xref: /openbmc/linux/crypto/cryptd.c (revision e6dec923)
1 /*
2  * Software async crypto daemon.
3  *
4  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * Added AEAD support to cryptd.
7  *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
8  *             Adrian Hoban <adrian.hoban@intel.com>
9  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
10  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
11  *    Copyright (c) 2010, Intel Corporation.
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by the Free
15  * Software Foundation; either version 2 of the License, or (at your option)
16  * any later version.
17  *
18  */
19 
20 #include <crypto/internal/hash.h>
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/skcipher.h>
23 #include <crypto/cryptd.h>
24 #include <crypto/crypto_wq.h>
25 #include <linux/atomic.h>
26 #include <linux/err.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/scatterlist.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 
35 #define CRYPTD_MAX_CPU_QLEN 1000
36 
37 struct cryptd_cpu_queue {
38 	struct crypto_queue queue;
39 	struct work_struct work;
40 };
41 
42 struct cryptd_queue {
43 	struct cryptd_cpu_queue __percpu *cpu_queue;
44 };
45 
46 struct cryptd_instance_ctx {
47 	struct crypto_spawn spawn;
48 	struct cryptd_queue *queue;
49 };
50 
51 struct skcipherd_instance_ctx {
52 	struct crypto_skcipher_spawn spawn;
53 	struct cryptd_queue *queue;
54 };
55 
56 struct hashd_instance_ctx {
57 	struct crypto_shash_spawn spawn;
58 	struct cryptd_queue *queue;
59 };
60 
61 struct aead_instance_ctx {
62 	struct crypto_aead_spawn aead_spawn;
63 	struct cryptd_queue *queue;
64 };
65 
66 struct cryptd_blkcipher_ctx {
67 	atomic_t refcnt;
68 	struct crypto_blkcipher *child;
69 };
70 
71 struct cryptd_blkcipher_request_ctx {
72 	crypto_completion_t complete;
73 };
74 
75 struct cryptd_skcipher_ctx {
76 	atomic_t refcnt;
77 	struct crypto_skcipher *child;
78 };
79 
80 struct cryptd_skcipher_request_ctx {
81 	crypto_completion_t complete;
82 };
83 
84 struct cryptd_hash_ctx {
85 	atomic_t refcnt;
86 	struct crypto_shash *child;
87 };
88 
89 struct cryptd_hash_request_ctx {
90 	crypto_completion_t complete;
91 	struct shash_desc desc;
92 };
93 
94 struct cryptd_aead_ctx {
95 	atomic_t refcnt;
96 	struct crypto_aead *child;
97 };
98 
99 struct cryptd_aead_request_ctx {
100 	crypto_completion_t complete;
101 };
102 
103 static void cryptd_queue_worker(struct work_struct *work);
104 
105 static int cryptd_init_queue(struct cryptd_queue *queue,
106 			     unsigned int max_cpu_qlen)
107 {
108 	int cpu;
109 	struct cryptd_cpu_queue *cpu_queue;
110 
111 	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
112 	if (!queue->cpu_queue)
113 		return -ENOMEM;
114 	for_each_possible_cpu(cpu) {
115 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
116 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
117 		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
118 	}
119 	return 0;
120 }
121 
122 static void cryptd_fini_queue(struct cryptd_queue *queue)
123 {
124 	int cpu;
125 	struct cryptd_cpu_queue *cpu_queue;
126 
127 	for_each_possible_cpu(cpu) {
128 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
129 		BUG_ON(cpu_queue->queue.qlen);
130 	}
131 	free_percpu(queue->cpu_queue);
132 }
133 
134 static int cryptd_enqueue_request(struct cryptd_queue *queue,
135 				  struct crypto_async_request *request)
136 {
137 	int cpu, err;
138 	struct cryptd_cpu_queue *cpu_queue;
139 	atomic_t *refcnt;
140 	bool may_backlog;
141 
142 	cpu = get_cpu();
143 	cpu_queue = this_cpu_ptr(queue->cpu_queue);
144 	err = crypto_enqueue_request(&cpu_queue->queue, request);
145 
146 	refcnt = crypto_tfm_ctx(request->tfm);
147 	may_backlog = request->flags & CRYPTO_TFM_REQ_MAY_BACKLOG;
148 
149 	if (err == -EBUSY && !may_backlog)
150 		goto out_put_cpu;
151 
152 	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
153 
154 	if (!atomic_read(refcnt))
155 		goto out_put_cpu;
156 
157 	atomic_inc(refcnt);
158 
159 out_put_cpu:
160 	put_cpu();
161 
162 	return err;
163 }
164 
165 /* Called in workqueue context, do one real cryption work (via
166  * req->complete) and reschedule itself if there are more work to
167  * do. */
168 static void cryptd_queue_worker(struct work_struct *work)
169 {
170 	struct cryptd_cpu_queue *cpu_queue;
171 	struct crypto_async_request *req, *backlog;
172 
173 	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
174 	/*
175 	 * Only handle one request at a time to avoid hogging crypto workqueue.
