xref: /openbmc/linux/crypto/crypto_engine.c (revision 2208f39c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Handle async block request by crypto hardware engine.
4  *
5  * Copyright (C) 2016 Linaro, Inc.
6  *
7  * Author: Baolin Wang <baolin.wang@linaro.org>
8  */
9 
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <crypto/engine.h>
14 #include <uapi/linux/sched/types.h>
15 #include "internal.h"
16 
17 #define CRYPTO_ENGINE_MAX_QLEN 10
18 
19 /**
20  * crypto_finalize_request - finalize one request if the request is done
21  * @engine: the hardware engine
22  * @req: the request need to be finalized
23  * @err: error number
24  */
25 static void crypto_finalize_request(struct crypto_engine *engine,
26 				    struct crypto_async_request *req, int err)
27 {
28 	unsigned long flags;
29 	bool finalize_req = false;
30 	int ret;
31 	struct crypto_engine_ctx *enginectx;
32 
33 	/*
34 	 * If hardware cannot enqueue more requests
35 	 * and retry mechanism is not supported
36 	 * make sure we are completing the current request
37 	 */
38 	if (!engine->retry_support) {
39 		spin_lock_irqsave(&engine->queue_lock, flags);
40 		if (engine->cur_req == req) {
41 			finalize_req = true;
42 			engine->cur_req = NULL;
43 		}
44 		spin_unlock_irqrestore(&engine->queue_lock, flags);
45 	}
46 
47 	if (finalize_req || engine->retry_support) {
48 		enginectx = crypto_tfm_ctx(req->tfm);
49 		if (enginectx->op.prepare_request &&
50 		    enginectx->op.unprepare_request) {
51 			ret = enginectx->op.unprepare_request(engine, req);
52 			if (ret)
53 				dev_err(engine->dev, "failed to unprepare request\n");
54 		}
55 	}
56 	req->complete(req, err);
57 
58 	kthread_queue_work(engine->kworker, &engine->pump_requests);
59 }
60 
61 /**
62  * crypto_pump_requests - dequeue one request from engine queue to process
63  * @engine: the hardware engine
64  * @in_kthread: true if we are in the context of the request pump thread
65  *
66  * This function checks if there is any request in the engine queue that
67  * needs processing and if so call out to the driver to initialize hardware
68  * and handle each request.
69  */
70 static void crypto_pump_requests(struct crypto_engine *engine,
71 				 bool in_kthread)
72 {
73 	struct crypto_async_request *async_req, *backlog;
74 	unsigned long flags;
75 	bool was_busy = false;
76 	int ret;
77 	struct crypto_engine_ctx *enginectx;
78 
79 	spin_lock_irqsave(&engine->queue_lock, flags);
80 
81 	/* Make sure we are not already running a request */
82 	if (!engine->retry_support && engine->cur_req)
83 		goto out;
84 
85 	/* If another context is idling then defer */
86 	if (engine->idling) {
87 		kthread_queue_work(engine->kworker, &engine->pump_requests);
88 		goto out;
89 	}
90 
91 	/* Check if the engine queue is idle */
92 	if (!crypto_queue_len(&engine->queue) || !engine->running) {
93 		if (!engine->busy)
94 			goto out;
95 
96 		/* Only do teardown in the thread */
97 		if (!in_kthread) {
98 			kthread_queue_work(engine->kworker,
99 					   &engine->pump_requests);
100 			goto out;
101 		}
102 
103 		engine->busy = false;
104 		engine->idling = true;
105 		spin_unlock_irqrestore(&engine->queue_lock, flags);
106 
107 		if (engine->unprepare_crypt_hardware &&
108 		    engine->unprepare_crypt_hardware(engine))
109 			dev_err(engine->dev, "failed to unprepare crypt hardware\n");
110 
111 		spin_lock_irqsave(&engine->queue_lock, flags);
112 		engine->idling = false;
113 		goto out;
114 	}
115 
116 start_request:
117 	/* Get the fist request from the engine queue to handle */
118 	backlog = crypto_get_backlog(&engine->queue);
119 	async_req = crypto_dequeue_request(&engine->queue);
120 	if (!async_req)
121 		goto out;
122 
123 	/*
124 	 * If hardware doesn't support the retry mechanism,
125 	 * keep track of the request we are processing now.
126 	 * We'll need it on completion (crypto_finalize_request).
