1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Handle async block request by crypto hardware engine. 4 * 5 * Copyright (C) 2016 Linaro, Inc. 6 * 7 * Author: Baolin Wang <baolin.wang@linaro.org> 8 */ 9 10 #include <crypto/internal/aead.h> 11 #include <crypto/internal/akcipher.h> 12 #include <crypto/internal/engine.h> 13 #include <crypto/internal/hash.h> 14 #include <crypto/internal/kpp.h> 15 #include <crypto/internal/skcipher.h> 16 #include <linux/err.h> 17 #include <linux/delay.h> 18 #include <linux/device.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <uapi/linux/sched/types.h> 22 #include "internal.h" 23 24 #define CRYPTO_ENGINE_MAX_QLEN 10 25 26 /* Temporary algorithm flag used to indicate an updated driver. */ 27 #define CRYPTO_ALG_ENGINE 0x200 28 29 struct crypto_engine_alg { 30 struct crypto_alg base; 31 struct crypto_engine_op op; 32 }; 33 34 /** 35 * crypto_finalize_request - finalize one request if the request is done 36 * @engine: the hardware engine 37 * @req: the request need to be finalized 38 * @err: error number 39 */ 40 static void crypto_finalize_request(struct crypto_engine *engine, 41 struct crypto_async_request *req, int err) 42 { 43 unsigned long flags; 44 45 /* 46 * If hardware cannot enqueue more requests 47 * and retry mechanism is not supported 48 * make sure we are completing the current request 49 */ 50 if (!engine->retry_support) { 51 spin_lock_irqsave(&engine->queue_lock, flags); 52 if (engine->cur_req == req) { 53 engine->cur_req = NULL; 54 } 55 spin_unlock_irqrestore(&engine->queue_lock, flags); 56 } 57 58 lockdep_assert_in_softirq(); 59 crypto_request_complete(req, err); 60 61 kthread_queue_work(engine->kworker, &engine->pump_requests); 62 } 63 64 /** 65 * crypto_pump_requests - dequeue one request from engine queue to process 66 * @engine: the hardware engine 67 * @in_kthread: true if we are in the context of the request pump thread 68 * 69 * This function checks if there is any request in the engine queue that 70 * needs processing and if so call out to the driver to initialize hardware 71 * and handle each request. 72 */ 73 static void crypto_pump_requests(struct crypto_engine *engine, 74 bool in_kthread) 75 { 76 struct crypto_async_request *async_req, *backlog; 77 struct crypto_engine_alg *alg; 78 struct crypto_engine_op *op; 79 unsigned long flags; 80 bool was_busy = false; 81 int ret; 82 83 spin_lock_irqsave(&engine->queue_lock, flags); 84 85 /* Make sure we are not already running a request */ 86 if (!engine->retry_support && engine->cur_req) 87 goto out; 88 89 /* If another context is idling then defer */ 90 if (engine->idling) { 91 kthread_queue_work(engine->kworker, &engine->pump_requests); 92 goto out; 93 } 94 95 /* Check if the engine queue is idle */ 96 if (!crypto_queue_len(&engine->queue) || !engine->running) { 97 if (!engine->busy) 98 goto out; 99 100 /* Only do teardown in the thread */ 101 if (!in_kthread) { 102 kthread_queue_work(engine->kworker, 103 &engine->pump_requests); 104 goto out; 105 } 106 107 engine->busy = false; 108 engine->idling = true; 109 spin_unlock_irqrestore(&engine->queue_lock, flags); 110 111 if (engine->unprepare_crypt_hardware && 112 engine->unprepare_crypt_hardware(engine)) 113 dev_err(engine->dev, "failed to unprepare crypt hardware\n"); 114 115 spin_lock_irqsave(&engine->queue_lock, flags); 116 engine->idling = false; 117 goto out; 118 } 119 120 start_request: 121 /* Get the fist request from the engine queue to handle */ 122 backlog = crypto_get_backlog(&engine->queue); 123 async_req = crypto_dequeue_request(&engine->queue); 124 if (!async_req) 125 goto out; 126 127 /* 128 * If hardware doesn't support the retry mechanism, 129 * keep track of the request we are processing now. 130 * We'll need it on completion (crypto_finalize_request). 131 */ 132 if (!engine->retry_support) 133 engine->cur_req = async_req; 134 135 if (engine->busy) 136 was_busy = true; 137 else 138 engine->busy = true; 139 140 spin_unlock_irqrestore(&engine->queue_lock, flags); 141 142 /* Until here we get the request need to be encrypted successfully */ 143 if (!was_busy && engine->prepare_crypt_hardware) { 144 ret = engine->prepare_crypt_hardware(engine); 145 if (ret) { 146 dev_err(engine->dev, "failed to prepare crypt hardware\n"); 147 goto req_err_1; 148 } 149 } 150 151 if (async_req->tfm->__crt_alg->cra_flags & CRYPTO_ALG_ENGINE) { 152 alg = container_of(async_req->tfm->__crt_alg, 153 struct crypto_engine_alg, base); 154 op = &alg->op; 155 } else { 156 dev_err(engine->dev, "failed to do request\n"); 157 ret = -EINVAL; 158 goto req_err_1; 159 } 160 161 ret = op->do_one_request(engine, async_req); 162 163 /* Request unsuccessfully executed by hardware */ 164 if (ret < 0) { 165 /* 166 * If hardware queue is full (-ENOSPC), requeue request 167 * regardless of backlog flag. 168 * Otherwise, unprepare and complete the request. 