xref: /openbmc/linux/crypto/cryptd.c (revision e0f3d4c2)
1 /*
2  * Software async crypto daemon.
3  *
4  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * Added AEAD support to cryptd.
7  *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
8  *             Adrian Hoban <adrian.hoban@intel.com>
9  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
10  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
11  *    Copyright (c) 2010, Intel Corporation.
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by the Free
15  * Software Foundation; either version 2 of the License, or (at your option)
16  * any later version.
17  *
18  */
19 
20 #include <crypto/internal/hash.h>
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/skcipher.h>
23 #include <crypto/cryptd.h>
24 #include <crypto/crypto_wq.h>
25 #include <linux/atomic.h>
26 #include <linux/err.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/scatterlist.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 
35 #define CRYPTD_MAX_CPU_QLEN 1000
36 
37 struct cryptd_cpu_queue {
38 	struct crypto_queue queue;
39 	struct work_struct work;
40 };
41 
42 struct cryptd_queue {
43 	struct cryptd_cpu_queue __percpu *cpu_queue;
44 };
45 
46 struct cryptd_instance_ctx {
47 	struct crypto_spawn spawn;
48 	struct cryptd_queue *queue;
49 };
50 
51 struct skcipherd_instance_ctx {
52 	struct crypto_skcipher_spawn spawn;
53 	struct cryptd_queue *queue;
54 };
55 
56 struct hashd_instance_ctx {
57 	struct crypto_shash_spawn spawn;
58 	struct cryptd_queue *queue;
59 };
60 
61 struct aead_instance_ctx {
62 	struct crypto_aead_spawn aead_spawn;
63 	struct cryptd_queue *queue;
64 };
65 
66 struct cryptd_blkcipher_ctx {
67 	atomic_t refcnt;
68 	struct crypto_blkcipher *child;
69 };
70 
71 struct cryptd_blkcipher_request_ctx {
72 	crypto_completion_t complete;
73 };
74 
75 struct cryptd_skcipher_ctx {
76 	atomic_t refcnt;
77 	struct crypto_skcipher *child;
78 };
79 
80 struct cryptd_skcipher_request_ctx {
81 	crypto_completion_t complete;
82 };
83 
84 struct cryptd_hash_ctx {
85 	atomic_t refcnt;
86 	struct crypto_shash *child;
87 };
88 
89 struct cryptd_hash_request_ctx {
90 	crypto_completion_t complete;
91 	struct shash_desc desc;
92 };
93 
94 struct cryptd_aead_ctx {
95 	atomic_t refcnt;
96 	struct crypto_aead *child;
97 };
98 
99 struct cryptd_aead_request_ctx {
100 	crypto_completion_t complete;
101 };
102 
103 static void cryptd_queue_worker(struct work_struct *work);
104 
105 static int cryptd_init_queue(struct cryptd_queue *queue,
106 			     unsigned int max_cpu_qlen)
107 {
108 	int cpu;
109 	struct cryptd_cpu_queue *cpu_queue;
110 
111 	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
112 	if (!queue->cpu_queue)
113 		return -ENOMEM;
114 	for_each_possible_cpu(cpu) {
115 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
116 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
117 		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
118 	}
119 	return 0;
120 }
121 
122 static void cryptd_fini_queue(struct cryptd_queue *queue)
123 {
124 	int cpu;
125 	struct cryptd_cpu_queue *cpu_queue;
126 
127 	for_each_possible_cpu(cpu) {
128 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
129 		BUG_ON(cpu_queue->queue.qlen);
130 	}
131 	free_percpu(queue->cpu_queue);
132 }
133 
134 static int cryptd_enqueue_request(struct cryptd_queue *queue,
135 				  struct crypto_async_request *request)
136 {
137 	int cpu, err;
138 	struct cryptd_cpu_queue *cpu_queue;
139 	atomic_t *refcnt;
140 
141 	cpu = get_cpu();
142 	cpu_queue = this_cpu_ptr(queue->cpu_queue);
143 	err = crypto_enqueue_request(&cpu_queue->queue, request);
144 
145 	refcnt = crypto_tfm_ctx(request->tfm);
146 
147 	if (err == -ENOSPC)
148 		goto out_put_cpu;
149 
150 	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
151 
152 	if (!atomic_read(refcnt))
153 		goto out_put_cpu;
154 
155 	atomic_inc(refcnt);
156 
157 out_put_cpu:
158 	put_cpu();
159 
160 	return err;
161 }
162 
163 /* Called in workqueue context, do one real cryption work (via
164  * req->complete) and reschedule itself if there are more work to
165  * do. */
166 static void cryptd_queue_worker(struct work_struct *work)
167 {
168 	struct cryptd_cpu_queue *cpu_queue;
169 	struct crypto_async_request *req, *backlog;
170 
171 	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
172 	/*
173 	 * Only handle one request at a time to avoid hogging crypto workqueue.
