf) {
1709 		drbg_fini_sym_kernel(drbg);
1710 		return -ENOMEM;
1711 	}
1712 	drbg->ctr_null_value = (u8 *)PTR_ALIGN(drbg->ctr_null_value_buf,
1713 					       alignmask + 1);
1714 
1715 	drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1716 					 GFP_KERNEL);
1717 	if (!drbg->outscratchpadbuf) {
1718 		drbg_fini_sym_kernel(drbg);
1719 		return -ENOMEM;
1720 	}
1721 	drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1722 					      alignmask + 1);
1723 
1724 	return alignmask;
1725 }
1726 
1727 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1728 				 const unsigned char *key)
1729 {
1730 	struct crypto_cipher *tfm =
1731 		(struct crypto_cipher *)drbg->priv_data;
1732 
1733 	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1734 }
1735 
1736 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1737 			  const struct drbg_string *in)
1738 {
1739 	struct crypto_cipher *tfm =
1740 		(struct crypto_cipher *)drbg->priv_data;
1741 
1742 	/* there is only component in *in */
1743 	BUG_ON(in->len < drbg_blocklen(drbg));
1744 	crypto_cipher_encrypt_one(tfm, outval, in->buf);
1745 	return 0;
1746 }
1747 
1748 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1749 			      u8 *inbuf, u32 inlen,
1750 			      u8 *outbuf, u32 outlen)
1751 {
1752 	struct scatterlist sg_in, sg_out;
1753 	int ret;
1754 
1755 	sg_init_one(&sg_in, inbuf, inlen);
1756 	sg_init_one(&sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1757 
1758 	while (outlen) {
1759 		u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1760 
1761 		/* Output buffer may not be valid for SGL, use scratchpad */
1762 		skcipher_request_set_crypt(drbg->ctr_req, &sg_in, &sg_out,
1763 					   cryptlen, drbg->V);
1764 		ret = crypto_skcipher_encrypt(drbg->ctr_req);
1765 		switch (ret) {
1766 		case 0:
1767 			break;
1768 		case -EINPROGRESS:
1769 		case -EBUSY:
1770 			ret = wait_for_completion_interruptible(
1771 				&drbg->ctr_completion);
1772 			if (!ret && !drbg->ctr_async_err) {
1773 				reinit_completion(&drbg->ctr_completion);
1774 				break;
1775 			}
1776 		default:
1777 			goto out;
1778 		}
1779 		init_completion(&drbg->ctr_completion);
1780 
1781 		memcpy(outbuf, drbg->outscratchpad, cryptlen);
1782 
1783 		outlen -= cryptlen;
1784 		outbuf += cryptlen;
1785 	}
1786 	ret = 0;
1787 
1788 out:
1789 	memzero_explicit(drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1790 	return ret;
1791 }
1792 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1793 
1794 /***************************************************************
1795  * Kernel crypto API interface to register DRBG
1796  ***************************************************************/
1797 
1798 /*
1799  * Look up the DRBG flags by given kernel crypto API cra_name
1800  * The code uses the drbg_cores definition to do this
1801  *
1802  * @cra_name kernel crypto API cra_name
1803  * @coreref reference to integer which is filled with the pointer to
1804  *  the applicable core
1805  * @pr reference for setting prediction resistance
1806  *
1807  * return: flags
1808  */
1809 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1810 					 int *coreref, bool *pr)
1811 {
1812 	int i = 0;
1813 	size_t start = 0;
1814 	int len = 0;
1815 
1816 	*pr = true;
1817 	/* disassemble the names */
1818 	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1819 		start = 10;
1820 		*pr = false;
1821 	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1822 		start = 8;
1823 	} else {
1824 		return;
1825 	}
1826 
1827 	/* remove the first part */
1828 	len = strlen(cra_driver_name) - start;
1829 	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1830 		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1831 			    len)) {
1832 			*coreref = i;
1833 			return;
1834 		}
1835 	}
1836 }
1837 
1838 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1839 {
1840 	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1841 
1842 	mutex_init(&drbg->drbg_mutex);
1843 
1844 	return 0;
1845 }
1846 
1847 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1848 {
1849 	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1850 }
1851 
1852 /*
1853  * Generate random numbers invoked by the kernel crypto API:
1854  * The API of the kernel crypto API is extended as follows:
1855  *
1856  * src is additional input supplied to the RNG.