176 	 * preempt_disable/enable is used to prevent being preempted by
177 	 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
178 	 * cryptd_enqueue_request() being accessed from software interrupts.
179 	 */
180 	local_bh_disable();
181 	preempt_disable();
182 	backlog = crypto_get_backlog(&cpu_queue->queue);
183 	req = crypto_dequeue_request(&cpu_queue->queue);
184 	preempt_enable();
185 	local_bh_enable();
186 
187 	if (!req)
188 		return;
189 
190 	if (backlog)
191 		backlog->complete(backlog, -EINPROGRESS);
192 	req->complete(req, 0);
193 
194 	if (cpu_queue->queue.qlen)
195 		queue_work(kcrypto_wq, &cpu_queue->work);
196 }
197 
198 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
199 {
200 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
201 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
202 	return ictx->queue;
203 }
204 
205 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
206 					 u32 *mask)
207 {
208 	struct crypto_attr_type *algt;
209 
210 	algt = crypto_get_attr_type(tb);
211 	if (IS_ERR(algt))
212 		return;
213 
214 	*type |= algt->type & CRYPTO_ALG_INTERNAL;
215 	*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
216 }
217 
218 static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
219 				   const u8 *key, unsigned int keylen)
220 {
221 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
222 	struct crypto_blkcipher *child = ctx->child;
223 	int err;
224 
225 	crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
226 	crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
227 					  CRYPTO_TFM_REQ_MASK);
228 	err = crypto_blkcipher_setkey(child, key, keylen);
229 	crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
230 					    CRYPTO_TFM_RES_MASK);
231 	return err;
232 }
233 
234 static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
235 				   struct crypto_blkcipher *child,
236 				   int err,
237 				   int (*crypt)(struct blkcipher_desc *desc,
238 						struct scatterlist *dst,
239 						struct scatterlist *src,
240 						unsigned int len))
241 {
242 	struct cryptd_blkcipher_request_ctx *rctx;
243 	struct cryptd_blkcipher_ctx *ctx;
244 	struct crypto_ablkcipher *tfm;
245 	struct blkcipher_desc desc;
246 	int refcnt;
247 
248 	rctx = ablkcipher_request_ctx(req);
249 
250 	if (unlikely(err == -EINPROGRESS))
251 		goto out;
252 
253 	desc.tfm = child;
254 	desc.info = req->info;
255 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
256 
257 	err = crypt(&desc, req->dst, req->src, req->nbytes);
258 
259 	req->base.complete = rctx->complete;
260 
261 out:
262 	tfm = crypto_ablkcipher_reqtfm(req);
263 	ctx = crypto_ablkcipher_ctx(tfm);
264 	refcnt = atomic_read(&ctx->refcnt);
265 
266 	local_bh_disable();
267 	rctx->complete(&req->base, err);
268 	local_bh_enable();
269 
270 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
271 		crypto_free_ablkcipher(tfm);
272 }
273 
274 static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
275 {
276 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
277 	struct crypto_blkcipher *child = ctx->child;
278 
279 	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
280 			       crypto_blkcipher_crt(child)->encrypt);
281 }
282 
283 static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
284 {
285 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
286 	struct crypto_blkcipher *child = ctx->child;
287 
288 	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
289 			       crypto_blkcipher_crt(child)->decrypt);
290 }
291 
292 static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
293 				    crypto_completion_t compl)
294 {
295 	struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
296 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
297 	struct cryptd_queue *queue;
298 
299 	queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
300 	rctx->complete = req->base.complete;
301 	req->base.complete = compl;
302 
303 	return cryptd_enqueue_request(queue, &req->base);
304 }
305 
306 static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
307 {
308 	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
309 }
310 
311 static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
312 {
313 	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
314 }
315 
316 static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
317 {
318 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
319 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
320 	struct crypto_spawn *spawn = &ictx->spawn;
321 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
322 	struct crypto_blkcipher *cipher;
323 
324 	cipher = crypto_spawn_blkcipher(spawn);
325 	if (IS_ERR(cipher))
326 		return PTR_ERR(cipher);
327 
328 	ctx->child = cipher;
329 	tfm->crt_ablkcipher.reqsize =
330 		sizeof(struct cryptd_blkcipher_request_ctx);
331 	return 0;
332 }
333 
334 static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
335 {
336 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
337 
338 	crypto_free_blkcipher(ctx->child);
339 }
340 
341 static int cryptd_init_instance(struct crypto_instance *inst,
342 				struct crypto_alg *alg)
343 {
344 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
345 		     "cryptd(%s)",
346 		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
347 		return -ENAMETOOLONG;
