xref: /openbmc/linux/crypto/cryptd.c (revision f21e49be)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Software async crypto daemon.
4  *
5  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6  *
7  * Added AEAD support to cryptd.
8  *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
9  *             Adrian Hoban <adrian.hoban@intel.com>
10  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
11  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
12  *    Copyright (c) 2010, Intel Corporation.
13  */
14 
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/skcipher.h>
18 #include <crypto/cryptd.h>
19 #include <linux/refcount.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/workqueue.h>
29 
30 static unsigned int cryptd_max_cpu_qlen = 1000;
31 module_param(cryptd_max_cpu_qlen, uint, 0);
32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
33 
34 static struct workqueue_struct *cryptd_wq;
35 
36 struct cryptd_cpu_queue {
37 	struct crypto_queue queue;
38 	struct work_struct work;
39 };
40 
41 struct cryptd_queue {
42 	struct cryptd_cpu_queue __percpu *cpu_queue;
43 };
44 
45 struct cryptd_instance_ctx {
46 	struct crypto_spawn spawn;
47 	struct cryptd_queue *queue;
48 };
49 
50 struct skcipherd_instance_ctx {
51 	struct crypto_skcipher_spawn spawn;
52 	struct cryptd_queue *queue;
53 };
54 
55 struct hashd_instance_ctx {
56 	struct crypto_shash_spawn spawn;
57 	struct cryptd_queue *queue;
58 };
59 
60 struct aead_instance_ctx {
61 	struct crypto_aead_spawn aead_spawn;
62 	struct cryptd_queue *queue;
63 };
64 
65 struct cryptd_skcipher_ctx {
66 	refcount_t refcnt;
67 	struct crypto_sync_skcipher *child;
68 };
69 
70 struct cryptd_skcipher_request_ctx {
71 	crypto_completion_t complete;
72 };
73 
74 struct cryptd_hash_ctx {
75 	refcount_t refcnt;
76 	struct crypto_shash *child;
77 };
78 
79 struct cryptd_hash_request_ctx {
80 	crypto_completion_t complete;
81 	struct shash_desc desc;
82 };
83 
84 struct cryptd_aead_ctx {
85 	refcount_t refcnt;
86 	struct crypto_aead *child;
87 };
88 
89 struct cryptd_aead_request_ctx {
90 	crypto_completion_t complete;
91 };
92 
93 static void cryptd_queue_worker(struct work_struct *work);
94 
95 static int cryptd_init_queue(struct cryptd_queue *queue,
96 			     unsigned int max_cpu_qlen)
97 {
98 	int cpu;
99 	struct cryptd_cpu_queue *cpu_queue;
100 
101 	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
102 	if (!queue->cpu_queue)
103 		return -ENOMEM;
104 	for_each_possible_cpu(cpu) {
105 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
106 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
107 		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
108 	}
109 	pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
110 	return 0;
111 }
112 
113 static void cryptd_fini_queue(struct cryptd_queue *queue)
114 {
115 	int cpu;
116 	struct cryptd_cpu_queue *cpu_queue;
117 
118 	for_each_possible_cpu(cpu) {
119 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
120 		BUG_ON(cpu_queue->queue.qlen);
121 	}
122 	free_percpu(queue->cpu_queue);
123 }
124 
125 static int cryptd_enqueue_request(struct cryptd_queue *queue,
126 				  struct crypto_async_request *request)
127 {
128 	int cpu, err;
129 	struct cryptd_cpu_queue *cpu_queue;
130 	refcount_t *refcnt;
131 
132 	cpu = get_cpu();
133 	cpu_queue = this_cpu_ptr(queue->cpu_queue);
134 	err = crypto_enqueue_request(&cpu_queue->queue, request);
135 
136 	refcnt = crypto_tfm_ctx(request->tfm);
137 
138 	if (err == -ENOSPC)
139 		goto out_put_cpu;
140 
141 	queue_work_on(cpu, cryptd_wq, &cpu_queue->work);
142 
143 	if (!refcount_read(refcnt))
144 		goto out_put_cpu;
145 
146 	refcount_inc(refcnt);
147 
148 out_put_cpu:
149 	put_cpu();
150 
151 	return err;
152 }
153 
154 /* Called in workqueue context, do one real cryption work (via
155  * req->complete) and reschedule itself if there are more work to
156  * do. */
157 static void cryptd_queue_worker(struct work_struct *work)
158 {
159 	struct cryptd_cpu_queue *cpu_queue;
160 	struct crypto_async_request *req, *backlog;
161 
162 	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
163 	/*
164 	 * Only handle one request at a time to avoid hogging crypto workqueue.