1857  * slen is the length of src.
1858  * dst is the output buffer where random data is to be stored.
1859  * dlen is the length of dst.
1860  */
1861 static int drbg_kcapi_random(struct crypto_rng *tfm,
1862 			     const u8 *src, unsigned int slen,
1863 			     u8 *dst, unsigned int dlen)
1864 {
1865 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1866 	struct drbg_string *addtl = NULL;
1867 	struct drbg_string string;
1868 
1869 	if (slen) {
1870 		/* linked list variable is now local to allow modification */
1871 		drbg_string_fill(&string, src, slen);
1872 		addtl = &string;
1873 	}
1874 
1875 	return drbg_generate_long(drbg, dst, dlen, addtl);
1876 }
1877 
1878 /*
1879  * Seed the DRBG invoked by the kernel crypto API
1880  */
1881 static int drbg_kcapi_seed(struct crypto_rng *tfm,
1882 			   const u8 *seed, unsigned int slen)
1883 {
1884 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1885 	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1886 	bool pr = false;
1887 	struct drbg_string string;
1888 	struct drbg_string *seed_string = NULL;
1889 	int coreref = 0;
1890 
1891 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1892 			      &pr);
1893 	if (0 < slen) {
1894 		drbg_string_fill(&string, seed, slen);
1895 		seed_string = &string;
1896 	}
1897 
1898 	return drbg_instantiate(drbg, seed_string, coreref, pr);
1899 }
1900 
1901 /***************************************************************
1902  * Kernel module: code to load the module
1903  ***************************************************************/
1904 
1905 /*
1906  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1907  * of the error handling.
1908  *
1909  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1910  * as seed source of get_random_bytes does not fail.
1911  *
1912  * Note 2: There is no sensible way of testing the reseed counter
1913  * enforcement, so skip it.
1914  */
1915 static inline int __init drbg_healthcheck_sanity(void)
1916 {
1917 	int len = 0;
1918 #define OUTBUFLEN 16
1919 	unsigned char buf[OUTBUFLEN];
1920 	struct drbg_state *drbg = NULL;
1921 	int ret = -EFAULT;
1922 	int rc = -EFAULT;
1923 	bool pr = false;
1924 	int coreref = 0;
1925 	struct drbg_string addtl;
1926 	size_t max_addtllen, max_request_bytes;
1927 
1928 	/* only perform test in FIPS mode */
1929 	if (!fips_enabled)
1930 		return 0;
1931 
1932 #ifdef CONFIG_CRYPTO_DRBG_CTR
1933 	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1934 #elif defined CONFIG_CRYPTO_DRBG_HASH
1935 	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1936 #else
1937 	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1938 #endif
1939 
1940 	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1941 	if (!drbg)
1942 		return -ENOMEM;
1943 
1944 	mutex_init(&drbg->drbg_mutex);
1945 	drbg->core = &drbg_cores[coreref];
1946 	drbg->reseed_threshold = drbg_max_requests(drbg);
1947 
1948 	/*
1949 	 * if the following tests fail, it is likely that there is a buffer
1950 	 * overflow as buf is much smaller than the requested or provided
1951 	 * string lengths -- in case the error handling does not succeed
1952 	 * we may get an OOPS. And we want to get an OOPS as this is a
1953 	 * grave bug.
1954 	 */
1955 
1956 	max_addtllen = drbg_max_addtl(drbg);
1957 	max_request_bytes = drbg_max_request_bytes(drbg);
1958 	drbg_string_fill(&addtl, buf, max_addtllen + 1);
1959 	/* overflow addtllen with additonal info string */
1960 	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1961 	BUG_ON(0 < len);
1962 	/* overflow max_bits */
1963 	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1964 	BUG_ON(0 < len);
1965 
1966 	/* overflow max addtllen with personalization string */
1967 	ret = drbg_seed(drbg, &addtl, false);
1968 	BUG_ON(0 == ret);
1969 	/* all tests passed */
1970 	rc = 0;
1971 
1972 	pr_devel("DRBG: Sanity tests for failure code paths successfully "
1973 		 "completed\n");
1974 
1975 	kfree(drbg);
1976 	return rc;
1977 }
1978 
1979 static struct rng_alg drbg_algs[22];
1980 
1981 /*
1982  * Fill the array drbg_algs used to register the different DRBGs
1983  * with the kernel crypto API. To fill the array, the information
1984  * from drbg_cores[] is used.