348 
349 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
350 
351 	inst->alg.cra_priority = alg->cra_priority + 50;
352 	inst->alg.cra_blocksize = alg->cra_blocksize;
353 	inst->alg.cra_alignmask = alg->cra_alignmask;
354 
355 	return 0;
356 }
357 
358 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
359 				   unsigned int tail)
360 {
361 	char *p;
362 	struct crypto_instance *inst;
363 	int err;
364 
365 	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
366 	if (!p)
367 		return ERR_PTR(-ENOMEM);
368 
369 	inst = (void *)(p + head);
370 
371 	err = cryptd_init_instance(inst, alg);
372 	if (err)
373 		goto out_free_inst;
374 
375 out:
376 	return p;
377 
378 out_free_inst:
379 	kfree(p);
380 	p = ERR_PTR(err);
381 	goto out;
382 }
383 
384 static int cryptd_create_blkcipher(struct crypto_template *tmpl,
385 				   struct rtattr **tb,
386 				   struct cryptd_queue *queue)
387 {
388 	struct cryptd_instance_ctx *ctx;
389 	struct crypto_instance *inst;
390 	struct crypto_alg *alg;
391 	u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
392 	u32 mask = CRYPTO_ALG_TYPE_MASK;
393 	int err;
394 
395 	cryptd_check_internal(tb, &type, &mask);
396 
397 	alg = crypto_get_attr_alg(tb, type, mask);
398 	if (IS_ERR(alg))
399 		return PTR_ERR(alg);
400 
401 	inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
402 	err = PTR_ERR(inst);
403 	if (IS_ERR(inst))
404 		goto out_put_alg;
405 
406 	ctx = crypto_instance_ctx(inst);
407 	ctx->queue = queue;
408 
409 	err = crypto_init_spawn(&ctx->spawn, alg, inst,
410 				CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
411 	if (err)
412 		goto out_free_inst;
413 
414 	type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
415 	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
416 		type |= CRYPTO_ALG_INTERNAL;
417 	inst->alg.cra_flags = type;
418 	inst->alg.cra_type = &crypto_ablkcipher_type;
419 
420 	inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
421 	inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
422 	inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;
423 
424 	inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;
425 
426 	inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);
427 
428 	inst->alg.cra_init = cryptd_blkcipher_init_tfm;
429 	inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;
430 
431 	inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
432 	inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
433 	inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;
434 
435 	err = crypto_register_instance(tmpl, inst);
436 	if (err) {
437 		crypto_drop_spawn(&ctx->spawn);
438 out_free_inst:
439 		kfree(inst);
440 	}
441 
442 out_put_alg:
443 	crypto_mod_put(alg);
444 	return err;
445 }
446 
447 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
448 				  const u8 *key, unsigned int keylen)
449 {
450 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
451 	struct crypto_skcipher *child = ctx->child;
452 	int err;
453 
454 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
455 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
456 					 CRYPTO_TFM_REQ_MASK);
457 	err = crypto_skcipher_setkey(child, key, keylen);
458 	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
459 					  CRYPTO_TFM_RES_MASK);
460 	return err;
461 }
462 
463 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
464 {
465 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
466 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
467 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
468 	int refcnt = atomic_read(&ctx->refcnt);
469 
470 	local_bh_disable();
471 	rctx->complete(&req->base, err);
472 	local_bh_enable();
473 
474 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
475 		crypto_free_skcipher(tfm);
476 }
477 
478 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
479 				    int err)
480 {
481 	struct skcipher_request *req = skcipher_request_cast(base);
482 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
483 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
484 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
485 	struct crypto_skcipher *child = ctx->child;
486 	SKCIPHER_REQUEST_ON_STACK(subreq, child);
487 
488 	if (unlikely(err == -EINPROGRESS))
489 		goto out;
490 
491 	skcipher_request_set_tfm(subreq, child);
492 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
493 				      NULL, NULL);
494 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
495 				   req->iv);
496 
497 	err = crypto_skcipher_encrypt(subreq);
498 	skcipher_request_zero(subreq);
499 
500 	req->base.complete = rctx->complete;
501 
502 out:
503 	cryptd_skcipher_complete(req, err);
504 }
505 
506 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
507 				    int err)
508 {
509 	struct skcipher_request *req = skcipher_request_cast(base);
510 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
511 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
512 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
513 	struct crypto_skcipher *child = ctx->child;
514 	SKCIPHER_REQUEST_ON_STACK(subreq, child);
515 
516 	if (unlikely(err == -EINPROGRESS))
517 		goto out;
518 
519 	skcipher_request_set_tfm(subreq, child);
520 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