165 	 * preempt_disable/enable is used to prevent being preempted by
166 	 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
167 	 * cryptd_enqueue_request() being accessed from software interrupts.
168 	 */
169 	local_bh_disable();
170 	preempt_disable();
171 	backlog = crypto_get_backlog(&cpu_queue->queue);
172 	req = crypto_dequeue_request(&cpu_queue->queue);
173 	preempt_enable();
174 	local_bh_enable();
175 
176 	if (!req)
177 		return;
178 
179 	if (backlog)
180 		backlog->complete(backlog, -EINPROGRESS);
181 	req->complete(req, 0);
182 
183 	if (cpu_queue->queue.qlen)
184 		queue_work(cryptd_wq, &cpu_queue->work);
185 }
186 
187 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
188 {
189 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
190 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
191 	return ictx->queue;
192 }
193 
194 static void cryptd_type_and_mask(struct crypto_attr_type *algt,
195 				 u32 *type, u32 *mask)
196 {
197 	/*
198 	 * cryptd is allowed to wrap internal algorithms, but in that case the
199 	 * resulting cryptd instance will be marked as internal as well.
200 	 */
201 	*type = algt->type & CRYPTO_ALG_INTERNAL;
202 	*mask = algt->mask & CRYPTO_ALG_INTERNAL;
203 
204 	/* No point in cryptd wrapping an algorithm that's already async. */
205 	*mask |= CRYPTO_ALG_ASYNC;
206 
207 	*mask |= crypto_algt_inherited_mask(algt);
208 }
209 
210 static int cryptd_init_instance(struct crypto_instance *inst,
211 				struct crypto_alg *alg)
212 {
213 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
214 		     "cryptd(%s)",
215 		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
216 		return -ENAMETOOLONG;
217 
218 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
219 
220 	inst->alg.cra_priority = alg->cra_priority + 50;
221 	inst->alg.cra_blocksize = alg->cra_blocksize;
222 	inst->alg.cra_alignmask = alg->cra_alignmask;
223 
224 	return 0;
225 }
226 
227 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
228 				  const u8 *key, unsigned int keylen)
229 {
230 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
231 	struct crypto_sync_skcipher *child = ctx->child;
232 
233 	crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
234 	crypto_sync_skcipher_set_flags(child,
235 				       crypto_skcipher_get_flags(parent) &
236 					 CRYPTO_TFM_REQ_MASK);
237 	return crypto_sync_skcipher_setkey(child, key, keylen);
238 }
239 
240 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
241 {
242 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
243 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
244 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
245 	int refcnt = refcount_read(&ctx->refcnt);
246 
247 	local_bh_disable();
248 	rctx->complete(&req->base, err);
249 	local_bh_enable();
250 
251 	if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
252 		crypto_free_skcipher(tfm);
253 }
254 
255 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
256 				    int err)
257 {
258 	struct skcipher_request *req = skcipher_request_cast(base);
259 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
260 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
261 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
262 	struct crypto_sync_skcipher *child = ctx->child;
263 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
264 
265 	if (unlikely(err == -EINPROGRESS))
266 		goto out;
267 
268 	skcipher_request_set_sync_tfm(subreq, child);
269 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
270 				      NULL, NULL);
271 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
272 				   req->iv);
273 
274 	err = crypto_skcipher_encrypt(subreq);
275 	skcipher_request_zero(subreq);
276 
277 	req->base.complete = rctx->complete;
278 
279 out:
280 	cryptd_skcipher_complete(req, err);
281 }
282 
283 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
284 				    int err)
285 {
286 	struct skcipher_request *req = skcipher_request_cast(base);
287 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
288 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
289 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
290 	struct crypto_sync_skcipher *child = ctx->child;
291 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
292 
293 	if (unlikely(err == -EINPROGRESS))
294 		goto out;
295 
296 	skcipher_request_set_sync_tfm(subreq, child);
297 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
298 				      NULL, NULL);
299 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
300 				   req->iv);
301 
302 	err = crypto_skcipher_decrypt(subreq);
303 	skcipher_request_zero(subreq);
304 
305 	req->base.complete = rctx->complete;
306 
307 out:
308 	cryptd_skcipher_complete(req, err);