174 	 * preempt_disable/enable is used to prevent being preempted by
175 	 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
176 	 * cryptd_enqueue_request() being accessed from software interrupts.
177 	 */
178 	local_bh_disable();
179 	preempt_disable();
180 	backlog = crypto_get_backlog(&cpu_queue->queue);
181 	req = crypto_dequeue_request(&cpu_queue->queue);
182 	preempt_enable();
183 	local_bh_enable();
184 
185 	if (!req)
186 		return;
187 
188 	if (backlog)
189 		backlog->complete(backlog, -EINPROGRESS);
190 	req->complete(req, 0);
191 
192 	if (cpu_queue->queue.qlen)
193 		queue_work(kcrypto_wq, &cpu_queue->work);
194 }
195 
196 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
197 {
198 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
199 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
200 	return ictx->queue;
201 }
202 
203 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
204 					 u32 *mask)
205 {
206 	struct crypto_attr_type *algt;
207 
208 	algt = crypto_get_attr_type(tb);
209 	if (IS_ERR(algt))
210 		return;
211 
212 	*type |= algt->type & CRYPTO_ALG_INTERNAL;
213 	*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
214 }
215 
216 static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
217 				   const u8 *key, unsigned int keylen)
218 {
219 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
220 	struct crypto_blkcipher *child = ctx->child;
221 	int err;
222 
223 	crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
224 	crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
225 					  CRYPTO_TFM_REQ_MASK);
226 	err = crypto_blkcipher_setkey(child, key, keylen);
227 	crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
228 					    CRYPTO_TFM_RES_MASK);
229 	return err;
230 }
231 
232 static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
233 				   struct crypto_blkcipher *child,
234 				   int err,
235 				   int (*crypt)(struct blkcipher_desc *desc,
236 						struct scatterlist *dst,
237 						struct scatterlist *src,
238 						unsigned int len))
239 {
240 	struct cryptd_blkcipher_request_ctx *rctx;
241 	struct cryptd_blkcipher_ctx *ctx;
242 	struct crypto_ablkcipher *tfm;
243 	struct blkcipher_desc desc;
244 	int refcnt;
245 
246 	rctx = ablkcipher_request_ctx(req);
247 
248 	if (unlikely(err == -EINPROGRESS))
249 		goto out;
250 
251 	desc.tfm = child;
252 	desc.info = req->info;
253 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
254 
255 	err = crypt(&desc, req->dst, req->src, req->nbytes);
256 
257 	req->base.complete = rctx->complete;
258 
259 out:
260 	tfm = crypto_ablkcipher_reqtfm(req);
261 	ctx = crypto_ablkcipher_ctx(tfm);
262 	refcnt = atomic_read(&ctx->refcnt);
263 
264 	local_bh_disable();
265 	rctx->complete(&req->base, err);
266 	local_bh_enable();
267 
268 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
269 		crypto_free_ablkcipher(tfm);
270 }
271 
272 static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
273 {
274 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
275 	struct crypto_blkcipher *child = ctx->child;
276 
277 	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
278 			       crypto_blkcipher_crt(child)->encrypt);
279 }
280 
281 static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
282 {
283 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
284 	struct crypto_blkcipher *child = ctx->child;
285 
286 	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
287 			       crypto_blkcipher_crt(child)->decrypt);
288 }
289 
290 static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
291 				    crypto_completion_t compl)
292 {
293 	struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
294 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
295 	struct cryptd_queue *queue;
296 
297 	queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
298 	rctx->complete = req->base.complete;
299 	req->base.complete = compl;
300 
301 	return cryptd_enqueue_request(queue, &req->base);
302 }
303 
304 static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
305 {
306 	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
307 }
308 
309 static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
310 {
311 	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
312 }
313 
314 static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
315 {
316 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
317 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
318 	struct crypto_spawn *spawn = &ictx->spawn;
319 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
320 	struct crypto_blkcipher *cipher;
321 
322 	cipher = crypto_spawn_blkcipher(spawn);
323 	if (IS_ERR(cipher))
324 		return PTR_ERR(cipher);
325 
326 	ctx->child = cipher;
327 	tfm->crt_ablkcipher.reqsize =
328 		sizeof(struct cryptd_blkcipher_request_ctx);
329 	return 0;
330 }
331 
332 static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
333 {
334 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
335 
336 	crypto_free_blkcipher(ctx->child);
337 }
338 
339 static int cryptd_init_instance(struct crypto_instance *inst,
340 				struct crypto_alg *alg)
341 {
342 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
343 		     "cryptd(%s)",
344 		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
345 		return -ENAMETOOLONG;
346 
347 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
348 
349 	inst->alg.cra_priority = alg->cra_priority + 50;
350 	inst->alg.cra_blocksize = alg->cra_blocksize;
