1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Handle async block request by crypto hardware engine. 4 * 5 * Copyright (C) 2016 Linaro, Inc. 6 * 7 * Author: Baolin Wang <baolin.wang@linaro.org> 8 */ 9 10 #include <linux/err.h> 11 #include <linux/delay.h> 12 #include <crypto/engine.h> 13 #include <uapi/linux/sched/types.h> 14 #include "internal.h" 15 16 #define CRYPTO_ENGINE_MAX_QLEN 10 17 18 /** 19 * crypto_finalize_request - finalize one request if the request is done 20 * @engine: the hardware engine 21 * @req: the request need to be finalized 22 * @err: error number 23 */ 24 static void crypto_finalize_request(struct crypto_engine *engine, 25 struct crypto_async_request *req, int err) 26 { 27 unsigned long flags; 28 bool finalize_req = false; 29 int ret; 30 struct crypto_engine_ctx *enginectx; 31 32 /* 33 * If hardware cannot enqueue more requests 34 * and retry mechanism is not supported 35 * make sure we are completing the current request 36 */ 37 if (!engine->retry_support) { 38 spin_lock_irqsave(&engine->queue_lock, flags); 39 if (engine->cur_req == req) { 40 finalize_req = true; 41 engine->cur_req = NULL; 42 } 43 spin_unlock_irqrestore(&engine->queue_lock, flags); 44 } 45 46 if (finalize_req || engine->retry_support) { 47 enginectx = crypto_tfm_ctx(req->tfm); 48 if (enginectx->op.prepare_request && 49 enginectx->op.unprepare_request) { 50 ret = enginectx->op.unprepare_request(engine, req); 51 if (ret) 52 dev_err(engine->dev, "failed to unprepare request\n"); 53 } 54 } 55 req->complete(req, err); 56 57 kthread_queue_work(engine->kworker, &engine->pump_requests); 58 } 59 60 /** 61 * crypto_pump_requests - dequeue one request from engine queue to process 62 * @engine: the hardware engine 63 * @in_kthread: true if we are in the context of the request pump thread 64 * 65 * This function checks if there is any request in the engine queue that 66 * needs processing and if so call out to the driver to initialize hardware 67 * and handle each request. 68 */ 69 static void crypto_pump_requests(struct crypto_engine *engine, 70 bool in_kthread) 71 { 72 struct crypto_async_request *async_req, *backlog; 73 unsigned long flags; 74 bool was_busy = false; 75 int ret; 76 struct crypto_engine_ctx *enginectx; 77 78 spin_lock_irqsave(&engine->queue_lock, flags); 79 80 /* Make sure we are not already running a request */ 81 if (!engine->retry_support && engine->cur_req) 82 goto out; 83 84 /* If another context is idling then defer */ 85 if (engine->idling) { 86 kthread_queue_work(engine->kworker, &engine->pump_requests); 87 goto out; 88 } 89 90 /* Check if the engine queue is idle */ 91 if (!crypto_queue_len(&engine->queue) || !engine->running) { 92 if (!engine->busy) 93 goto out; 94 95 /* Only do teardown in the thread */ 96 if (!in_kthread) { 97 kthread_queue_work(engine->kworker, 98 &engine->pump_requests); 99 goto out; 100 } 101 102 engine->busy = false; 103 engine->idling = true; 104 spin_unlock_irqrestore(&engine->queue_lock, flags); 105 106 if (engine->unprepare_crypt_hardware && 107 engine->unprepare_crypt_hardware(engine)) 108 dev_err(engine->dev, "failed to unprepare crypt hardware\n"); 109 110 spin_lock_irqsave(&engine->queue_lock, flags); 111 engine->idling = false; 112 goto out; 113 } 114 115 start_request: 116 /* Get the fist request from the engine queue to handle */ 117 backlog = crypto_get_backlog(&engine->queue); 118 async_req = crypto_dequeue_request(&engine->queue); 119 if (!async_req) 120 goto out; 121 122 /* 123 * If hardware doesn't support the retry mechanism, 124 * keep track of the request we are processing now. 125 * We'll need it on completion (crypto_finalize_request). 