521 				      NULL, NULL);
522 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
523 				   req->iv);
524 
525 	err = crypto_skcipher_decrypt(subreq);
526 	skcipher_request_zero(subreq);
527 
528 	req->base.complete = rctx->complete;
529 
530 out:
531 	cryptd_skcipher_complete(req, err);
532 }
533 
534 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
535 				   crypto_completion_t compl)
536 {
537 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
538 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
539 	struct cryptd_queue *queue;
540 
541 	queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
542 	rctx->complete = req->base.complete;
543 	req->base.complete = compl;
544 
545 	return cryptd_enqueue_request(queue, &req->base);
546 }
547 
548 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
549 {
550 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
551 }
552 
553 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
554 {
555 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
556 }
557 
558 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
559 {
560 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
561 	struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
562 	struct crypto_skcipher_spawn *spawn = &ictx->spawn;
563 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
564 	struct crypto_skcipher *cipher;
565 
566 	cipher = crypto_spawn_skcipher(spawn);
567 	if (IS_ERR(cipher))
568 		return PTR_ERR(cipher);
569 
570 	ctx->child = cipher;
571 	crypto_skcipher_set_reqsize(
572 		tfm, sizeof(struct cryptd_skcipher_request_ctx));
573 	return 0;
574 }
575 
576 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
577 {
578 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
579 
580 	crypto_free_skcipher(ctx->child);
581 }
582 
583 static void cryptd_skcipher_free(struct skcipher_instance *inst)
584 {
585 	struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
586 
587 	crypto_drop_skcipher(&ctx->spawn);
588 }
589 
590 static int cryptd_create_skcipher(struct crypto_template *tmpl,
591 				  struct rtattr **tb,
592 				  struct cryptd_queue *queue)
593 {
594 	struct skcipherd_instance_ctx *ctx;
595 	struct skcipher_instance *inst;
596 	struct skcipher_alg *alg;
597 	const char *name;
598 	u32 type;
599 	u32 mask;
600 	int err;
601 
602 	type = 0;
603 	mask = CRYPTO_ALG_ASYNC;
604 
605 	cryptd_check_internal(tb, &type, &mask);
606 
607 	name = crypto_attr_alg_name(tb[1]);
608 	if (IS_ERR(name))
609 		return PTR_ERR(name);
610 
611 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
612 	if (!inst)
613 		return -ENOMEM;
614 
615 	ctx = skcipher_instance_ctx(inst);
616 	ctx->queue = queue;
617 
618 	crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst));
619 	err = crypto_grab_skcipher(&ctx->spawn, name, type, mask);
620 	if (err)
621 		goto out_free_inst;
622 
623 	alg = crypto_spawn_skcipher_alg(&ctx->spawn);
624 	err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
625 	if (err)
626 		goto out_drop_skcipher;
627 
628 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
629 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
630 
631 	inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
632 	inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
633 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
634 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
635 
636 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
637 
638 	inst->alg.init = cryptd_skcipher_init_tfm;
639 	inst->alg.exit = cryptd_skcipher_exit_tfm;
640 
641 	inst->alg.setkey = cryptd_skcipher_setkey;
642 	inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
643 	inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
644 
645 	inst->free = cryptd_skcipher_free;
646 
647 	err = skcipher_register_instance(tmpl, inst);
648 	if (err) {
649 out_drop_skcipher:
650 		crypto_drop_skcipher(&ctx->spawn);
651 out_free_inst:
652 		kfree(inst);
653 	}
654 	return err;
655 }
656 
657 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
658 {
659 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
660 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
661 	struct crypto_shash_spawn *spawn = &ictx->spawn;
662 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
663 	struct crypto_shash *hash;
664 
665 	hash = crypto_spawn_shash(spawn);
666 	if (IS_ERR(hash))
667 		return PTR_ERR(hash);
668 
669 	ctx->child = hash;
670 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
671 				 sizeof(struct cryptd_hash_request_ctx) +
672 				 crypto_shash_descsize(hash));
673 	return 0;
674 }
675 
676 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
677 {
678 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
679 
680 	crypto_free_shash(ctx->child);
681 }
682 
683 static int cryptd_hash_setkey(struct crypto_ahash *parent,
684 				   const u8 *key, unsigned int keylen)
685 {
686 	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
687 	struct crypto_shash *child = ctx->child;
688 	int err;
689 
690 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
691 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
692 				      CRYPTO_TFM_REQ_MASK);
693 	err = crypto_shash_setkey(child, key, keylen);
694 	crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
695 				       CRYPTO_TFM_RES_MASK);