127 	 */
128 	if (!engine->retry_support)
129 		engine->cur_req = async_req;
130 
131 	if (backlog)
132 		backlog->complete(backlog, -EINPROGRESS);
133 
134 	if (engine->busy)
135 		was_busy = true;
136 	else
137 		engine->busy = true;
138 
139 	spin_unlock_irqrestore(&engine->queue_lock, flags);
140 
141 	/* Until here we get the request need to be encrypted successfully */
142 	if (!was_busy && engine->prepare_crypt_hardware) {
143 		ret = engine->prepare_crypt_hardware(engine);
144 		if (ret) {
145 			dev_err(engine->dev, "failed to prepare crypt hardware\n");
146 			goto req_err_2;
147 		}
148 	}
149 
150 	enginectx = crypto_tfm_ctx(async_req->tfm);
151 
152 	if (enginectx->op.prepare_request) {
153 		ret = enginectx->op.prepare_request(engine, async_req);
154 		if (ret) {
155 			dev_err(engine->dev, "failed to prepare request: %d\n",
156 				ret);
157 			goto req_err_2;
158 		}
159 	}
160 	if (!enginectx->op.do_one_request) {
161 		dev_err(engine->dev, "failed to do request\n");
162 		ret = -EINVAL;
163 		goto req_err_1;
164 	}
165 
166 	ret = enginectx->op.do_one_request(engine, async_req);
167 
168 	/* Request unsuccessfully executed by hardware */
169 	if (ret < 0) {
170 		/*
171 		 * If hardware queue is full (-ENOSPC), requeue request
172 		 * regardless of backlog flag.
173 		 * Otherwise, unprepare and complete the request.
174 		 */
175 		if (!engine->retry_support ||
176 		    (ret != -ENOSPC)) {
177 			dev_err(engine->dev,
178 				"Failed to do one request from queue: %d\n",
179 				ret);
180 			goto req_err_1;
181 		}
182 		/*
183 		 * If retry mechanism is supported,
184 		 * unprepare current request and
185 		 * enqueue it back into crypto-engine queue.
186 		 */
187 		if (enginectx->op.unprepare_request) {
188 			ret = enginectx->op.unprepare_request(engine,
189 							      async_req);
190 			if (ret)
191 				dev_err(engine->dev,
192 					"failed to unprepare request\n");
193 		}
194 		spin_lock_irqsave(&engine->queue_lock, flags);
195 		/*
196 		 * If hardware was unable to execute request, enqueue it
197 		 * back in front of crypto-engine queue, to keep the order
198 		 * of requests.
199 		 */
200 		crypto_enqueue_request_head(&engine->queue, async_req);
201 
202 		kthread_queue_work(engine->kworker, &engine->pump_requests);
203 		goto out;
204 	}
205 
206 	goto retry;
207 
208 req_err_1:
209 	if (enginectx->op.unprepare_request) {
210 		ret = enginectx->op.unprepare_request(engine, async_req);
211 		if (ret)
212 			dev_err(engine->dev, "failed to unprepare request\n");
213 	}
214 
215 req_err_2:
216 	async_req->complete(async_req, ret);
217 
218 retry:
219 	/* If retry mechanism is supported, send new requests to engine */
220 	if (engine->retry_support) {
221 		spin_lock_irqsave(&engine->queue_lock, flags);
222 		goto start_request;
223 	}
224 	return;
225 
226 out:
227 	spin_unlock_irqrestore(&engine->queue_lock, flags);
228 
229 	/*
230 	 * Batch requests is possible only if
231 	 * hardware can enqueue multiple requests
232 	 */
233 	if (engine->do_batch_requests) {
234 		ret = engine->do_batch_requests(engine);
235 		if (ret)
236 			dev_err(engine->dev, "failed to do batch requests: %d\n",
237 				ret);
238 	}
239 
240 	return;
241 }
242 
243 static void crypto_pump_work(struct kthread_work *work)
244 {
245 	struct crypto_engine *engine =
246 		container_of(work, struct crypto_engine, pump_requests);
247 
248 	crypto_pump_requests(engine, true);
249 }
250 
251 /**
252  * crypto_transfer_request - transfer the new request into the engine queue
253  * @engine: the hardware engine
254  * @req: the request need to be listed into the engine queue
255  */
256 static int crypto_transfer_request(struct crypto_engine *engine,
257 				   struct crypto_async_request *req,
258 				   bool need_pump)
259 {
260 	unsigned long flags;
261 	int ret;
262 
263 	spin_lock_irqsave(&engine->queue_lock, flags);
264 
265 	if (!engine->running) {
266 		spin_unlock_irqrestore(&engine->queue_lock, flags);
267 		return -ESHUTDOWN;
268 	}
269 
270 	ret = crypto_enqueue_request(&engine->queue, req);
271 
272 	if (!engine->busy && need_pump)
273 		kthread_queue_work(engine->kworker, &engine->pump_requests);
274 
275 	spin_unlock_irqrestore(&engine->queue_lock, flags);
276 	return ret;
277 }
278 
279 /**
280  * crypto_transfer_request_to_engine - transfer one request to list
281  * into the engine queue
282  * @engine: the hardware engine
283  * @req: the request need to be listed into the engine queue
284  */
285 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
286 					     struct crypto_async_request *req)
287 {
288 	return crypto_transfer_request(engine, req, true);