126 */ 127 if (!engine->retry_support) 128 engine->cur_req = async_req; 129 130 if (backlog) 131 backlog->complete(backlog, -EINPROGRESS); 132 133 if (engine->busy) 134 was_busy = true; 135 else 136 engine->busy = true; 137 138 spin_unlock_irqrestore(&engine->queue_lock, flags); 139 140 /* Until here we get the request need to be encrypted successfully */ 141 if (!was_busy && engine->prepare_crypt_hardware) { 142 ret = engine->prepare_crypt_hardware(engine); 143 if (ret) { 144 dev_err(engine->dev, "failed to prepare crypt hardware\n"); 145 goto req_err_2; 146 } 147 } 148 149 enginectx = crypto_tfm_ctx(async_req->tfm); 150 151 if (enginectx->op.prepare_request) { 152 ret = enginectx->op.prepare_request(engine, async_req); 153 if (ret) { 154 dev_err(engine->dev, "failed to prepare request: %d\n", 155 ret); 156 goto req_err_2; 157 } 158 } 159 if (!enginectx->op.do_one_request) { 160 dev_err(engine->dev, "failed to do request\n"); 161 ret = -EINVAL; 162 goto req_err_1; 163 } 164 165 ret = enginectx->op.do_one_request(engine, async_req); 166 167 /* Request unsuccessfully executed by hardware */ 168 if (ret < 0) { 169 /* 170 * If hardware queue is full (-ENOSPC), requeue request 171 * regardless of backlog flag. 172 * Otherwise, unprepare and complete the request. 173 */ 174 if (!engine->retry_support || 175 (ret != -ENOSPC)) { 176 dev_err(engine->dev, 177 "Failed to do one request from queue: %d\n", 178 ret); 179 goto req_err_1; 180 } 181 /* 182 * If retry mechanism is supported, 183 * unprepare current request and 184 * enqueue it back into crypto-engine queue. 185 */ 186 if (enginectx->op.unprepare_request) { 187 ret = enginectx->op.unprepare_request(engine, 188 async_req); 189 if (ret) 190 dev_err(engine->dev, 191 "failed to unprepare request\n"); 192 } 193 spin_lock_irqsave(&engine->queue_lock, flags); 194 /* 195 * If hardware was unable to execute request, enqueue it 196 * back in front of crypto-engine queue, to keep the order 197 * of requests. 198 */ 199 crypto_enqueue_request_head(&engine->queue, async_req); 200 201 kthread_queue_work(engine->kworker, &engine->pump_requests); 202 goto out; 203 } 204 205 goto retry; 206 207 req_err_1: 208 if (enginectx->op.unprepare_request) { 209 ret = enginectx->op.unprepare_request(engine, async_req); 210 if (ret) 211 dev_err(engine->dev, "failed to unprepare request\n"); 212 } 213 214 req_err_2: 215 async_req->complete(async_req, ret); 216 217 retry: 218 /* If retry mechanism is supported, send new requests to engine */ 219 if (engine->retry_support) { 220 spin_lock_irqsave(&engine->queue_lock, flags); 221 goto start_request; 222 } 223 return; 224 225 out: 226 spin_unlock_irqrestore(&engine->queue_lock, flags); 227 228 /* 229 * Batch requests is possible only if 230 * hardware can enqueue multiple requests 231 */ 232 if (engine->do_batch_requests) { 233 ret = engine->do_batch_requests(engine); 234 if (ret) 235 dev_err(engine->dev, "failed to do batch requests: %d\n", 236 ret); 237 } 238 239 return; 240 } 241 242 static void crypto_pump_work(struct kthread_work *work) 243 { 244 struct crypto_engine *engine = 245 container_of(work, struct crypto_engine, pump_requests); 246 247 crypto_pump_requests(engine, true); 248 } 249 250 /** 251 * crypto_transfer_request - transfer the new request into the engine queue 252 * @engine: the hardware engine 253 * @req: the request need to be listed into the engine queue 254 */ 255 static int crypto_transfer_request(struct crypto_engine *engine, 256 struct crypto_async_request *req, 257 bool need_pump) 258 { 259 unsigned long flags; 260 int ret; 261 262 spin_lock_irqsave(&engine->queue_lock, flags); 263 264 if (!engine->running) { 265 spin_unlock_irqrestore(&engine->queue_lock, flags); 266 return -ESHUTDOWN; 267 } 268 269 ret = crypto_enqueue_request(&engine->queue, req); 270 271 if (!engine->busy && need_pump) 272 kthread_queue_work(engine->kworker, &engine->pump_requests); 273 274 spin_unlock_irqrestore(&engine->queue_lock, flags); 275 return ret; 276 } 277 278 /** 279 * crypto_transfer_request_to_engine - transfer one request to list 280 * into the engine queue 281 * @engine: the hardware engine 282 * @req: the request need to be listed into the engine queue 283 */ 284 static int crypto_transfer_request_to_engine(struct crypto_engine *engine, 285 struct crypto_async_request *req) 286 { 287 return crypto_transfer_request(engine, req, true); 288 } 289 290 /** 291 * crypto_transfer_aead_request_to_engine - transfer one aead_request 292 * to list into the engine queue 293 * @engine: the hardware engine 294 * @req: the request need to be listed into the engine queue 295 */ 296 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine, 297 struct aead_request *req) 298 { 299 return crypto_transfer_request_to_engine(engine, &req->base); 