351 	inst->alg.cra_alignmask = alg->cra_alignmask;
352 
353 	return 0;
354 }
355 
356 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
357 				   unsigned int tail)
358 {
359 	char *p;
360 	struct crypto_instance *inst;
361 	int err;
362 
363 	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
364 	if (!p)
365 		return ERR_PTR(-ENOMEM);
366 
367 	inst = (void *)(p + head);
368 
369 	err = cryptd_init_instance(inst, alg);
370 	if (err)
371 		goto out_free_inst;
372 
373 out:
374 	return p;
375 
376 out_free_inst:
377 	kfree(p);
378 	p = ERR_PTR(err);
379 	goto out;
380 }
381 
382 static int cryptd_create_blkcipher(struct crypto_template *tmpl,
383 				   struct rtattr **tb,
384 				   struct cryptd_queue *queue)
385 {
386 	struct cryptd_instance_ctx *ctx;
387 	struct crypto_instance *inst;
388 	struct crypto_alg *alg;
389 	u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
390 	u32 mask = CRYPTO_ALG_TYPE_MASK;
391 	int err;
392 
393 	cryptd_check_internal(tb, &type, &mask);
394 
395 	alg = crypto_get_attr_alg(tb, type, mask);
396 	if (IS_ERR(alg))
397 		return PTR_ERR(alg);
398 
399 	inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
400 	err = PTR_ERR(inst);
401 	if (IS_ERR(inst))
402 		goto out_put_alg;
403 
404 	ctx = crypto_instance_ctx(inst);
405 	ctx->queue = queue;
406 
407 	err = crypto_init_spawn(&ctx->spawn, alg, inst,
408 				CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
409 	if (err)
410 		goto out_free_inst;
411 
412 	type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
413 	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
414 		type |= CRYPTO_ALG_INTERNAL;
415 	inst->alg.cra_flags = type;
416 	inst->alg.cra_type = &crypto_ablkcipher_type;
417 
418 	inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
419 	inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
420 	inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;
421 
422 	inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;
423 
424 	inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);
425 
426 	inst->alg.cra_init = cryptd_blkcipher_init_tfm;
427 	inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;
428 
429 	inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
430 	inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
431 	inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;
432 
433 	err = crypto_register_instance(tmpl, inst);
434 	if (err) {
435 		crypto_drop_spawn(&ctx->spawn);
436 out_free_inst:
437 		kfree(inst);
438 	}
439 
440 out_put_alg:
441 	crypto_mod_put(alg);
442 	return err;
443 }
444 
445 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
446 				  const u8 *key, unsigned int keylen)
447 {
448 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
449 	struct crypto_skcipher *child = ctx->child;
450 	int err;
451 
452 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
453 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
454 					 CRYPTO_TFM_REQ_MASK);
455 	err = crypto_skcipher_setkey(child, key, keylen);
456 	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
457 					  CRYPTO_TFM_RES_MASK);
458 	return err;
459 }
460 
461 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
462 {
463 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
464 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
465 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
466 	int refcnt = atomic_read(&ctx->refcnt);
467 
468 	local_bh_disable();
469 	rctx->complete(&req->base, err);
470 	local_bh_enable();
471 
472 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
473 		crypto_free_skcipher(tfm);
474 }
475 
476 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
477 				    int err)
478 {
479 	struct skcipher_request *req = skcipher_request_cast(base);
480 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
481 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
482 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
483 	struct crypto_skcipher *child = ctx->child;
484 	SKCIPHER_REQUEST_ON_STACK(subreq, child);
485 
486 	if (unlikely(err == -EINPROGRESS))
487 		goto out;
488 
489 	skcipher_request_set_tfm(subreq, child);
490 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
491 				      NULL, NULL);
492 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
493 				   req->iv);
494 
495 	err = crypto_skcipher_encrypt(subreq);
496 	skcipher_request_zero(subreq);
497 
498 	req->base.complete = rctx->complete;
499 
500 out:
501 	cryptd_skcipher_complete(req, err);
502 }
503 
504 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
505 				    int err)
506 {
507 	struct skcipher_request *req = skcipher_request_cast(base);
508 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
509 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
510 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
511 	struct crypto_skcipher *child = ctx->child;
512 	SKCIPHER_REQUEST_ON_STACK(subreq, child);
513 
514 	if (unlikely(err == -EINPROGRESS))
515 		goto out;
516 
517 	skcipher_request_set_tfm(subreq, child);
518 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
519 				      NULL, NULL);
520 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
521 				   req->iv);
522 
523 	err = crypto_skcipher_decrypt(subreq);
524 	skcipher_request_zero(subreq);
525 
526 	req->base.complete = rctx->complete;
527 
528 out:
529 	cryptd_skcipher_complete(req, err);
530 }
531 
