xref: /openbmc/linux/crypto/crypto_engine.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Handle async block request by crypto hardware engine.
4  *
5  * Copyright (C) 2016 Linaro, Inc.
6  *
7  * Author: Baolin Wang <baolin.wang@linaro.org>
8  */
9 
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <crypto/engine.h>
13 #include <uapi/linux/sched/types.h>
14 #include "internal.h"
15 
16 #define CRYPTO_ENGINE_MAX_QLEN 10
17 
18 /**
19  * crypto_finalize_request - finalize one request if the request is done
20  * @engine: the hardware engine
21  * @req: the request need to be finalized
22  * @err: error number
23  */
24 static void crypto_finalize_request(struct crypto_engine *engine,
25 				    struct crypto_async_request *req, int err)
26 {
27 	unsigned long flags;
28 	bool finalize_req = false;
29 	int ret;
30 	struct crypto_engine_ctx *enginectx;
31 
32 	/*
33 	 * If hardware cannot enqueue more requests
34 	 * and retry mechanism is not supported
35 	 * make sure we are completing the current request
36 	 */
37 	if (!engine->retry_support) {
38 		spin_lock_irqsave(&engine->queue_lock, flags);
39 		if (engine->cur_req == req) {
40 			finalize_req = true;
41 			engine->cur_req = NULL;
42 		}
43 		spin_unlock_irqrestore(&engine->queue_lock, flags);
44 	}
45 
46 	if (finalize_req || engine->retry_support) {
47 		enginectx = crypto_tfm_ctx(req->tfm);
48 		if (enginectx->op.prepare_request &&
49 		    enginectx->op.unprepare_request) {
50 			ret = enginectx->op.unprepare_request(engine, req);
51 			if (ret)
52 				dev_err(engine->dev, "failed to unprepare request\n");
53 		}
54 	}
55 	req->complete(req, err);
56 
57 	kthread_queue_work(engine->kworker, &engine->pump_requests);
58 }
59 
60 /**
61  * crypto_pump_requests - dequeue one request from engine queue to process
62  * @engine: the hardware engine
63  * @in_kthread: true if we are in the context of the request pump thread
64  *
65  * This function checks if there is any request in the engine queue that
66  * needs processing and if so call out to the driver to initialize hardware
67  * and handle each request.
68  */
69 static void crypto_pump_requests(struct crypto_engine *engine,
70 				 bool in_kthread)
71 {
72 	struct crypto_async_request *async_req, *backlog;
73 	unsigned long flags;
74 	bool was_busy = false;
75 	int ret;
76 	struct crypto_engine_ctx *enginectx;
77 
78 	spin_lock_irqsave(&engine->queue_lock, flags);
79 
80 	/* Make sure we are not already running a request */
81 	if (!engine->retry_support && engine->cur_req)
82 		goto out;
83 
84 	/* If another context is idling then defer */
85 	if (engine->idling) {
86 		kthread_queue_work(engine->kworker, &engine->pump_requests);
87 		goto out;
88 	}
89 
90 	/* Check if the engine queue is idle */
91 	if (!crypto_queue_len(&engine->queue) || !engine->running) {
92 		if (!engine->busy)
93 			goto out;
94 
95 		/* Only do teardown in the thread */
96 		if (!in_kthread) {
97 			kthread_queue_work(engine->kworker,
98 					   &engine->pump_requests);
99 			goto out;
100 		}
101 
102 		engine->busy = false;
103 		engine->idling = true;
104 		spin_unlock_irqrestore(&engine->queue_lock, flags);
105 
106 		if (engine->unprepare_crypt_hardware &&
107 		    engine->unprepare_crypt_hardware(engine))
108 			dev_err(engine->dev, "failed to unprepare crypt hardware\n");
109 
110 		spin_lock_irqsave(&engine->queue_lock, flags);
111 		engine->idling = false;
112 		goto out;
113 	}
114 
115 start_request:
116 	/* Get the fist request from the engine queue to handle */
117 	backlog = crypto_get_backlog(&engine->queue);
118 	async_req = crypto_dequeue_request(&engine->queue);
119 	if (!async_req)
120 		goto out;
121 
122 	/*
123 	 * If hardware doesn't support the retry mechanism,
124 	 * keep track of the request we are processing now.
125 	 * We'll need it on completion (crypto_finalize_request).