289 }
290 
291 /**
292  * crypto_transfer_aead_request_to_engine - transfer one aead_request
293  * to list into the engine queue
294  * @engine: the hardware engine
295  * @req: the request need to be listed into the engine queue
296  */
297 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
298 					   struct aead_request *req)
299 {
300 	return crypto_transfer_request_to_engine(engine, &req->base);
301 }
302 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
303 
304 /**
305  * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
306  * to list into the engine queue
307  * @engine: the hardware engine
308  * @req: the request need to be listed into the engine queue
309  */
310 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
311 					       struct akcipher_request *req)
312 {
313 	return crypto_transfer_request_to_engine(engine, &req->base);
314 }
315 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
316 
317 /**
318  * crypto_transfer_hash_request_to_engine - transfer one ahash_request
319  * to list into the engine queue
320  * @engine: the hardware engine
321  * @req: the request need to be listed into the engine queue
322  */
323 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
324 					   struct ahash_request *req)
325 {
326 	return crypto_transfer_request_to_engine(engine, &req->base);
327 }
328 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
329 
330 /**
331  * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
332  * to list into the engine queue
333  * @engine: the hardware engine
334  * @req: the request need to be listed into the engine queue
335  */
336 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
337 					       struct skcipher_request *req)
338 {
339 	return crypto_transfer_request_to_engine(engine, &req->base);
340 }
341 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
342 
343 /**
344  * crypto_finalize_aead_request - finalize one aead_request if
345  * the request is done
346  * @engine: the hardware engine
347  * @req: the request need to be finalized
348  * @err: error number
349  */
350 void crypto_finalize_aead_request(struct crypto_engine *engine,
351 				  struct aead_request *req, int err)
352 {
353 	return crypto_finalize_request(engine, &req->base, err);
354 }
355 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
356 
357 /**
358  * crypto_finalize_akcipher_request - finalize one akcipher_request if
359  * the request is done
360  * @engine: the hardware engine
361  * @req: the request need to be finalized
362  * @err: error number
363  */
364 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
365 				      struct akcipher_request *req, int err)
366 {
367 	return crypto_finalize_request(engine, &req->base, err);
368 }
369 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
370 
371 /**
372  * crypto_finalize_hash_request - finalize one ahash_request if
373  * the request is done
374  * @engine: the hardware engine
375  * @req: the request need to be finalized
376  * @err: error number
377  */
378 void crypto_finalize_hash_request(struct crypto_engine *engine,
379 				  struct ahash_request *req, int err)
380 {
381 	return crypto_finalize_request(engine, &req->base, err);
382 }
383 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
384 
385 /**
386  * crypto_finalize_skcipher_request - finalize one skcipher_request if
387  * the request is done
388  * @engine: the hardware engine
389  * @req: the request need to be finalized
390  * @err: error number
391  */
392 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
393 				      struct skcipher_request *req, int err)
394 {
395 	return crypto_finalize_request(engine, &req->base, err);
396 }
397 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
398 
399 /**
400  * crypto_engine_start - start the hardware engine
401  * @engine: the hardware engine need to be started
402  *
403  * Return 0 on success, else on fail.
404  */
405 int crypto_engine_start(struct crypto_engine *engine)
406 {
407 	unsigned long flags;
408 
409 	spin_lock_irqsave(&engine->queue_lock, flags);
410 
411 	if (engine->running || engine->busy) {
412 		spin_unlock_irqrestore(&engine->queue_lock, flags);
413 		return -EBUSY;
414 	}
415 
416 	engine->running = true;
417 	spin_unlock_irqrestore(&engine->queue_lock, flags);
418 
419 	kthread_queue_work(engine->kworker, &engine->pump_requests);
420 
421 	return 0;
422 }
423 EXPORT_SYMBOL_GPL(crypto_engine_start);
424 
425 /**
426  * crypto_engine_stop - stop the hardware engine
427  * @engine: the hardware engine need to be stopped
428  *
429  * Return 0 on success, else on fail.