309 }
310 
311 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
312 				   crypto_completion_t compl)
313 {
314 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
315 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
316 	struct cryptd_queue *queue;
317 
318 	queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
319 	rctx->complete = req->base.complete;
320 	req->base.complete = compl;
321 
322 	return cryptd_enqueue_request(queue, &req->base);
323 }
324 
325 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
326 {
327 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
328 }
329 
330 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
331 {
332 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
333 }
334 
335 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
336 {
337 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
338 	struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
339 	struct crypto_skcipher_spawn *spawn = &ictx->spawn;
340 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
341 	struct crypto_skcipher *cipher;
342 
343 	cipher = crypto_spawn_skcipher(spawn);
344 	if (IS_ERR(cipher))
345 		return PTR_ERR(cipher);
346 
347 	ctx->child = (struct crypto_sync_skcipher *)cipher;
348 	crypto_skcipher_set_reqsize(
349 		tfm, sizeof(struct cryptd_skcipher_request_ctx));
350 	return 0;
351 }
352 
353 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
354 {
355 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
356 
357 	crypto_free_sync_skcipher(ctx->child);
358 }
359 
360 static void cryptd_skcipher_free(struct skcipher_instance *inst)
361 {
362 	struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
363 
364 	crypto_drop_skcipher(&ctx->spawn);
365 	kfree(inst);
366 }
367 
368 static int cryptd_create_skcipher(struct crypto_template *tmpl,
369 				  struct rtattr **tb,
370 				  struct crypto_attr_type *algt,
371 				  struct cryptd_queue *queue)
372 {
373 	struct skcipherd_instance_ctx *ctx;
374 	struct skcipher_instance *inst;
375 	struct skcipher_alg *alg;
376 	u32 type;
377 	u32 mask;
378 	int err;
379 
380 	cryptd_type_and_mask(algt, &type, &mask);
381 
382 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
383 	if (!inst)
384 		return -ENOMEM;
385 
386 	ctx = skcipher_instance_ctx(inst);
387 	ctx->queue = queue;
388 
389 	err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
390 				   crypto_attr_alg_name(tb[1]), type, mask);
391 	if (err)
392 		goto err_free_inst;
393 
394 	alg = crypto_spawn_skcipher_alg(&ctx->spawn);
395 	err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
396 	if (err)
397 		goto err_free_inst;
398 
399 	inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
400 		(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
401 	inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
402 	inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
403 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
404 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
405 
406 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
407 
408 	inst->alg.init = cryptd_skcipher_init_tfm;
409 	inst->alg.exit = cryptd_skcipher_exit_tfm;
410 
411 	inst->alg.setkey = cryptd_skcipher_setkey;
412 	inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
413 	inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
414 
415 	inst->free = cryptd_skcipher_free;
416 
417 	err = skcipher_register_instance(tmpl, inst);
418 	if (err) {
419 err_free_inst:
420 		cryptd_skcipher_free(inst);
421 	}
422 	return err;
423 }
424 
425 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
426 {
427 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
428 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
429 	struct crypto_shash_spawn *spawn = &ictx->spawn;
430 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
431 	struct crypto_shash *hash;
432 
433 	hash = crypto_spawn_shash(spawn);
434 	if (IS_ERR(hash))
435 		return PTR_ERR(hash);
436 
437 	ctx->child = hash;
438 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
439 				 sizeof(struct cryptd_hash_request_ctx) +
440 				 crypto_shash_descsize(hash));
441 	return 0;
442 }
443 
444 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
445 {
446 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
447 
448 	crypto_free_shash(ctx->child);
449 }
450 
451 static int cryptd_hash_setkey(struct crypto_ahash *parent,
452 				   const u8 *key, unsigned int keylen)
453 {
454 	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
455 	struct crypto_shash *child = ctx->child;
456 
457 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
458 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
459 				      CRYPTO_TFM_REQ_MASK);