696 	return err;
697 }
698 
699 static int cryptd_hash_enqueue(struct ahash_request *req,
700 				crypto_completion_t compl)
701 {
702 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
703 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
704 	struct cryptd_queue *queue =
705 		cryptd_get_queue(crypto_ahash_tfm(tfm));
706 
707 	rctx->complete = req->base.complete;
708 	req->base.complete = compl;
709 
710 	return cryptd_enqueue_request(queue, &req->base);
711 }
712 
713 static void cryptd_hash_complete(struct ahash_request *req, int err)
714 {
715 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
716 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
717 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
718 	int refcnt = atomic_read(&ctx->refcnt);
719 
720 	local_bh_disable();
721 	rctx->complete(&req->base, err);
722 	local_bh_enable();
723 
724 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
725 		crypto_free_ahash(tfm);
726 }
727 
728 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
729 {
730 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
731 	struct crypto_shash *child = ctx->child;
732 	struct ahash_request *req = ahash_request_cast(req_async);
733 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
734 	struct shash_desc *desc = &rctx->desc;
735 
736 	if (unlikely(err == -EINPROGRESS))
737 		goto out;
738 
739 	desc->tfm = child;
740 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
741 
742 	err = crypto_shash_init(desc);
743 
744 	req->base.complete = rctx->complete;
745 
746 out:
747 	cryptd_hash_complete(req, err);
748 }
749 
750 static int cryptd_hash_init_enqueue(struct ahash_request *req)
751 {
752 	return cryptd_hash_enqueue(req, cryptd_hash_init);
753 }
754 
755 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
756 {
757 	struct ahash_request *req = ahash_request_cast(req_async);
758 	struct cryptd_hash_request_ctx *rctx;
759 
760 	rctx = ahash_request_ctx(req);
761 
762 	if (unlikely(err == -EINPROGRESS))
763 		goto out;
764 
765 	err = shash_ahash_update(req, &rctx->desc);
766 
767 	req->base.complete = rctx->complete;
768 
769 out:
770 	cryptd_hash_complete(req, err);
771 }
772 
773 static int cryptd_hash_update_enqueue(struct ahash_request *req)
774 {
775 	return cryptd_hash_enqueue(req, cryptd_hash_update);
776 }
777 
778 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
779 {
780 	struct ahash_request *req = ahash_request_cast(req_async);
781 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
782 
783 	if (unlikely(err == -EINPROGRESS))
784 		goto out;
785 
786 	err = crypto_shash_final(&rctx->desc, req->result);
787 
788 	req->base.complete = rctx->complete;
789 
790 out:
791 	cryptd_hash_complete(req, err);
792 }
793 
794 static int cryptd_hash_final_enqueue(struct ahash_request *req)
795 {
796 	return cryptd_hash_enqueue(req, cryptd_hash_final);
797 }
798 
799 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
800 {
801 	struct ahash_request *req = ahash_request_cast(req_async);
802 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
803 
804 	if (unlikely(err == -EINPROGRESS))
805 		goto out;
806 
807 	err = shash_ahash_finup(req, &rctx->desc);
808 
809 	req->base.complete = rctx->complete;
810 
811 out:
812 	cryptd_hash_complete(req, err);
813 }
814 
815 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
816 {
817 	return cryptd_hash_enqueue(req, cryptd_hash_finup);
818 }
819 
820 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
821 {
822 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
823 	struct crypto_shash *child = ctx->child;
824 	struct ahash_request *req = ahash_request_cast(req_async);
825 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
826 	struct shash_desc *desc = &rctx->desc;
827 
828 	if (unlikely(err == -EINPROGRESS))
829 		goto out;
830 
831 	desc->tfm = child;
832 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
833 
834 	err = shash_ahash_digest(req, desc);
835 
836 	req->base.complete = rctx->complete;
837 
838 out:
839 	cryptd_hash_complete(req, err);
840 }
841 
842 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
843 {
844 	return cryptd_hash_enqueue(req, cryptd_hash_digest);
845 }
846 
847 static int cryptd_hash_export(struct ahash_request *req, void *out)
848 {
849 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
850 
851 	return crypto_shash_export(&rctx->desc, out);
852 }
853 
854 static int cryptd_hash_import(struct ahash_request *req, const void *in)
855 {
856 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
857 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
858 	struct shash_desc *desc = cryptd_shash_desc(req);
859 
860 	desc->tfm = ctx->child;
861 	desc->flags = req->base.flags;
862 
863 	return crypto_shash_import(desc, in);
864 }
865 
866 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
867 			      struct cryptd_queue *queue)
868 {
869 	struct hashd_instance_ctx *ctx;
870 	struct ahash_instance *inst;
871 	struct shash_alg *salg;
872 	struct crypto_alg *alg;
873 	u32 type = 0;
874 	u32 mask = 0;
875 	int err;
876 
877 	cryptd_check_internal(tb, &type, &mask);
878 
879 	salg = shash_attr_alg(tb[1], type, mask);
880 	if (IS_ERR(salg))
881 		return PTR_ERR(salg);
882 
883 	alg = &salg->base;
884 	inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
