xref: /openbmc/linux/crypto/crypto_engine.c (revision 37b9b9a5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Handle async block request by crypto hardware engine.
4  *
5  * Copyright (C) 2016 Linaro, Inc.
6  *
7  * Author: Baolin Wang <baolin.wang@linaro.org>
8  */
9 
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <crypto/engine.h>
13 #include <uapi/linux/sched/types.h>
14 #include "internal.h"
15 
16 #define CRYPTO_ENGINE_MAX_QLEN 10
17 
18 /**
19  * crypto_finalize_request - finalize one request if the request is done
20  * @engine: the hardware engine
21  * @req: the request need to be finalized
22  * @err: error number
23  */
24 static void crypto_finalize_request(struct crypto_engine *engine,
25 			     struct crypto_async_request *req, int err)
26 {
27 	unsigned long flags;
28 	bool finalize_cur_req = false;
29 	int ret;
30 	struct crypto_engine_ctx *enginectx;
31 
32 	spin_lock_irqsave(&engine->queue_lock, flags);
33 	if (engine->cur_req == req)
34 		finalize_cur_req = true;
35 	spin_unlock_irqrestore(&engine->queue_lock, flags);
36 
37 	if (finalize_cur_req) {
38 		enginectx = crypto_tfm_ctx(req->tfm);
39 		if (engine->cur_req_prepared &&
40 		    enginectx->op.unprepare_request) {
41 			ret = enginectx->op.unprepare_request(engine, req);
42 			if (ret)
43 				dev_err(engine->dev, "failed to unprepare request\n");
44 		}
45 		spin_lock_irqsave(&engine->queue_lock, flags);
46 		engine->cur_req = NULL;
47 		engine->cur_req_prepared = false;
48 		spin_unlock_irqrestore(&engine->queue_lock, flags);
49 	}
50 
51 	req->complete(req, err);
52 
53 	kthread_queue_work(engine->kworker, &engine->pump_requests);
54 }
55 
56 /**
57  * crypto_pump_requests - dequeue one request from engine queue to process
58  * @engine: the hardware engine
59  * @in_kthread: true if we are in the context of the request pump thread
60  *
61  * This function checks if there is any request in the engine queue that
62  * needs processing and if so call out to the driver to initialize hardware
63  * and handle each request.
64  */
65 static void crypto_pump_requests(struct crypto_engine *engine,
66 				 bool in_kthread)
67 {
68 	struct crypto_async_request *async_req, *backlog;
69 	unsigned long flags;
70 	bool was_busy = false;
71 	int ret;
72 	struct crypto_engine_ctx *enginectx;
73 
74 	spin_lock_irqsave(&engine->queue_lock, flags);
75 
76 	/* Make sure we are not already running a request */
77 	if (engine->cur_req)
78 		goto out;
79 
80 	/* If another context is idling then defer */
81 	if (engine->idling) {
82 		kthread_queue_work(engine->kworker, &engine->pump_requests);
83 		goto out;
84 	}
85 
86 	/* Check if the engine queue is idle */
87 	if (!crypto_queue_len(&engine->queue) || !engine->running) {
88 		if (!engine->busy)
89 			goto out;
90 
91 		/* Only do teardown in the thread */
92 		if (!in_kthread) {
93 			kthread_queue_work(engine->kworker,
94 					   &engine->pump_requests);
95 			goto out;
96 		}
97 
98 		engine->busy = false;
99 		engine->idling = true;
100 		spin_unlock_irqrestore(&engine->queue_lock, flags);
101 
102 		if (engine->unprepare_crypt_hardware &&
103 		    engine->unprepare_crypt_hardware(engine))
104 			dev_err(engine->dev, "failed to unprepare crypt hardware\n");
105 
106 		spin_lock_irqsave(&engine->queue_lock, flags);
107 		engine->idling = false;
108 		goto out;
109 	}
110 
111 	/* Get the fist request from the engine queue to handle */
112 	backlog = crypto_get_backlog(&engine->queue);
113 	async_req = crypto_dequeue_request(&engine->queue);
114 	if (!async_req)
115 		goto out;
116 
117 	engine->cur_req = async_req;
118 	if (backlog)
119 		backlog->complete(backlog, -EINPROGRESS);
120 
121 	if (engine->busy)
122 		was_busy = true;
123 	else
124 		engine->busy = true;
125 
126 	spin_unlock_irqrestore(&engine->queue_lock, flags);
127 
128 	/* Until here we get the request need to be encrypted successfully */
129 	if (!was_busy && engine->prepare_crypt_hardware) {
130 		ret = engine->prepare_crypt_hardware(engine);
131 		if (ret) {
132 			dev_err(engine->dev, "failed to prepare crypt hardware\n");
133 			goto req_err;
134 		}
135 	}
136 
137 	enginectx = crypto_tfm_ctx(async_req->tfm);
138 
139 	if (enginectx->op.prepare_request) {
140 		ret = enginectx->op.prepare_request(engine, async_req);
141 		if (ret) {
142 			dev_err(engine->dev, "failed to prepare request: %d\n",
143 				ret);
144 			goto req_err;
145 		}
146 		engine->cur_req_prepared = true;
147 	}
148 	if (!enginectx->op.do_one_request) {
149 		dev_err(engine->dev, "failed to do request\n");
150 		ret = -EINVAL;
151 		goto req_err;
152 	}
153 	ret = enginectx->op.do_one_request(engine, async_req);
154 	if (ret) {
155 		dev_err(engine->dev, "Failed to do one request from queue: %d\n", ret);
156 		goto req_err;
157 	}
158 	return;
159 
160 req_err:
161 	crypto_finalize_request(engine, async_req, ret);
162 	return;
163 
164 out:
165 	spin_unlock_irqrestore(&engine->queue_lock, flags);
166 }
167 
168 static void crypto_pump_work(struct kthread_work *work)
169 {
170 	struct crypto_engine *engine =
171 		container_of(work, struct crypto_engine, pump_requests);
172 
173 	crypto_pump_requests(engine, true);