460 	return crypto_shash_setkey(child, key, keylen);
461 }
462 
463 static int cryptd_hash_enqueue(struct ahash_request *req,
464 				crypto_completion_t compl)
465 {
466 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
467 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
468 	struct cryptd_queue *queue =
469 		cryptd_get_queue(crypto_ahash_tfm(tfm));
470 
471 	rctx->complete = req->base.complete;
472 	req->base.complete = compl;
473 
474 	return cryptd_enqueue_request(queue, &req->base);
475 }
476 
477 static void cryptd_hash_complete(struct ahash_request *req, int err)
478 {
479 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
480 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
481 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
482 	int refcnt = refcount_read(&ctx->refcnt);
483 
484 	local_bh_disable();
485 	rctx->complete(&req->base, err);
486 	local_bh_enable();
487 
488 	if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
489 		crypto_free_ahash(tfm);
490 }
491 
492 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
493 {
494 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
495 	struct crypto_shash *child = ctx->child;
496 	struct ahash_request *req = ahash_request_cast(req_async);
497 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
498 	struct shash_desc *desc = &rctx->desc;
499 
500 	if (unlikely(err == -EINPROGRESS))
501 		goto out;
502 
503 	desc->tfm = child;
504 
505 	err = crypto_shash_init(desc);
506 
507 	req->base.complete = rctx->complete;
508 
509 out:
510 	cryptd_hash_complete(req, err);
511 }
512 
513 static int cryptd_hash_init_enqueue(struct ahash_request *req)
514 {
515 	return cryptd_hash_enqueue(req, cryptd_hash_init);
516 }
517 
518 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
519 {
520 	struct ahash_request *req = ahash_request_cast(req_async);
521 	struct cryptd_hash_request_ctx *rctx;
522 
523 	rctx = ahash_request_ctx(req);
524 
525 	if (unlikely(err == -EINPROGRESS))
526 		goto out;
527 
528 	err = shash_ahash_update(req, &rctx->desc);
529 
530 	req->base.complete = rctx->complete;
531 
532 out:
533 	cryptd_hash_complete(req, err);
534 }
535 
536 static int cryptd_hash_update_enqueue(struct ahash_request *req)
537 {
538 	return cryptd_hash_enqueue(req, cryptd_hash_update);
539 }
540 
541 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
542 {
543 	struct ahash_request *req = ahash_request_cast(req_async);
544 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
545 
546 	if (unlikely(err == -EINPROGRESS))
547 		goto out;
548 
549 	err = crypto_shash_final(&rctx->desc, req->result);
550 
551 	req->base.complete = rctx->complete;
552 
553 out:
554 	cryptd_hash_complete(req, err);
555 }
556 
557 static int cryptd_hash_final_enqueue(struct ahash_request *req)
558 {
559 	return cryptd_hash_enqueue(req, cryptd_hash_final);
560 }
561 
562 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
563 {
564 	struct ahash_request *req = ahash_request_cast(req_async);
565 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
566 
567 	if (unlikely(err == -EINPROGRESS))
568 		goto out;
569 
570 	err = shash_ahash_finup(req, &rctx->desc);
571 
572 	req->base.complete = rctx->complete;
573 
574 out:
575 	cryptd_hash_complete(req, err);
576 }
577 
578 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
579 {
580 	return cryptd_hash_enqueue(req, cryptd_hash_finup);
581 }
582 
583 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
584 {
585 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
586 	struct crypto_shash *child = ctx->child;
587 	struct ahash_request *req = ahash_request_cast(req_async);
588 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
589 	struct shash_desc *desc = &rctx->desc;
590 
591 	if (unlikely(err == -EINPROGRESS))
592 		goto out;
593 
594 	desc->tfm = child;
595 
596 	err = shash_ahash_digest(req, desc);
597 
598 	req->base.complete = rctx->complete;
599 
600 out:
601 	cryptd_hash_complete(req, err);
602 }
603 
604 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
605 {
606 	return cryptd_hash_enqueue(req, cryptd_hash_digest);
607 }
608 
609 static int cryptd_hash_export(struct ahash_request *req, void *out)
610 {
611 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
612 
613 	return crypto_shash_export(&rctx->desc, out);
614 }
615 
616 static int cryptd_hash_import(struct ahash_request *req, const void *in)
617 {
618 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
619 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
620 	struct shash_desc *desc = cryptd_shash_desc(req);
621 
622 	desc->tfm = ctx->child;
623 
624 	return crypto_shash_import(desc, in);
625 }
626 
627 static void cryptd_hash_free(struct ahash_instance *inst)