169 */ 170 if (!engine->retry_support || 171 (ret != -ENOSPC)) { 172 dev_err(engine->dev, 173 "Failed to do one request from queue: %d\n", 174 ret); 175 goto req_err_1; 176 } 177 spin_lock_irqsave(&engine->queue_lock, flags); 178 /* 179 * If hardware was unable to execute request, enqueue it 180 * back in front of crypto-engine queue, to keep the order 181 * of requests. 182 */ 183 crypto_enqueue_request_head(&engine->queue, async_req); 184 185 kthread_queue_work(engine->kworker, &engine->pump_requests); 186 goto out; 187 } 188 189 goto retry; 190 191 req_err_1: 192 crypto_request_complete(async_req, ret); 193 194 retry: 195 if (backlog) 196 crypto_request_complete(backlog, -EINPROGRESS); 197 198 /* If retry mechanism is supported, send new requests to engine */ 199 if (engine->retry_support) { 200 spin_lock_irqsave(&engine->queue_lock, flags); 201 goto start_request; 202 } 203 return; 204 205 out: 206 spin_unlock_irqrestore(&engine->queue_lock, flags); 207 208 /* 209 * Batch requests is possible only if 210 * hardware can enqueue multiple requests 211 */ 212 if (engine->do_batch_requests) { 213 ret = engine->do_batch_requests(engine); 214 if (ret) 215 dev_err(engine->dev, "failed to do batch requests: %d\n", 216 ret); 217 } 218 219 return; 220 } 221 222 static void crypto_pump_work(struct kthread_work *work) 223 { 224 struct crypto_engine *engine = 225 container_of(work, struct crypto_engine, pump_requests); 226 227 crypto_pump_requests(engine, true); 228 } 229 230 /** 231 * crypto_transfer_request - transfer the new request into the engine queue 232 * @engine: the hardware engine 233 * @req: the request need to be listed into the engine queue 234 * @need_pump: indicates whether queue the pump of request to kthread_work 235 */ 236 static int crypto_transfer_request(struct crypto_engine *engine, 237 struct crypto_async_request *req, 238 bool need_pump) 239 { 240 unsigned long flags; 241 int ret; 242 243 spin_lock_irqsave(&engine->queue_lock, flags); 244 245 if (!engine->running) { 246 spin_unlock_irqrestore(&engine->queue_lock, flags); 247 return -ESHUTDOWN; 248 } 249 250 ret = crypto_enqueue_request(&engine->queue, req); 251 252 if (!engine->busy && need_pump) 253 kthread_queue_work(engine->kworker, &engine->pump_requests); 254 255 spin_unlock_irqrestore(&engine->queue_lock, flags); 256 return ret; 257 } 258 259 /** 260 * crypto_transfer_request_to_engine - transfer one request to list 261 * into the engine queue 262 * @engine: the hardware engine 263 * @req: the request need to be listed into the engine queue 264 */ 265 static int crypto_transfer_request_to_engine(struct crypto_engine *engine, 266 struct crypto_async_request *req) 267 { 268 return crypto_transfer_request(engine, req, true); 269 } 270 271 /** 272 * crypto_transfer_aead_request_to_engine - transfer one aead_request 273 * to list into the engine queue 274 * @engine: the hardware engine 275 * @req: the request need to be listed into the engine queue 276 */ 277 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine, 278 struct aead_request *req) 279 { 280 return crypto_transfer_request_to_engine(engine, &req->base); 281 } 282 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine); 283 284 /** 285 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request 286 * to list into the engine queue 287 * @engine: the hardware engine 288 * @req: the request need to be listed into the engine queue 289 */ 290 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine, 291 struct akcipher_request *req) 292 { 293 return crypto_transfer_request_to_engine(engine, &req->base); 294 } 295 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine); 296 297 /** 298 * crypto_transfer_hash_request_to_engine - transfer one ahash_request 299 * to list into the engine queue 300 * @engine: the hardware