885 				     sizeof(*ctx));
886 	err = PTR_ERR(inst);
887 	if (IS_ERR(inst))
888 		goto out_put_alg;
889 
890 	ctx = ahash_instance_ctx(inst);
891 	ctx->queue = queue;
892 
893 	err = crypto_init_shash_spawn(&ctx->spawn, salg,
894 				      ahash_crypto_instance(inst));
895 	if (err)
896 		goto out_free_inst;
897 
898 	type = CRYPTO_ALG_ASYNC;
899 	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
900 		type |= CRYPTO_ALG_INTERNAL;
901 	inst->alg.halg.base.cra_flags = type;
902 
903 	inst->alg.halg.digestsize = salg->digestsize;
904 	inst->alg.halg.statesize = salg->statesize;
905 	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
906 
907 	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
908 	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
909 
910 	inst->alg.init   = cryptd_hash_init_enqueue;
911 	inst->alg.update = cryptd_hash_update_enqueue;
912 	inst->alg.final  = cryptd_hash_final_enqueue;
913 	inst->alg.finup  = cryptd_hash_finup_enqueue;
914 	inst->alg.export = cryptd_hash_export;
915 	inst->alg.import = cryptd_hash_import;
916 	inst->alg.setkey = cryptd_hash_setkey;
917 	inst->alg.digest = cryptd_hash_digest_enqueue;
918 
919 	err = ahash_register_instance(tmpl, inst);
920 	if (err) {
921 		crypto_drop_shash(&ctx->spawn);
922 out_free_inst:
923 		kfree(inst);
924 	}
925 
926 out_put_alg:
927 	crypto_mod_put(alg);
928 	return err;
929 }
930 
931 static int cryptd_aead_setkey(struct crypto_aead *parent,
932 			      const u8 *key, unsigned int keylen)
933 {
934 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
935 	struct crypto_aead *child = ctx->child;
936 
937 	return crypto_aead_setkey(child, key, keylen);
938 }
939 
940 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
941 				   unsigned int authsize)
942 {
943 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
944 	struct crypto_aead *child = ctx->child;
945 
946 	return crypto_aead_setauthsize(child, authsize);
947 }
948 
949 static void cryptd_aead_crypt(struct aead_request *req,
950 			struct crypto_aead *child,
951 			int err,
952 			int (*crypt)(struct aead_request *req))
953 {
954 	struct cryptd_aead_request_ctx *rctx;
955 	struct cryptd_aead_ctx *ctx;
956 	crypto_completion_t compl;
957 	struct crypto_aead *tfm;
958 	int refcnt;
959 
960 	rctx = aead_request_ctx(req);
961 	compl = rctx->complete;
962 
963 	tfm = crypto_aead_reqtfm(req);
964 
965 	if (unlikely(err == -EINPROGRESS))
966 		goto out;
967 	aead_request_set_tfm(req, child);
968 	err = crypt( req );
969 
970 out:
971 	ctx = crypto_aead_ctx(tfm);
972 	refcnt = atomic_read(&ctx->refcnt);
973 
974 	local_bh_disable();
975 	compl(&req->base, err);
976 	local_bh_enable();
977 
978 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
979 		crypto_free_aead(tfm);
980 }
981 
982 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
983 {
984 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
985 	struct crypto_aead *child = ctx->child;
986 	struct aead_request *req;
987 
988 	req = container_of(areq, struct aead_request, base);
989 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
990 }
991 
992 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
993 {
994 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
995 	struct crypto_aead *child = ctx->child;
996 	struct aead_request *req;
997 
998 	req = container_of(areq, struct aead_request, base);
999 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
1000 }
1001 
1002 static int cryptd_aead_enqueue(struct aead_request *req,
1003 				    crypto_completion_t compl)
1004 {
1005 	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
1006 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1007 	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
1008 
1009 	rctx->complete = req->base.complete;
1010 	req->base.complete = compl;
1011 	return cryptd_enqueue_request(queue, &req->base);
1012 }
1013 
1014 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
1015 {
1016 	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
1017 }
1018 
1019 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
1020 {
1021 	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
1022 }
1023 
1024 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
1025 {
1026 	struct aead_instance *inst = aead_alg_instance(tfm);
1027 	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
1028 	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
1029 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
1030 	struct crypto_aead *cipher;
1031 
1032 	cipher = crypto_spawn_aead(spawn);
1033 	if (IS_ERR(cipher))
1034 		return PTR_ERR(cipher);
1035 
1036 	ctx->child = cipher;
1037 	crypto_aead_set_reqsize(
1038 		tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
1039 			 crypto_aead_reqsize(cipher)));
1040 	return 0;
1041 }
1042 
1043 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
1044 {
1045 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
1046 	crypto_free_aead(ctx->child);
1047 }
1048 
1049 static int cryptd_create_aead(struct crypto_template *tmpl,
1050 		              struct rtattr **tb,
1051 			      struct cryptd_queue *queue)
1052 {
1053 	struct aead_instance_ctx *ctx;
1054 	struct aead_instance *inst;
1055 	struct aead_alg *alg;
1056 	const char *name;
1057 	u32 type = 0;