628 {
629 	struct hashd_instance_ctx *ctx = ahash_instance_ctx(inst);
630 
631 	crypto_drop_shash(&ctx->spawn);
632 	kfree(inst);
633 }
634 
635 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
636 			      struct crypto_attr_type *algt,
637 			      struct cryptd_queue *queue)
638 {
639 	struct hashd_instance_ctx *ctx;
640 	struct ahash_instance *inst;
641 	struct shash_alg *alg;
642 	u32 type;
643 	u32 mask;
644 	int err;
645 
646 	cryptd_type_and_mask(algt, &type, &mask);
647 
648 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
649 	if (!inst)
650 		return -ENOMEM;
651 
652 	ctx = ahash_instance_ctx(inst);
653 	ctx->queue = queue;
654 
655 	err = crypto_grab_shash(&ctx->spawn, ahash_crypto_instance(inst),
656 				crypto_attr_alg_name(tb[1]), type, mask);
657 	if (err)
658 		goto err_free_inst;
659 	alg = crypto_spawn_shash_alg(&ctx->spawn);
660 
661 	err = cryptd_init_instance(ahash_crypto_instance(inst), &alg->base);
662 	if (err)
663 		goto err_free_inst;
664 
665 	inst->alg.halg.base.cra_flags |= CRYPTO_ALG_ASYNC |
666 		(alg->base.cra_flags & (CRYPTO_ALG_INTERNAL|
667 					CRYPTO_ALG_OPTIONAL_KEY));
668 	inst->alg.halg.digestsize = alg->digestsize;
669 	inst->alg.halg.statesize = alg->statesize;
670 	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
671 
672 	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
673 	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
674 
675 	inst->alg.init   = cryptd_hash_init_enqueue;
676 	inst->alg.update = cryptd_hash_update_enqueue;
677 	inst->alg.final  = cryptd_hash_final_enqueue;
678 	inst->alg.finup  = cryptd_hash_finup_enqueue;
679 	inst->alg.export = cryptd_hash_export;
680 	inst->alg.import = cryptd_hash_import;
681 	if (crypto_shash_alg_has_setkey(alg))
682 		inst->alg.setkey = cryptd_hash_setkey;
683 	inst->alg.digest = cryptd_hash_digest_enqueue;
684 
685 	inst->free = cryptd_hash_free;
686 
687 	err = ahash_register_instance(tmpl, inst);
688 	if (err) {
689 err_free_inst:
690 		cryptd_hash_free(inst);
691 	}
692 	return err;
693 }
694 
695 static int cryptd_aead_setkey(struct crypto_aead *parent,
696 			      const u8 *key, unsigned int keylen)
697 {
698 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
699 	struct crypto_aead *child = ctx->child;
700 
701 	return crypto_aead_setkey(child, key, keylen);
702 }
703 
704 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
705 				   unsigned int authsize)
706 {
707 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
708 	struct crypto_aead *child = ctx->child;
709 
710 	return crypto_aead_setauthsize(child, authsize);
711 }
712 
713 static void cryptd_aead_crypt(struct aead_request *req,
714 			struct crypto_aead *child,
715 			int err,
716 			int (*crypt)(struct aead_request *req))
717 {
718 	struct cryptd_aead_request_ctx *rctx;
719 	struct cryptd_aead_ctx *ctx;
720 	crypto_completion_t compl;
721 	struct crypto_aead *tfm;
722 	int refcnt;
723 
724 	rctx = aead_request_ctx(req);
725 	compl = rctx->complete;
726 
727 	tfm = crypto_aead_reqtfm(req);
728 
729 	if (unlikely(err == -EINPROGRESS))
730 		goto out;
731 	aead_request_set_tfm(req, child);
732 	err = crypt( req );
733 
734 out:
735 	ctx = crypto_aead_ctx(tfm);
736 	refcnt = refcount_read(&ctx->refcnt);
737 
738 	local_bh_disable();
739 	compl(&req->base, err);
740 	local_bh_enable();
741 
742 	if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
743 		crypto_free_aead(tfm);
744 }
745 
746 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
747 {
748 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
749 	struct crypto_aead *child = ctx->child;
750 	struct aead_request *req;
751 
752 	req = container_of(areq, struct aead_request, base);
753 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
754 }
755 
756 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
757 {
758 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
759 	struct crypto_aead *child = ctx->child;
760 	struct aead_request *req;
761 
762 	req = container_of(areq, struct aead_request, base);
763 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
764 }
765 
766 static int cryptd_aead_enqueue(struct aead_request *req,
767 				    crypto_completion_t compl)
768 {
769 	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
770 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
771 	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
772 
773 	rctx->complete = req->base.complete;
774 	req->base.complete = compl;
775 	return cryptd_enqueue_request(queue, &req->base);
776 }
777 
778 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
779 {
780 	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
781 }
782 