126 	 */
127 	if (!engine->retry_support)
128 		engine->cur_req = async_req;
129 
130 	if (backlog)
131 		backlog->complete(backlog, -EINPROGRESS);
132 
133 	if (engine->busy)
134 		was_busy = true;
135 	else
136 		engine->busy = true;
137 
138 	spin_unlock_irqrestore(&engine->queue_lock, flags);
139 
140 	/* Until here we get the request need to be encrypted successfully */
141 	if (!was_busy && engine->prepare_crypt_hardware) {
142 		ret = engine->prepare_crypt_hardware(engine);
143 		if (ret) {
144 			dev_err(engine->dev, "failed to prepare crypt hardware\n");
145 			goto req_err_2;
146 		}
147 	}
148 
149 	enginectx = crypto_tfm_ctx(async_req->tfm);
150 
151 	if (enginectx->op.prepare_request) {
152 		ret = enginectx->op.prepare_request(engine, async_req);
153 		if (ret) {
154 			dev_err(engine->dev, "failed to prepare request: %d\n",
155 				ret);
156 			goto req_err_2;
157 		}
158 	}
159 	if (!enginectx->op.do_one_request) {
160 		dev_err(engine->dev, "failed to do request\n");
161 		ret = -EINVAL;
162 		goto req_err_1;
163 	}
164 
165 	ret = enginectx->op.do_one_request(engine, async_req);
166 
167 	/* Request unsuccessfully executed by hardware */
168 	if (ret < 0) {
169 		/*
170 		 * If hardware queue is full (-ENOSPC), requeue request
171 		 * regardless of backlog flag.
172 		 * Otherwise, unprepare and complete the request.
173 		 */
174 		if (!engine->retry_support ||
175 		    (ret != -ENOSPC)) {
176 			dev_err(engine->dev,
177 				"Failed to do one request from queue: %d\n",
178 				ret);
179 			goto req_err_1;
180 		}
181 		/*
182 		 * If retry mechanism is supported,
183 		 * unprepare current request and
184 		 * enqueue it back into crypto-engine queue.
185 		 */
186 		if (enginectx->op.unprepare_request) {
187 			ret = enginectx->op.unprepare_request(engine,
188 							      async_req);
189 			if (ret)
190 				dev_err(engine->dev,
191 					"failed to unprepare request\n");
192 		}
193 		spin_lock_irqsave(&engine->queue_lock, flags);
194 		/*
195 		 * If hardware was unable to execute request, enqueue it
196 		 * back in front of crypto-engine queue, to keep the order
197 		 * of requests.
198 		 */
199 		crypto_enqueue_request_head(&engine->queue, async_req);
200 
201 		kthread_queue_work(engine->kworker, &engine->pump_requests);
202 		goto out;
203 	}
204 
205 	goto retry;
206 
207 req_err_1:
208 	if (enginectx->op.unprepare_request) {
209 		ret = enginectx->op.unprepare_request(engine, async_req);
210 		if (ret)
211 			dev_err(engine->dev, "failed to unprepare request\n");
212 	}
213 
214 req_err_2:
215 	async_req->complete(async_req, ret);
216 
217 retry:
218 	/* If retry mechanism is supported, send new requests to engine */
219 	if (engine->retry_support) {
220 		spin_lock_irqsave(&engine->queue_lock, flags);
221 		goto start_request;
222 	}
223 	return;
224 
225 out:
226 	spin_unlock_irqrestore(&engine->queue_lock, flags);
227 
228 	/*
229 	 * Batch requests is possible only if
230 	 * hardware can enqueue multiple requests
231 	 */
232 	if (engine->do_batch_requests) {
233 		ret = engine->do_batch_requests(engine);
234 		if (ret)
235 			dev_err(engine->dev, "failed to do batch requests: %d\n",
236 				ret);
237 	}
238 
239 	return;
240 }
241 
242 static void crypto_pump_work(struct kthread_work *work)
243 {
244 	struct crypto_engine *engine =
245 		container_of(work, struct crypto_engine, pump_requests);
246 
247 	crypto_pump_requests(engine, true);
248 }
249 
250 /**
251  * crypto_transfer_request - transfer the new request into the engine queue
252  * @engine: the hardware engine
253  * @req: the request need to be listed into the engine queue
254  */
255 static int crypto_transfer_request(struct crypto_engine *engine,
256 				   struct crypto_async_request *req,
257 				   bool need_pump)
258 {
259 	unsigned long flags;
260 	int ret;
261 
262 	spin_lock_irqsave(&engine->queue_lock, flags);
263 
264 	if (!engine->running) {
265 		spin_unlock_irqrestore(&engine->queue_lock, flags);
266 		return -ESHUTDOWN;
267 	}
268 
269 	ret = crypto_enqueue_request(&engine->queue, req);
270 
271 	if (!engine->busy && need_pump)
272 		kthread_queue_work(engine->kworker, &engine->pump_requests);
273 
274 	spin_unlock_irqrestore(&engine->queue_lock, flags);
275 	return ret;
276 }
277 
278 /**
279  * crypto_transfer_request_to_engine - transfer one request to list
280  * into the engine queue
281  * @engine: the hardware engine
282  * @req: the request need to be listed into the engine queue
283  */
284 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
285 					     struct crypto_async_request *req)
286 {
287 	return crypto_transfer_request(engine, req, true);