1985  */
1986 static inline void __init drbg_fill_array(struct rng_alg *alg,
1987 					  const struct drbg_core *core, int pr)
1988 {
1989 	int pos = 0;
1990 	static int priority = 200;
1991 
1992 	memcpy(alg->base.cra_name, "stdrng", 6);
1993 	if (pr) {
1994 		memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
1995 		pos = 8;
1996 	} else {
1997 		memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
1998 		pos = 10;
1999 	}
2000 	memcpy(alg->base.cra_driver_name + pos, core->cra_name,
2001 	       strlen(core->cra_name));
2002 
2003 	alg->base.cra_priority = priority;
2004 	priority++;
2005 	/*
2006 	 * If FIPS mode enabled, the selected DRBG shall have the
2007 	 * highest cra_priority over other stdrng instances to ensure
2008 	 * it is selected.
2009 	 */
2010 	if (fips_enabled)
2011 		alg->base.cra_priority += 200;
2012 
2013 	alg->base.cra_ctxsize 	= sizeof(struct drbg_state);
2014 	alg->base.cra_module	= THIS_MODULE;
2015 	alg->base.cra_init	= drbg_kcapi_init;
2016 	alg->base.cra_exit	= drbg_kcapi_cleanup;
2017 	alg->generate		= drbg_kcapi_random;
2018 	alg->seed		= drbg_kcapi_seed;
2019 	alg->set_ent		= drbg_kcapi_set_entropy;
2020 	alg->seedsize		= 0;
2021 }
2022 
2023 static int __init drbg_init(void)
2024 {
2025 	unsigned int i = 0; /* pointer to drbg_algs */
2026 	unsigned int j = 0; /* pointer to drbg_cores */
2027 	int ret;
2028 
2029 	ret = drbg_healthcheck_sanity();
2030 	if (ret)
2031 		return ret;
2032 
2033 	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2034 		pr_info("DRBG: Cannot register all DRBG types"
2035 			"(slots needed: %zu, slots available: %zu)\n",
2036 			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2037 		return -EFAULT;
2038 	}
2039 
2040 	/*
2041 	 * each DRBG definition can be used with PR and without PR, thus
2042 	 * we instantiate each DRBG in drbg_cores[] twice.
2043 	 *
2044 	 * As the order of placing them into the drbg_algs array matters
2045 	 * (the later DRBGs receive a higher cra_priority) we register the
2046 	 * prediction resistance DRBGs first as the should not be too
2047 	 * interesting.
2048 	 */
2049 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2050 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2051 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2052 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2053 	return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2054 }
2055 
2056 static void __exit drbg_exit(void)
2057 {
2058 	crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2059 }
2060 
2061 module_init(drbg_init);
2062 module_exit(drbg_exit);
2063 #ifndef CRYPTO_DRBG_HASH_STRING
2064 #define CRYPTO_DRBG_HASH_STRING ""
2065 #endif
2066 #ifndef CRYPTO_DRBG_HMAC_STRING
2067 #define CRYPTO_DRBG_HMAC_STRING ""
2068 #endif
2069 #ifndef CRYPTO_DRBG_CTR_STRING
2070 #define CRYPTO_DRBG_CTR_STRING ""
2071 #endif
2072 MODULE_LICENSE("GPL");
2073 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2074 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2075 		   "using following cores: "
2076 		   CRYPTO_DRBG_HASH_STRING
2077 		   CRYPTO_DRBG_HMAC_STRING
2078 		   CRYPTO_DRBG_CTR_STRING);
2079 MODULE_ALIAS_CRYPTO("stdrng");
2080