174 }
175 
176 /**
177  * crypto_transfer_request - transfer the new request into the engine queue
178  * @engine: the hardware engine
179  * @req: the request need to be listed into the engine queue
180  */
181 static int crypto_transfer_request(struct crypto_engine *engine,
182 				   struct crypto_async_request *req,
183 				   bool need_pump)
184 {
185 	unsigned long flags;
186 	int ret;
187 
188 	spin_lock_irqsave(&engine->queue_lock, flags);
189 
190 	if (!engine->running) {
191 		spin_unlock_irqrestore(&engine->queue_lock, flags);
192 		return -ESHUTDOWN;
193 	}
194 
195 	ret = crypto_enqueue_request(&engine->queue, req);
196 
197 	if (!engine->busy && need_pump)
198 		kthread_queue_work(engine->kworker, &engine->pump_requests);
199 
200 	spin_unlock_irqrestore(&engine->queue_lock, flags);
201 	return ret;
202 }
203 
204 /**
205  * crypto_transfer_request_to_engine - transfer one request to list
206  * into the engine queue
207  * @engine: the hardware engine
208  * @req: the request need to be listed into the engine queue
209  */
210 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
211 					     struct crypto_async_request *req)
212 {
213 	return crypto_transfer_request(engine, req, true);
214 }
215 
216 /**
217  * crypto_transfer_aead_request_to_engine - transfer one aead_request
218  * to list into the engine queue
219  * @engine: the hardware engine
220  * @req: the request need to be listed into the engine queue
221  */
222 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
223 					   struct aead_request *req)
224 {
225 	return crypto_transfer_request_to_engine(engine, &req->base);
226 }
227 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
228 
229 /**
230  * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
231  * to list into the engine queue
232  * @engine: the hardware engine
233  * @req: the request need to be listed into the engine queue
234  */
235 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
236 					       struct akcipher_request *req)
237 {
238 	return crypto_transfer_request_to_engine(engine, &req->base);
239 }
240 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
241 
242 /**
243  * crypto_transfer_hash_request_to_engine - transfer one ahash_request
244  * to list into the engine queue
245  * @engine: the hardware engine
246  * @req: the request need to be listed into the engine queue
247  */
248 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
249 					   struct ahash_request *req)
250 {
251 	return crypto_transfer_request_to_engine(engine, &req->base);
252 }
253 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
254 
255 /**
256  * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
257  * to list into the engine queue
258  * @engine: the hardware engine
259  * @req: the request need to be listed into the engine queue
260  */
261 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
262 					       struct skcipher_request *req)
263 {
264 	return crypto_transfer_request_to_engine(engine, &req->base);
265 }
266 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
267 
268 /**
269  * crypto_finalize_aead_request - finalize one aead_request if
270  * the request is done
271  * @engine: the hardware engine
272  * @req: the request need to be finalized
273  * @err: error number
274  */
275 void crypto_finalize_aead_request(struct crypto_engine *engine,
276 				  struct aead_request *req, int err)
277 {
278 	return crypto_finalize_request(engine, &req->base, err);
279 }
280 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
281 
282 /**
283  * crypto_finalize_akcipher_request - finalize one akcipher_request if
284  * the request is done
285  * @engine: the hardware engine
286  * @req: the request need to be finalized
287  * @err: error number
288  */
289 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
290 				      struct akcipher_request *req, int err)
291 {
292 	return crypto_finalize_request(engine, &req->base, err);
293 }
294 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
295 
296 /**
297  * crypto_finalize_hash_request - finalize one ahash_request if
298  * the request is done
299  * @engine: the hardware engine
300  * @req: the request need to be finalized
301  * @err: error number
302  */
303 void crypto_finalize_hash_request(struct crypto_engine *engine,
304 				  struct ahash_request *req, int err)
305 {
306 	return crypto_finalize_request(engine, &req->base, err);
307 }
308 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
309 
310 /**
311  * crypto_finalize_skcipher_request - finalize one skcipher_request if
312  * the request is done
313  * @engine: the hardware engine
314  * @req: the request need to be finalized
315  * @err: error number
316  */
317 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
318 				      struct skcipher_request *req, int err)
319 {
320 	return crypto_finalize_request(engine, &req->base, err);
321 }
322 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
323 
324 /**
325  * crypto_engine_start - start the hardware engine
326  * @engine: the hardware engine need to be started
327  *
328  * Return 0 on success, else on fail.