288 }
289 
290 /**
291  * crypto_transfer_aead_request_to_engine - transfer one aead_request
292  * to list into the engine queue
293  * @engine: the hardware engine
294  * @req: the request need to be listed into the engine queue
295  */
296 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
297 					   struct aead_request *req)
298 {
299 	return crypto_transfer_request_to_engine(engine, &req->base);
300 }
301 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
302 
303 /**
304  * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
305  * to list into the engine queue
306  * @engine: the hardware engine
307  * @req: the request need to be listed into the engine queue
308  */
309 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
310 					       struct akcipher_request *req)
311 {
312 	return crypto_transfer_request_to_engine(engine, &req->base);
313 }
314 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
315 
316 /**
317  * crypto_transfer_hash_request_to_engine - transfer one ahash_request
318  * to list into the engine queue
319  * @engine: the hardware engine
320  * @req: the request need to be listed into the engine queue
321  */
322 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
323 					   struct ahash_request *req)
324 {
325 	return crypto_transfer_request_to_engine(engine, &req->base);
326 }
327 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
328 
329 /**
330  * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
331  * to list into the engine queue
332  * @engine: the hardware engine
333  * @req: the request need to be listed into the engine queue
334  */
335 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
336 					       struct skcipher_request *req)
337 {
338 	return crypto_transfer_request_to_engine(engine, &req->base);
339 }
340 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
341 
342 /**
343  * crypto_finalize_aead_request - finalize one aead_request if
344  * the request is done
345  * @engine: the hardware engine
346  * @req: the request need to be finalized
347  * @err: error number
348  */
349 void crypto_finalize_aead_request(struct crypto_engine *engine,
350 				  struct aead_request *req, int err)
351 {
352 	return crypto_finalize_request(engine, &req->base, err);
353 }
354 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
355 
356 /**
357  * crypto_finalize_akcipher_request - finalize one akcipher_request if
358  * the request is done
359  * @engine: the hardware engine
360  * @req: the request need to be finalized
361  * @err: error number
362  */
363 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
364 				      struct akcipher_request *req, int err)
365 {
366 	return crypto_finalize_request(engine, &req->base, err);
367 }
368 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
369 
370 /**
371  * crypto_finalize_hash_request - finalize one ahash_request if
372  * the request is done
373  * @engine: the hardware engine
374  * @req: the request need to be finalized
375  * @err: error number
376  */
377 void crypto_finalize_hash_request(struct crypto_engine *engine,
378 				  struct ahash_request *req, int err)
379 {
380 	return crypto_finalize_request(engine, &req->base, err);
381 }
382 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
383 
384 /**
385  * crypto_finalize_skcipher_request - finalize one skcipher_request if
386  * the request is done
387  * @engine: the hardware engine
388  * @req: the request need to be finalized
389  * @err: error number
390  */
391 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
392 				      struct skcipher_request *req, int err)
393 {
394 	return crypto_finalize_request(engine, &req->base, err);
395 }
396 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
397 
398 /**
399  * crypto_engine_start - start the hardware engine
400  * @engine: the hardware engine need to be started
401  *
402  * Return 0 on success, else on fail.
403  */
404 int crypto_engine_start(struct crypto_engine *engine)
405 {
406 	unsigned long flags;
407 
408 	spin_lock_irqsave(&engine->queue_lock, flags);
409 
410 	if (engine->running || engine->busy) {
411 		spin_unlock_irqrestore(&engine->queue_lock, flags);
412 		return -EBUSY;
413 	}
414 
415 	engine->running = true;
416 	spin_unlock_irqrestore(&engine->queue_lock, flags);
417 
418 	kthread_queue_work(engine->kworker, &engine->pump_requests);
419 
420 	return 0;
421 }
422 EXPORT_SYMBOL_GPL(crypto_engine_start);
423 
424 /**
425  * crypto_engine_stop - stop the hardware engine
426  * @engine: the hardware engine need to be stopped
427  *
428  * Return 0 on success, else on fail.