engine 301 * @req: the request need to be listed into the engine queue 302 */ 303 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine, 304 struct ahash_request *req) 305 { 306 return crypto_transfer_request_to_engine(engine, &req->base); 307 } 308 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine); 309 310 /** 311 * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list 312 * into the engine queue 313 * @engine: the hardware engine 314 * @req: the request need to be listed into the engine queue 315 */ 316 int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine, 317 struct kpp_request *req) 318 { 319 return crypto_transfer_request_to_engine(engine, &req->base); 320 } 321 EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine); 322 323 /** 324 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request 325 * to list into the engine queue 326 * @engine: the hardware engine 327 * @req: the request need to be listed into the engine queue 328 */ 329 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine, 330 struct skcipher_request *req) 331 { 332 return crypto_transfer_request_to_engine(engine, &req->base); 333 } 334 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine); 335 336 /** 337 * crypto_finalize_aead_request - finalize one aead_request if 338 * the request is done 339 * @engine: the hardware engine 340 * @req: the request need to be finalized 341 * @err: error number 342 */ 343 void crypto_finalize_aead_request(struct crypto_engine *engine, 344 struct aead_request *req, int err) 345 { 346 return crypto_finalize_request(engine, &req->base, err); 347 } 348 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request); 349 350 /** 351 * crypto_finalize_akcipher_request - finalize one akcipher_request if 352 * the request is done 353 * @engine: the hardware engine 354 * @req: the request need to be finalized 355 * @err: error number 356 */ 357 void crypto_finalize_akcipher_request(struct crypto_engine *engine, 358 struct akcipher_request *req, int err) 359 { 360 return crypto_finalize_request(engine, &req->base, err); 361 } 362 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request); 363 364 /** 365 * crypto_finalize_hash_request - finalize one ahash_request if 366 * the request is done 367 * @engine: the hardware engine 368 * @req: the request need to be finalized 369 * @err: error number 370 */ 371 void crypto_finalize_hash_request(struct crypto_engine *engine, 372 struct ahash_request *req, int err) 373 { 374 return crypto_finalize_request(engine, &req->base, err); 375 } 376 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request); 377 378 /** 379 * crypto_finalize_kpp_request - finalize one kpp_request if the request is done 380 * @engine: the hardware engine 381 * @req: the request need to be finalized 382 * @err: error number 383 */ 384 void crypto_finalize_kpp_request(struct crypto_engine *engine, 385 struct kpp_request *req, int err) 386 { 387 return crypto_finalize_request(engine, &req->base, err); 388 } 389 EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request); 390 391 /** 392 * crypto_finalize_skcipher_request - finalize one skcipher_request if 393 * the request is done 394 * @engine: the hardware engine 395 * @req: the request need to be finalized 396 * @err: error number 397 */ 398 void crypto_finalize_skcipher_request(struct crypto_engine *engine, 399 struct skcipher_request *req, int err) 400 { 401 return crypto_finalize_request(engine, &req->base, err); 402 } 403 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request); 404 405 /** 406 * crypto_engine_start - start the hardware engine 407 * @engine: the hardware engine need to be started 408 * 409 * Return 0 on success, else on fail. 410 */ 411 int crypto_engine_start(struct crypto_engine *engine) 412 { 413 unsigned long flags; 414 415 spin_lock_irqsave(&engine->queue_lock, flags); 416 417 if (engine->running || engine->busy) { 418 spin_unlock_irqrestore(&engine->queue_lock, flags); 419 return -EBUSY; 420 } 421 422 engine->running = true; 423 spin_unlock_irqrestore(&engine->queue_lock, flags); 424 425 kthread_queue_work(engine->kworker, &engine->pump_requests); 426 427 return 0; 428 } 429 EXPORT_SYMBOL_GPL(crypto_engine_start); 430 431 /** 432 * crypto_engine_stop - stop the hardware engine 433 * @engine: the hardware engine need to be stopped 434 * 435 * Return 0 on success, else on fail. 436 */ 437 int crypto_engine_stop(struct crypto_engine *engine) 438 { 439 unsigned long flags; 440 unsigned int limit = 500; 441 int ret = 0; 442 443 spin_lock_irqsave(&engine->queue_lock, flags); 444 445 /* 446 * If the engine queue is not empty or the engine is on busy state, 447 * we need to wait for a while to pump the requests of engine queue. 