1058 	u32 mask = CRYPTO_ALG_ASYNC;
1059 	int err;
1060 
1061 	cryptd_check_internal(tb, &type, &mask);
1062 
1063 	name = crypto_attr_alg_name(tb[1]);
1064 	if (IS_ERR(name))
1065 		return PTR_ERR(name);
1066 
1067 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
1068 	if (!inst)
1069 		return -ENOMEM;
1070 
1071 	ctx = aead_instance_ctx(inst);
1072 	ctx->queue = queue;
1073 
1074 	crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst));
1075 	err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask);
1076 	if (err)
1077 		goto out_free_inst;
1078 
1079 	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
1080 	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
1081 	if (err)
1082 		goto out_drop_aead;
1083 
1084 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
1085 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
1086 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
1087 
1088 	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
1089 	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
1090 
1091 	inst->alg.init = cryptd_aead_init_tfm;
1092 	inst->alg.exit = cryptd_aead_exit_tfm;
1093 	inst->alg.setkey = cryptd_aead_setkey;
1094 	inst->alg.setauthsize = cryptd_aead_setauthsize;
1095 	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
1096 	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
1097 
1098 	err = aead_register_instance(tmpl, inst);
1099 	if (err) {
1100 out_drop_aead:
1101 		crypto_drop_aead(&ctx->aead_spawn);
1102 out_free_inst:
1103 		kfree(inst);
1104 	}
1105 	return err;
1106 }
1107 
1108 static struct cryptd_queue queue;
1109 
1110 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
1111 {
1112 	struct crypto_attr_type *algt;
1113 
1114 	algt = crypto_get_attr_type(tb);
1115 	if (IS_ERR(algt))
1116 		return PTR_ERR(algt);
1117 
1118 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
1119 	case CRYPTO_ALG_TYPE_BLKCIPHER:
1120 		if ((algt->type & CRYPTO_ALG_TYPE_MASK) ==
1121 		    CRYPTO_ALG_TYPE_BLKCIPHER)
1122 			return cryptd_create_blkcipher(tmpl, tb, &queue);
1123 
1124 		return cryptd_create_skcipher(tmpl, tb, &queue);
1125 	case CRYPTO_ALG_TYPE_DIGEST:
1126 		return cryptd_create_hash(tmpl, tb, &queue);
1127 	case CRYPTO_ALG_TYPE_AEAD:
1128 		return cryptd_create_aead(tmpl, tb, &queue);
1129 	}
1130 
1131 	return -EINVAL;
1132 }
1133 
1134 static void cryptd_free(struct crypto_instance *inst)
1135 {
1136 	struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
1137 	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
1138 	struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
1139 
1140 	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
1141 	case CRYPTO_ALG_TYPE_AHASH:
1142 		crypto_drop_shash(&hctx->spawn);
1143 		kfree(ahash_instance(inst));
1144 		return;
1145 	case CRYPTO_ALG_TYPE_AEAD:
1146 		crypto_drop_aead(&aead_ctx->aead_spawn);
1147 		kfree(aead_instance(inst));
1148 		return;
1149 	default:
1150 		crypto_drop_spawn(&ctx->spawn);
1151 		kfree(inst);
1152 	}
1153 }
1154 
1155 static struct crypto_template cryptd_tmpl = {
1156 	.name = "cryptd",
1157 	.create = cryptd_create,
1158 	.free = cryptd_free,
1159 	.module = THIS_MODULE,
1160 };
1161 
1162 struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
1163 						  u32 type, u32 mask)
1164 {
1165 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1166 	struct cryptd_blkcipher_ctx *ctx;
1167 	struct crypto_tfm *tfm;
1168 
1169 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1170 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1171 		return ERR_PTR(-EINVAL);
1172 	type = crypto_skcipher_type(type);
1173 	mask &= ~CRYPTO_ALG_TYPE_MASK;
1174 	mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
1175 	tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
1176 	if (IS_ERR(tfm))
1177 		return ERR_CAST(tfm);
1178 	if (tfm->__crt_alg->cra_module != THIS_MODULE) {
1179 		crypto_free_tfm(tfm);
1180 		return ERR_PTR(-EINVAL);
1181 	}
1182 
1183 	ctx = crypto_tfm_ctx(tfm);
1184 	atomic_set(&ctx->refcnt, 1);
1185 
1186 	return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
1187 }
1188 EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);
1189 
1190 struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
1191 {
1192 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1193 	return ctx->child;
1194 }
1195 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);
1196 
1197 bool cryptd_ablkcipher_queued(struct cryptd_ablkcipher *tfm)
1198 {
1199 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1200 
1201 	return atomic_read(&ctx->refcnt) - 1;
1202 }
1203 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_queued);
1204 
1205 void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
1206 {
1207 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1208 
1209 	if (atomic_dec_and_test(&ctx->refcnt))
1210 		crypto_free_ablkcipher(&tfm->base);
1211 }
1212 EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);
1213 
1214 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
1215 					      u32 type, u32 mask)
1216 {
1217 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1218 	struct cryptd_skcipher_ctx *ctx;
1219 	struct crypto_skcipher *tfm;
1220 
1221 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1222 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1223 		return ERR_PTR(-EINVAL);