300 } 301 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine); 302 303 /** 304 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request 305 * to list into the engine queue 306 * @engine: the hardware engine 307 * @req: the request need to be listed into the engine queue 308 */ 309 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine, 310 struct akcipher_request *req) 311 { 312 return crypto_transfer_request_to_engine(engine, &req->base); 313 } 314 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine); 315 316 /** 317 * crypto_transfer_hash_request_to_engine - transfer one ahash_request 318 * to list into the engine queue 319 * @engine: the hardware engine 320 * @req: the request need to be listed into the engine queue 321 */ 322 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine, 323 struct ahash_request *req) 324 { 325 return crypto_transfer_request_to_engine(engine, &req->base); 326 } 327 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine); 328 329 /** 330 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request 331 * to list into the engine queue 332 * @engine: the hardware engine 333 * @req: the request need to be listed into the engine queue 334 */ 335 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine, 336 struct skcipher_request *req) 337 { 338 return crypto_transfer_request_to_engine(engine, &req->base); 339 } 340 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine); 341 342 /** 343 * crypto_finalize_aead_request - finalize one aead_request if 344 * the request is done 345 * @engine: the hardware engine 346 * @req: the request need to be finalized 347 * @err: error number 348 */ 349 void crypto_finalize_aead_request(struct crypto_engine *engine, 350 struct aead_request *req, int err) 351 { 352 return crypto_finalize_request(engine, &req->base, err); 353 } 354 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request); 355 356 /** 357 * crypto_finalize_akcipher_request - finalize one akcipher_request if 358 * the request is done 359 * @engine: the hardware engine 360 * @req: the request need to be finalized 361 * @err: error number 362 */ 363 void crypto_finalize_akcipher_request(struct crypto_engine *engine, 364 struct akcipher_request *req, int err) 365 { 366 return crypto_finalize_request(engine, &req->base, err); 367 } 368 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request); 369 370 /** 371 * crypto_finalize_hash_request - finalize one ahash_request if 372 * the request is done 373 * @engine: the hardware engine 374 * @req: the request need to be finalized 375 * @err: error number 376 */ 377 void crypto_finalize_hash_request(struct crypto_engine *engine, 378 struct ahash_request *req, int err) 379 { 380 return crypto_finalize_request(engine, &req->base, err); 381 } 382 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request); 383 384 /** 385 * crypto_finalize_skcipher_request - finalize one skcipher_request if 386 * the request is done 387 * @engine: the hardware engine 388 * @req: the request need to be finalized 389 * @err: error number 390 */ 391 void crypto_finalize_skcipher_request(struct crypto_engine *engine, 392 struct skcipher_request *req, int err) 393 { 394 return crypto_finalize_request(engine, &req->base, err); 395 } 396 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request); 397 398 /** 399 * crypto_engine_start - start the hardware engine 400 * @engine: the hardware engine need to be started 401 * 402 * Return 0 on success, else on fail. 403 */ 404 int crypto_engine_start(struct crypto_engine *engine) 405 { 406 unsigned long flags; 407 408 spin_lock_irqsave(&engine->queue_lock, flags); 409 410 if (engine->running || engine->busy) { 411 spin_unlock_irqrestore(&engine->queue_lock, flags); 412 return -EBUSY; 413 } 414 415 engine->running = true; 416 spin_unlock_irqrestore(&engine->queue_lock, flags); 417 418 kthread_queue_work(engine->kworker, &engine->pump_requests); 419 420 return 0; 421 } 422 EXPORT_SYMBOL_GPL(crypto_engine_start); 423 424 /** 425 * crypto_engine_stop - stop the hardware engine 426 * @engine: the hardware engine need to be stopped 427 * 428 * Return 0 on success, else on fail. 429 */ 430 int crypto_engine_stop(struct crypto_engine *engine) 431 { 432 unsigned long flags; 433 unsigned int limit = 500; 434 int ret = 0; 435 436 spin_lock_irqsave(&engine->queue_lock, flags); 437 438 /* 439 * If the engine queue is not empty or the engine is on busy state, 440 * we need to wait for a while to pump the requests of engine queue. 