783 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
784 {
785 	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
786 }
787 
788 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
789 {
790 	struct aead_instance *inst = aead_alg_instance(tfm);
791 	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
792 	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
793 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
794 	struct crypto_aead *cipher;
795 
796 	cipher = crypto_spawn_aead(spawn);
797 	if (IS_ERR(cipher))
798 		return PTR_ERR(cipher);
799 
800 	ctx->child = cipher;
801 	crypto_aead_set_reqsize(
802 		tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
803 			 crypto_aead_reqsize(cipher)));
804 	return 0;
805 }
806 
807 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
808 {
809 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
810 	crypto_free_aead(ctx->child);
811 }
812 
813 static void cryptd_aead_free(struct aead_instance *inst)
814 {
815 	struct aead_instance_ctx *ctx = aead_instance_ctx(inst);
816 
817 	crypto_drop_aead(&ctx->aead_spawn);
818 	kfree(inst);
819 }
820 
821 static int cryptd_create_aead(struct crypto_template *tmpl,
822 		              struct rtattr **tb,
823 			      struct crypto_attr_type *algt,
824 			      struct cryptd_queue *queue)
825 {
826 	struct aead_instance_ctx *ctx;
827 	struct aead_instance *inst;
828 	struct aead_alg *alg;
829 	u32 type;
830 	u32 mask;
831 	int err;
832 
833 	cryptd_type_and_mask(algt, &type, &mask);
834 
835 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
836 	if (!inst)
837 		return -ENOMEM;
838 
839 	ctx = aead_instance_ctx(inst);
840 	ctx->queue = queue;
841 
842 	err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst),
843 			       crypto_attr_alg_name(tb[1]), type, mask);
844 	if (err)
845 		goto err_free_inst;
846 
847 	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
848 	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
849 	if (err)
850 		goto err_free_inst;
851 
852 	inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
853 		(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
854 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
855 
856 	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
857 	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
858 
859 	inst->alg.init = cryptd_aead_init_tfm;
860 	inst->alg.exit = cryptd_aead_exit_tfm;
861 	inst->alg.setkey = cryptd_aead_setkey;
862 	inst->alg.setauthsize = cryptd_aead_setauthsize;
863 	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
864 	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
865 
866 	inst->free = cryptd_aead_free;
867 
868 	err = aead_register_instance(tmpl, inst);
869 	if (err) {
870 err_free_inst:
871 		cryptd_aead_free(inst);
872 	}
873 	return err;
874 }
875 
876 static struct cryptd_queue queue;
877 
878 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
879 {
880 	struct crypto_attr_type *algt;
881 
882 	algt = crypto_get_attr_type(tb);
883 	if (IS_ERR(algt))
884 		return PTR_ERR(algt);
885 
886 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
887 	case CRYPTO_ALG_TYPE_SKCIPHER:
888 		return cryptd_create_skcipher(tmpl, tb, algt, &queue);
889 	case CRYPTO_ALG_TYPE_HASH:
890 		return cryptd_create_hash(tmpl, tb, algt, &queue);
891 	case CRYPTO_ALG_TYPE_AEAD:
892 		return cryptd_create_aead(tmpl, tb, algt, &queue);
893 	}
894 
895 	return -EINVAL;
896 }
897 
898 static struct crypto_template cryptd_tmpl = {
899 	.name = "cryptd",
900 	.create = cryptd_create,
901 	.module = THIS_MODULE,
902 };
903 
904 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
905 					      u32 type, u32 mask)
906 {
907 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
908 	struct cryptd_skcipher_ctx *ctx;
909 	struct crypto_skcipher *tfm;
910 
911 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
912 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
913 		return ERR_PTR(-EINVAL);
914 
915 	tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
916 	if (IS_ERR(tfm))
917 		return ERR_CAST(tfm);
918 
919 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
920 		crypto_free_skcipher(tfm);
921 		return ERR_PTR(-EINVAL);
922 	}
923 
924 	ctx = crypto_skcipher_ctx(tfm);
925 	refcount_set(&ctx->refcnt, 1);
926 
927 	return container_of(tfm, struct cryptd_skcipher, base);
928 }
929 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
930 
931 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
932 {
933 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
934 
935 	return &ctx->child->base;
936 }
937 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
938 
939 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
940 {