1224 
1225 	tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
1226 	if (IS_ERR(tfm))
1227 		return ERR_CAST(tfm);
1228 
1229 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1230 		crypto_free_skcipher(tfm);
1231 		return ERR_PTR(-EINVAL);
1232 	}
1233 
1234 	ctx = crypto_skcipher_ctx(tfm);
1235 	atomic_set(&ctx->refcnt, 1);
1236 
1237 	return container_of(tfm, struct cryptd_skcipher, base);
1238 }
1239 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
1240 
1241 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
1242 {
1243 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1244 
1245 	return ctx->child;
1246 }
1247 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
1248 
1249 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
1250 {
1251 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1252 
1253 	return atomic_read(&ctx->refcnt) - 1;
1254 }
1255 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
1256 
1257 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
1258 {
1259 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1260 
1261 	if (atomic_dec_and_test(&ctx->refcnt))
1262 		crypto_free_skcipher(&tfm->base);
1263 }
1264 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
1265 
1266 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
1267 					u32 type, u32 mask)
1268 {
1269 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1270 	struct cryptd_hash_ctx *ctx;
1271 	struct crypto_ahash *tfm;
1272 
1273 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1274 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1275 		return ERR_PTR(-EINVAL);
1276 	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
1277 	if (IS_ERR(tfm))
1278 		return ERR_CAST(tfm);
1279 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1280 		crypto_free_ahash(tfm);
1281 		return ERR_PTR(-EINVAL);
1282 	}
1283 
1284 	ctx = crypto_ahash_ctx(tfm);
1285 	atomic_set(&ctx->refcnt, 1);
1286 
1287 	return __cryptd_ahash_cast(tfm);
1288 }
1289 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1290 
1291 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1292 {
1293 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1294 
1295 	return ctx->child;
1296 }
1297 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1298 
1299 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1300 {
1301 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1302 	return &rctx->desc;
1303 }
1304 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1305 
1306 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1307 {
1308 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1309 
1310 	return atomic_read(&ctx->refcnt) - 1;
1311 }
1312 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1313 
1314 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1315 {
1316 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1317 
1318 	if (atomic_dec_and_test(&ctx->refcnt))
1319 		crypto_free_ahash(&tfm->base);
1320 }
1321 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1322 
1323 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1324 						  u32 type, u32 mask)
1325 {
1326 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1327 	struct cryptd_aead_ctx *ctx;
1328 	struct crypto_aead *tfm;
1329 
1330 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1331 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1332 		return ERR_PTR(-EINVAL);
1333 	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1334 	if (IS_ERR(tfm))
1335 		return ERR_CAST(tfm);
1336 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1337 		crypto_free_aead(tfm);
1338 		return ERR_PTR(-EINVAL);
1339 	}
1340 
1341 	ctx = crypto_aead_ctx(tfm);
1342 	atomic_set(&ctx->refcnt, 1);
1343 
1344 	return __cryptd_aead_cast(tfm);
1345 }
1346 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1347 
1348 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1349 {
1350 	struct cryptd_aead_ctx *ctx;
1351 	ctx = crypto_aead_ctx(&tfm->base);
1352 	return ctx->child;
1353 }
1354 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1355 
1356 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1357 {
1358 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1359 
1360 	return atomic_read(&ctx->refcnt) - 1;
1361 }
1362 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1363 
1364 void cryptd_free_aead(struct cryptd_aead *tfm)
1365 {
1366 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1367 
1368 	if (atomic_dec_and_test(&ctx->refcnt))
1369 		crypto_free_aead(&tfm->base);
1370 }
1371 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1372 
1373 static int __init cryptd_init(void)
1374 {
1375 	int err;
1376 
1377 	err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN);
1378 	if (err)
1379 		return err;
1380 
1381 	err = crypto_register_template(&cryptd_tmpl);
1382 	if (err)
1383 		cryptd_fini_queue(&queue);
1384 
1385 	return err;
1386 }
1387 
1388 static void __exit cryptd_exit(void)
1389 {
1390 	cryptd_fini_queue(&queue);
1391 	crypto_unregister_template(&cryptd_tmpl);
1392 }
1393 
1394 subsys_initcall(cryptd_init);
1395 module_exit(cryptd_exit);
1396 
1397 MODULE_LICENSE("GPL");
1398 MODULE_DESCRIPTION("Software async crypto daemon");
1399 MODULE_ALIAS_CRYPTO("cryptd");
1400