441 */ 442 while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) { 443 spin_unlock_irqrestore(&engine->queue_lock, flags); 444 msleep(20); 445 spin_lock_irqsave(&engine->queue_lock, flags); 446 } 447 448 if (crypto_queue_len(&engine->queue) || engine->busy) 449 ret = -EBUSY; 450 else 451 engine->running = false; 452 453 spin_unlock_irqrestore(&engine->queue_lock, flags); 454 455 if (ret) 456 dev_warn(engine->dev, "could not stop engine\n"); 457 458 return ret; 459 } 460 EXPORT_SYMBOL_GPL(crypto_engine_stop); 461 462 /** 463 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure 464 * and initialize it by setting the maximum number of entries in the software 465 * crypto-engine queue. 466 * @dev: the device attached with one hardware engine 467 * @retry_support: whether hardware has support for retry mechanism 468 * @cbk_do_batch: pointer to a callback function to be invoked when executing a 469 * a batch of requests. 470 * This has the form: 471 * callback(struct crypto_engine *engine) 472 * where: 473 * @engine: the crypto engine structure. 474 * @rt: whether this queue is set to run as a realtime task 475 * @qlen: maximum size of the crypto-engine queue 476 * 477 * This must be called from context that can sleep. 478 * Return: the crypto engine structure on success, else NULL. 479 */ 480 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev, 481 bool retry_support, 482 int (*cbk_do_batch)(struct crypto_engine *engine), 483 bool rt, int qlen) 484 { 485 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 }; 486 struct crypto_engine *engine; 487 488 if (!dev) 489 return NULL; 490 491 engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL); 492 if (!engine) 493 return NULL; 494 495 engine->dev = dev; 496 engine->rt = rt; 497 engine->running = false; 498 engine->busy = false; 499 engine->idling = false; 500 engine->retry_support = retry_support; 501 engine->priv_data = dev; 502 /* 503 * Batch requests is possible only if 504 * hardware has support for retry mechanism. 505 */ 506 engine->do_batch_requests = retry_support ? cbk_do_batch : NULL; 507 508 snprintf(engine->name, sizeof(engine->name), 509 "%s-engine", dev_name(dev)); 510 511 crypto_init_queue(&engine->queue, qlen); 512 spin_lock_init(&engine->queue_lock); 513 514 engine->kworker = kthread_create_worker(0, "%s", engine->name); 515 if (IS_ERR(engine->kworker)) { 516 dev_err(dev, "failed to create crypto request pump task\n"); 517 return NULL; 518 } 519 kthread_init_work(&engine->pump_requests, crypto_pump_work); 520 521 if (engine->rt) { 522 dev_info(dev, "will run requests pump with realtime priority\n"); 523 sched_setscheduler(engine->kworker->task, SCHED_FIFO, ¶m); 524 } 525 526 return engine; 527 } 528 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set); 529 530 /** 531 * crypto_engine_alloc_init - allocate crypto hardware engine structure and 532 * initialize it. 533 * @dev: the device attached with one hardware engine 534 * @rt: whether this queue is set to run as a realtime task 535 * 536 * This must be called from context that can sleep. 537 * Return: the crypto engine structure on success, else NULL. 538 */ 539 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) 540 { 541 return crypto_engine_alloc_init_and_set(dev, false, NULL, rt, 542 CRYPTO_ENGINE_MAX_QLEN); 543 } 544 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); 545 546 /** 547 * crypto_engine_exit - free the resources of hardware engine when exit 548 * @engine: the hardware engine need to be freed 549 * 550 * Return 0 for success. 551 */ 552 int crypto_engine_exit(struct crypto_engine *engine) 553 { 554 int ret; 555 556 ret = crypto_engine_stop(engine); 557 if (ret) 558 return ret; 559 560 kthread_destroy_worker(engine->kworker); 561 562 return 0; 563 } 564 EXPORT_SYMBOL_GPL(crypto_engine_exit); 565 566 MODULE_LICENSE("GPL"); 567 MODULE_DESCRIPTION("Crypto hardware engine framework"); 568