429  */
430 int crypto_engine_stop(struct crypto_engine *engine)
431 {
432 	unsigned long flags;
433 	unsigned int limit = 500;
434 	int ret = 0;
435 
436 	spin_lock_irqsave(&engine->queue_lock, flags);
437 
438 	/*
439 	 * If the engine queue is not empty or the engine is on busy state,
440 	 * we need to wait for a while to pump the requests of engine queue.
441 	 */
442 	while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
443 		spin_unlock_irqrestore(&engine->queue_lock, flags);
444 		msleep(20);
445 		spin_lock_irqsave(&engine->queue_lock, flags);
446 	}
447 
448 	if (crypto_queue_len(&engine->queue) || engine->busy)
449 		ret = -EBUSY;
450 	else
451 		engine->running = false;
452 
453 	spin_unlock_irqrestore(&engine->queue_lock, flags);
454 
455 	if (ret)
456 		dev_warn(engine->dev, "could not stop engine\n");
457 
458 	return ret;
459 }
460 EXPORT_SYMBOL_GPL(crypto_engine_stop);
461 
462 /**
463  * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
464  * and initialize it by setting the maximum number of entries in the software
465  * crypto-engine queue.
466  * @dev: the device attached with one hardware engine
467  * @retry_support: whether hardware has support for retry mechanism
468  * @cbk_do_batch: pointer to a callback function to be invoked when executing a
469  *                a batch of requests.
470  *                This has the form:
471  *                callback(struct crypto_engine *engine)
472  *                where:
473  *                @engine: the crypto engine structure.
474  * @rt: whether this queue is set to run as a realtime task
475  * @qlen: maximum size of the crypto-engine queue
476  *
477  * This must be called from context that can sleep.
478  * Return: the crypto engine structure on success, else NULL.
479  */
480 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
481 						       bool retry_support,
482 						       int (*cbk_do_batch)(struct crypto_engine *engine),
483 						       bool rt, int qlen)
484 {
485 	struct crypto_engine *engine;
486 
487 	if (!dev)
488 		return NULL;
489 
490 	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
491 	if (!engine)
492 		return NULL;
493 
494 	engine->dev = dev;
495 	engine->rt = rt;
496 	engine->running = false;
497 	engine->busy = false;
498 	engine->idling = false;
499 	engine->retry_support = retry_support;
500 	engine->priv_data = dev;
501 	/*
502 	 * Batch requests is possible only if
503 	 * hardware has support for retry mechanism.
504 	 */
505 	engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
506 
507 	snprintf(engine->name, sizeof(engine->name),
508 		 "%s-engine", dev_name(dev));
509 
510 	crypto_init_queue(&engine->queue, qlen);
511 	spin_lock_init(&engine->queue_lock);
512 
513 	engine->kworker = kthread_create_worker(0, "%s", engine->name);
514 	if (IS_ERR(engine->kworker)) {
515 		dev_err(dev, "failed to create crypto request pump task\n");
516 		return NULL;
517 	}
518 	kthread_init_work(&engine->pump_requests, crypto_pump_work);
519 
520 	if (engine->rt) {
521 		dev_info(dev, "will run requests pump with realtime priority\n");
522 		sched_set_fifo(engine->kworker->task);
523 	}
524 
525 	return engine;
526 }
527 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
528 
529 /**
530  * crypto_engine_alloc_init - allocate crypto hardware engine structure and
531  * initialize it.
532  * @dev: the device attached with one hardware engine
533  * @rt: whether this queue is set to run as a realtime task
534  *
535  * This must be called from context that can sleep.
536  * Return: the crypto engine structure on success, else NULL.
537  */
538 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
539 {
540 	return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
541 						CRYPTO_ENGINE_MAX_QLEN);
542 }
543 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
544 
545 /**
546  * crypto_engine_exit - free the resources of hardware engine when exit
547  * @engine: the hardware engine need to be freed
548  *
549  * Return 0 for success.
550  */
551 int crypto_engine_exit(struct crypto_engine *engine)
552 {
553 	int ret;
554 
555 	ret = crypto_engine_stop(engine);
556 	if (ret)
557 		return ret;
558 
559 	kthread_destroy_worker(engine->kworker);
560 
561 	return 0;
562 }
563 EXPORT_SYMBOL_GPL(crypto_engine_exit);
564 
565 MODULE_LICENSE("GPL");
566 MODULE_DESCRIPTION("Crypto hardware engine framework");
567