329  */
330 int crypto_engine_start(struct crypto_engine *engine)
331 {
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&engine->queue_lock, flags);
335 
336 	if (engine->running || engine->busy) {
337 		spin_unlock_irqrestore(&engine->queue_lock, flags);
338 		return -EBUSY;
339 	}
340 
341 	engine->running = true;
342 	spin_unlock_irqrestore(&engine->queue_lock, flags);
343 
344 	kthread_queue_work(engine->kworker, &engine->pump_requests);
345 
346 	return 0;
347 }
348 EXPORT_SYMBOL_GPL(crypto_engine_start);
349 
350 /**
351  * crypto_engine_stop - stop the hardware engine
352  * @engine: the hardware engine need to be stopped
353  *
354  * Return 0 on success, else on fail.
355  */
356 int crypto_engine_stop(struct crypto_engine *engine)
357 {
358 	unsigned long flags;
359 	unsigned int limit = 500;
360 	int ret = 0;
361 
362 	spin_lock_irqsave(&engine->queue_lock, flags);
363 
364 	/*
365 	 * If the engine queue is not empty or the engine is on busy state,
366 	 * we need to wait for a while to pump the requests of engine queue.
367 	 */
368 	while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
369 		spin_unlock_irqrestore(&engine->queue_lock, flags);
370 		msleep(20);
371 		spin_lock_irqsave(&engine->queue_lock, flags);
372 	}
373 
374 	if (crypto_queue_len(&engine->queue) || engine->busy)
375 		ret = -EBUSY;
376 	else
377 		engine->running = false;
378 
379 	spin_unlock_irqrestore(&engine->queue_lock, flags);
380 
381 	if (ret)
382 		dev_warn(engine->dev, "could not stop engine\n");
383 
384 	return ret;
385 }
386 EXPORT_SYMBOL_GPL(crypto_engine_stop);
387 
388 /**
389  * crypto_engine_alloc_init - allocate crypto hardware engine structure and
390  * initialize it.
391  * @dev: the device attached with one hardware engine
392  * @rt: whether this queue is set to run as a realtime task
393  *
394  * This must be called from context that can sleep.
395  * Return: the crypto engine structure on success, else NULL.
396  */
397 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
398 {
399 	struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
400 	struct crypto_engine *engine;
401 
402 	if (!dev)
403 		return NULL;
404 
405 	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
406 	if (!engine)
407 		return NULL;
408 
409 	engine->dev = dev;
410 	engine->rt = rt;
411 	engine->running = false;
412 	engine->busy = false;
413 	engine->idling = false;
414 	engine->cur_req_prepared = false;
415 	engine->priv_data = dev;
416 	snprintf(engine->name, sizeof(engine->name),
417 		 "%s-engine", dev_name(dev));
418 
419 	crypto_init_queue(&engine->queue, CRYPTO_ENGINE_MAX_QLEN);
420 	spin_lock_init(&engine->queue_lock);
421 
422 	engine->kworker = kthread_create_worker(0, "%s", engine->name);
423 	if (IS_ERR(engine->kworker)) {
424 		dev_err(dev, "failed to create crypto request pump task\n");
425 		return NULL;
426 	}
427 	kthread_init_work(&engine->pump_requests, crypto_pump_work);
428 
429 	if (engine->rt) {
430 		dev_info(dev, "will run requests pump with realtime priority\n");
431 		sched_setscheduler(engine->kworker->task, SCHED_FIFO, &param);
432 	}
433 
434 	return engine;
435 }
436 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
437 
438 /**
439  * crypto_engine_exit - free the resources of hardware engine when exit
440  * @engine: the hardware engine need to be freed
441  *
442  * Return 0 for success.
443  */
444 int crypto_engine_exit(struct crypto_engine *engine)
445 {
446 	int ret;
447 
448 	ret = crypto_engine_stop(engine);
449 	if (ret)
450 		return ret;
451 
452 	kthread_destroy_worker(engine->kworker);
453 
454 	return 0;
455 }
456 EXPORT_SYMBOL_GPL(crypto_engine_exit);
457 
458 MODULE_LICENSE("GPL");
459 MODULE_DESCRIPTION("Crypto hardware engine framework");
460