448 */ 449 while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) { 450 spin_unlock_irqrestore(&engine->queue_lock, flags); 451 msleep(20); 452 spin_lock_irqsave(&engine->queue_lock, flags); 453 } 454 455 if (crypto_queue_len(&engine->queue) || engine->busy) 456 ret = -EBUSY; 457 else 458 engine->running = false; 459 460 spin_unlock_irqrestore(&engine->queue_lock, flags); 461 462 if (ret) 463 dev_warn(engine->dev, "could not stop engine\n"); 464 465 return ret; 466 } 467 EXPORT_SYMBOL_GPL(crypto_engine_stop); 468 469 /** 470 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure 471 * and initialize it by setting the maximum number of entries in the software 472 * crypto-engine queue. 473 * @dev: the device attached with one hardware engine 474 * @retry_support: whether hardware has support for retry mechanism 475 * @cbk_do_batch: pointer to a callback function to be invoked when executing 476 * a batch of requests. 477 * This has the form: 478 * callback(struct crypto_engine *engine) 479 * where: 480 * engine: the crypto engine structure. 481 * @rt: whether this queue is set to run as a realtime task 482 * @qlen: maximum size of the crypto-engine queue 483 * 484 * This must be called from context that can sleep. 485 * Return: the crypto engine structure on success, else NULL. 486 */ 487 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev, 488 bool retry_support, 489 int (*cbk_do_batch)(struct crypto_engine *engine), 490 bool rt, int qlen) 491 { 492 struct crypto_engine *engine; 493 494 if (!dev) 495 return NULL; 496 497 engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL); 498 if (!engine) 499 return NULL; 500 501 engine->dev = dev; 502 engine->rt = rt; 503 engine->running = false; 504 engine->busy = false; 505 engine->idling = false; 506 engine->retry_support = retry_support; 507 engine->priv_data = dev; 508 /* 509 * Batch requests is possible only if 510 * hardware has support for retry mechanism. 511 */ 512 engine->do_batch_requests = retry_support ? cbk_do_batch : NULL; 513 514 snprintf(engine->name, sizeof(engine->name), 515 "%s-engine", dev_name(dev)); 516 517 crypto_init_queue(&engine->queue, qlen); 518 spin_lock_init(&engine->queue_lock); 519 520 engine->kworker = kthread_create_worker(0, "%s", engine->name); 521 if (IS_ERR(engine->kworker)) { 522 dev_err(dev, "failed to create crypto request pump task\n"); 523 return NULL; 524 } 525 kthread_init_work(&engine->pump_requests, crypto_pump_work); 526 527 if (engine->rt) { 528 dev_info(dev, "will run requests pump with realtime priority\n"); 529 sched_set_fifo(engine->kworker->task); 530 } 531 532 return engine; 533 } 534 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set); 535 536 /** 537 * crypto_engine_alloc_init - allocate crypto hardware engine structure and 538 * initialize it. 539 * @dev: the device attached with one hardware engine 540 * @rt: whether this queue is set to run as a realtime task 541 * 542 * This must be called from context that can sleep. 543 * Return: the crypto engine structure on success, else NULL. 544 */ 545 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) 546 { 547 return crypto_engine_alloc_init_and_set(dev, false, NULL, rt, 548 CRYPTO_ENGINE_MAX_QLEN); 549 } 550 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); 551 552 /** 553 * crypto_engine_exit - free the resources of hardware engine when exit 554 * @engine: the hardware engine need to be freed 555 * 556 * Return 0 for success. 