430  */
431 int crypto_engine_stop(struct crypto_engine *engine)
432 {
433 	unsigned long flags;
434 	unsigned int limit = 500;
435 	int ret = 0;
436 
437 	spin_lock_irqsave(&engine->queue_lock, flags);
438 
439 	/*
440 	 * If the engine queue is not empty or the engine is on busy state,
441 	 * we need to wait for a while to pump the requests of engine queue.
442 	 */
443 	while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
444 		spin_unlock_irqrestore(&engine->queue_lock, flags);
445 		msleep(20);
446 		spin_lock_irqsave(&engine->queue_lock, flags);
447 	}
448 
449 	if (crypto_queue_len(&engine->queue) || engine->busy)
450 		ret = -EBUSY;
451 	else
452 		engine->running = false;
453 
454 	spin_unlock_irqrestore(&engine->queue_lock, flags);
455 
456 	if (ret)
457 		dev_warn(engine->dev, "could not stop engine\n");
458 
459 	return ret;
460 }
461 EXPORT_SYMBOL_GPL(crypto_engine_stop);
462 
463 /**
464  * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
465  * and initialize it by setting the maximum number of entries in the software
466  * crypto-engine queue.
467  * @dev: the device attached with one hardware engine
468  * @retry_support: whether hardware has support for retry mechanism
469  * @cbk_do_batch: pointer to a callback function to be invoked when executing
470  *                a batch of requests.
471  *                This has the form:
472  *                callback(struct crypto_engine *engine)
473  *                where:
474  *                @engine: the crypto engine structure.
475  * @rt: whether this queue is set to run as a realtime task
476  * @qlen: maximum size of the crypto-engine queue
477  *
478  * This must be called from context that can sleep.
479  * Return: the crypto engine structure on success, else NULL.
480  */
481 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
482 						       bool retry_support,
483 						       int (*cbk_do_batch)(struct crypto_engine *engine),
484 						       bool rt, int qlen)
485 {
486 	struct crypto_engine *engine;
487 
488 	if (!dev)
489 		return NULL;
490 
491 	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
492 	if (!engine)
493 		return NULL;
494 
495 	engine->dev = dev;
496 	engine->rt = rt;
497 	engine->running = false;
498 	engine->busy = false;
499 	engine->idling = false;
500 	engine->retry_support = retry_support;
501 	engine->priv_data = dev;
502 	/*
503 	 * Batch requests is possible only if
504 	 * hardware has support for retry mechanism.
505 	 */
506 	engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
507 
508 	snprintf(engine->name, sizeof(engine->name),
509 		 "%s-engine", dev_name(dev));
510 
511 	crypto_init_queue(&engine->queue, qlen);
512 	spin_lock_init(&engine->queue_lock);
513 
514 	engine->kworker = kthread_create_worker(0, "%s", engine->name);
515 	if (IS_ERR(engine->kworker)) {
516 		dev_err(dev, "failed to create crypto request pump task\n");
517 		return NULL;
518 	}
519 	kthread_init_work(&engine->pump_requests, crypto_pump_work);
520 
521 	if (engine->rt) {
522 		dev_info(dev, "will run requests pump with realtime priority\n");
523 		sched_set_fifo(engine->kworker->task);
524 	}
525 
526 	return engine;
527 }
528 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
529 
530 /**
531  * crypto_engine_alloc_init - allocate crypto hardware engine structure and
532  * initialize it.
533  * @dev: the device attached with one hardware engine
534  * @rt: whether this queue is set to run as a realtime task
535  *
536  * This must be called from context that can sleep.
537  * Return: the crypto engine structure on success, else NULL.
538  */
539 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
540 {
541 	return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
542 						CRYPTO_ENGINE_MAX_QLEN);
543 }
544 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
545 
546 /**
547  * crypto_engine_exit - free the resources of hardware engine when exit
548  * @engine: the hardware engine need to be freed
549  *
550  * Return 0 for success.
551  */
552 int crypto_engine_exit(struct crypto_engine *engine)
553 {
554 	int ret;
555 
556 	ret = crypto_engine_stop(engine);
557 	if (ret)
558 		return ret;
559 
560 	kthread_destroy_worker(engine->kworker);
561 
562 	return 0;
563 }
564 EXPORT_SYMBOL_GPL(crypto_engine_exit);
565 
566 MODULE_LICENSE("GPL");
567 MODULE_DESCRIPTION("Crypto hardware engine framework");
568