941 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
942 
943 	return refcount_read(&ctx->refcnt) - 1;
944 }
945 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
946 
947 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
948 {
949 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
950 
951 	if (refcount_dec_and_test(&ctx->refcnt))
952 		crypto_free_skcipher(&tfm->base);
953 }
954 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
955 
956 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
957 					u32 type, u32 mask)
958 {
959 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
960 	struct cryptd_hash_ctx *ctx;
961 	struct crypto_ahash *tfm;
962 
963 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
964 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
965 		return ERR_PTR(-EINVAL);
966 	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
967 	if (IS_ERR(tfm))
968 		return ERR_CAST(tfm);
969 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
970 		crypto_free_ahash(tfm);
971 		return ERR_PTR(-EINVAL);
972 	}
973 
974 	ctx = crypto_ahash_ctx(tfm);
975 	refcount_set(&ctx->refcnt, 1);
976 
977 	return __cryptd_ahash_cast(tfm);
978 }
979 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
980 
981 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
982 {
983 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
984 
985 	return ctx->child;
986 }
987 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
988 
989 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
990 {
991 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
992 	return &rctx->desc;
993 }
994 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
995 
996 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
997 {
998 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
999 
1000 	return refcount_read(&ctx->refcnt) - 1;
1001 }
1002 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1003 
1004 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1005 {
1006 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1007 
1008 	if (refcount_dec_and_test(&ctx->refcnt))
1009 		crypto_free_ahash(&tfm->base);
1010 }
1011 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1012 
1013 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1014 						  u32 type, u32 mask)
1015 {
1016 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1017 	struct cryptd_aead_ctx *ctx;
1018 	struct crypto_aead *tfm;
1019 
1020 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1021 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1022 		return ERR_PTR(-EINVAL);
1023 	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1024 	if (IS_ERR(tfm))
1025 		return ERR_CAST(tfm);
1026 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1027 		crypto_free_aead(tfm);
1028 		return ERR_PTR(-EINVAL);
1029 	}
1030 
1031 	ctx = crypto_aead_ctx(tfm);
1032 	refcount_set(&ctx->refcnt, 1);
1033 
1034 	return __cryptd_aead_cast(tfm);
1035 }
1036 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1037 
1038 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1039 {
1040 	struct cryptd_aead_ctx *ctx;
1041 	ctx = crypto_aead_ctx(&tfm->base);
1042 	return ctx->child;
1043 }
1044 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1045 
1046 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1047 {
1048 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1049 
1050 	return refcount_read(&ctx->refcnt) - 1;
1051 }
1052 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1053 
1054 void cryptd_free_aead(struct cryptd_aead *tfm)
1055 {
1056 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1057 
1058 	if (refcount_dec_and_test(&ctx->refcnt))
1059 		crypto_free_aead(&tfm->base);
1060 }
1061 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1062 
1063 static int __init cryptd_init(void)
1064 {
1065 	int err;
1066 
1067 	cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
1068 				    1);
1069 	if (!cryptd_wq)
1070 		return -ENOMEM;
1071 
1072 	err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1073 	if (err)
1074 		goto err_destroy_wq;
1075 
1076 	err = crypto_register_template(&cryptd_tmpl);
1077 	if (err)
1078 		goto err_fini_queue;
1079 
1080 	return 0;
1081 
1082 err_fini_queue:
1083 	cryptd_fini_queue(&queue);
1084 err_destroy_wq:
1085 	destroy_workqueue(cryptd_wq);
1086 	return err;
1087 }
1088 
1089 static void __exit cryptd_exit(void)
1090 {
1091 	destroy_workqueue(cryptd_wq);
1092 	cryptd_fini_queue(&queue);
1093 	crypto_unregister_template(&cryptd_tmpl);
1094 }
1095 
1096 subsys_initcall(cryptd_init);
1097 module_exit(cryptd_exit);
1098 
1099 MODULE_LICENSE("GPL");
1100 MODULE_DESCRIPTION("Software async crypto daemon");
1101 MODULE_ALIAS_CRYPTO("cryptd");
1102