557 */ 558 int crypto_engine_exit(struct crypto_engine *engine) 559 { 560 int ret; 561 562 ret = crypto_engine_stop(engine); 563 if (ret) 564 return ret; 565 566 kthread_destroy_worker(engine->kworker); 567 568 return 0; 569 } 570 EXPORT_SYMBOL_GPL(crypto_engine_exit); 571 572 int crypto_engine_register_aead(struct aead_engine_alg *alg) 573 { 574 if (!alg->op.do_one_request) 575 return -EINVAL; 576 577 alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE; 578 579 return crypto_register_aead(&alg->base); 580 } 581 EXPORT_SYMBOL_GPL(crypto_engine_register_aead); 582 583 void crypto_engine_unregister_aead(struct aead_engine_alg *alg) 584 { 585 crypto_unregister_aead(&alg->base); 586 } 587 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aead); 588 589 int crypto_engine_register_aeads(struct aead_engine_alg *algs, int count) 590 { 591 int i, ret; 592 593 for (i = 0; i < count; i++) { 594 ret = crypto_engine_register_aead(&algs[i]); 595 if (ret) 596 goto err; 597 } 598 599 return 0; 600 601 err: 602 crypto_engine_unregister_aeads(algs, i); 603 604 return ret; 605 } 606 EXPORT_SYMBOL_GPL(crypto_engine_register_aeads); 607 608 void crypto_engine_unregister_aeads(struct aead_engine_alg *algs, int count) 609 { 610 int i; 611 612 for (i = count - 1; i >= 0; --i) 613 crypto_engine_unregister_aead(&algs[i]); 614 } 615 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aeads); 616 617 int crypto_engine_register_ahash(struct ahash_engine_alg *alg) 618 { 619 if (!alg->op.do_one_request) 620 return -EINVAL; 621 622 alg->base.halg.base.cra_flags |= CRYPTO_ALG_ENGINE; 623 624 return crypto_register_ahash(&alg->base); 625 } 626 EXPORT_SYMBOL_GPL(crypto_engine_register_ahash); 627 628 void crypto_engine_unregister_ahash(struct ahash_engine_alg *alg) 629 { 630 crypto_unregister_ahash(&alg->base); 631 } 632 EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahash); 633 634 int crypto_engine_register_ahashes(struct ahash_engine_alg *algs, int count) 635 { 636 int i, ret; 637 638 for (i = 0; i < count; i++) { 639 ret = crypto_engine_register_ahash(&algs[i]); 640 if (ret) 641 goto err; 642 } 643 644 return 0; 645 646 err: 647 crypto_engine_unregister_ahashes(algs, i); 648 649 return ret; 650 } 651 EXPORT_SYMBOL_GPL(crypto_engine_register_ahashes); 652 653 void crypto_engine_unregister_ahashes(struct ahash_engine_alg *algs, 654 int count) 655 { 656 int i; 657 658 for (i = count - 1; i >= 0; --i) 659 crypto_engine_unregister_ahash(&algs[i]); 660 } 661 EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahashes); 662 663 int crypto_engine_register_akcipher(struct akcipher_engine_alg *alg) 664 { 665 if (!alg->op.do_one_request) 666 return -EINVAL; 667 668 alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE; 669 670 return crypto_register_akcipher(&alg->base); 671 } 672 EXPORT_SYMBOL_GPL(crypto_engine_register_akcipher); 673 674 void crypto_engine_unregister_akcipher(struct akcipher_engine_alg *alg) 675 { 676 crypto_unregister_akcipher(&alg->base); 677 } 678 EXPORT_SYMBOL_GPL(crypto_engine_unregister_akcipher); 679 680 int crypto_engine_register_kpp(struct kpp_engine_alg *alg) 681 { 682 if (!alg->op.do_one_request) 683 return -EINVAL; 684 685 alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE; 686 687 return crypto_register_kpp(&alg->base); 688 } 689 EXPORT_SYMBOL_GPL(crypto_engine_register_kpp); 690 691 void crypto_engine_unregister_kpp(struct kpp_engine_alg *alg) 692 { 693 crypto_unregister_kpp(&alg->base); 694 } 695 EXPORT_SYMBOL_GPL(crypto_engine_unregister_kpp); 696 697 int crypto_engine_register_skcipher(struct skcipher_engine_alg *alg) 698 { 699 if (!alg->op.do_one_request) 700 return -EINVAL; 701 702 alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE; 703 704 return crypto_register_skcipher(&alg->base); 705 } 706 EXPORT_SYMBOL_GPL(crypto_engine_register_skcipher); 707 708 void crypto_engine_unregister_skcipher(struct skcipher_engine_alg *alg) 709 { 710 return crypto_unregister_skcipher(&alg->base); 711 } 712 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skcipher); 713 714 int crypto_engine_register_skciphers(struct skcipher_engine_alg *algs, 715 int count) 716 { 717 int i, ret; 718 719 for (i = 0; i < count; i++) { 720 ret = crypto_engine_register_skcipher(&algs[i]); 721 if (ret) 722 goto err; 723 } 724 725 return 0; 726 727 err: 728 crypto_engine_unregister_skciphers(algs, i); 729 730 return ret; 731 } 732 EXPORT_SYMBOL_GPL(crypto_engine_register_skciphers); 733 734 void crypto_engine_unregister_skciphers(struct skcipher_engine_alg *algs, 735 int count) 736 { 737 int i; 738 739 for (i = count - 1; i >= 0; --i) 740 crypto_engine_unregister_skcipher(&algs[i]); 741 } 742 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skciphers); 743 744 MODULE_LICENSE("GPL"); 745 MODULE_DESCRIPTION("Crypto hardware engine framework"); 746