532 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
533 				   crypto_completion_t compl)
534 {
535 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
536 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
537 	struct cryptd_queue *queue;
538 
539 	queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
540 	rctx->complete = req->base.complete;
541 	req->base.complete = compl;
542 
543 	return cryptd_enqueue_request(queue, &req->base);
544 }
545 
546 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
547 {
548 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
549 }
550 
551 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
552 {
553 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
554 }
555 
556 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
557 {
558 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
559 	struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
560 	struct crypto_skcipher_spawn *spawn = &ictx->spawn;
561 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
562 	struct crypto_skcipher *cipher;
563 
564 	cipher = crypto_spawn_skcipher(spawn);
565 	if (IS_ERR(cipher))
566 		return PTR_ERR(cipher);
567 
568 	ctx->child = cipher;
569 	crypto_skcipher_set_reqsize(
570 		tfm, sizeof(struct cryptd_skcipher_request_ctx));
571 	return 0;
572 }
573 
574 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
575 {
576 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
577 
578 	crypto_free_skcipher(ctx->child);
579 }
580 
581 static void cryptd_skcipher_free(struct skcipher_instance *inst)
582 {
583 	struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
584 
585 	crypto_drop_skcipher(&ctx->spawn);
586 }
587 
588 static int cryptd_create_skcipher(struct crypto_template *tmpl,
589 				  struct rtattr **tb,
590 				  struct cryptd_queue *queue)
591 {
592 	struct skcipherd_instance_ctx *ctx;
593 	struct skcipher_instance *inst;
594 	struct skcipher_alg *alg;
595 	const char *name;
596 	u32 type;
597 	u32 mask;
598 	int err;
599 
600 	type = 0;
601 	mask = CRYPTO_ALG_ASYNC;
602 
603 	cryptd_check_internal(tb, &type, &mask);
604 
605 	name = crypto_attr_alg_name(tb[1]);
606 	if (IS_ERR(name))
607 		return PTR_ERR(name);
608 
609 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
610 	if (!inst)
611 		return -ENOMEM;
612 
613 	ctx = skcipher_instance_ctx(inst);
614 	ctx->queue = queue;
615 
616 	crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst));
617 	err = crypto_grab_skcipher(&ctx->spawn, name, type, mask);
618 	if (err)
619 		goto out_free_inst;
620 
621 	alg = crypto_spawn_skcipher_alg(&ctx->spawn);
622 	err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
623 	if (err)
624 		goto out_drop_skcipher;
625 
626 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
627 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
628 
629 	inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
630 	inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
631 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
632 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
633 
634 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
635 
636 	inst->alg.init = cryptd_skcipher_init_tfm;
637 	inst->alg.exit = cryptd_skcipher_exit_tfm;
638 
639 	inst->alg.setkey = cryptd_skcipher_setkey;
640 	inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
641 	inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
642 
643 	inst->free = cryptd_skcipher_free;
644 
645 	err = skcipher_register_instance(tmpl, inst);
646 	if (err) {
647 out_drop_skcipher:
648 		crypto_drop_skcipher(&ctx->spawn);
649 out_free_inst:
650 		kfree(inst);
651 	}
652 	return err;
653 }
654 
655 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
656 {
657 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
658 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
659 	struct crypto_shash_spawn *spawn = &ictx->spawn;
660 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
661 	struct crypto_shash *hash;
662 
663 	hash = crypto_spawn_shash(spawn);
664 	if (IS_ERR(hash))
665 		return PTR_ERR(hash);
666 
667 	ctx->child = hash;
668 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
669 				 sizeof(struct cryptd_hash_request_ctx) +
670 				 crypto_shash_descsize(hash));
671 	return 0;
672 }
673 
674 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
675 {
676 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
677 
678 	crypto_free_shash(ctx->child);
679 }
680 
681 static int cryptd_hash_setkey(struct crypto_ahash *parent,
682 				   const u8 *key, unsigned int keylen)
683 {
684 	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
685 	struct crypto_shash *child = ctx->child;
686 	int err;
687 
688 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
689 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
690 				      CRYPTO_TFM_REQ_MASK);
691 	err = crypto_shash_setkey(child, key, keylen);
692 	crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
693 				       CRYPTO_TFM_RES_MASK);
694 	return err;
695 }
696 
697 static int cryptd_hash_enqueue(struct ahash_request *req,
698 				crypto_completion_t compl)
699 {
700 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
701 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
702 	struct cryptd_queue *queue =
703 		cryptd_get_queue(crypto_ahash_tfm(tfm));
704 
705 	rctx->complete = req->base.complete;
706 	req->base.complete = compl;
707 
708 	return cryptd_enqueue_request(queue, &req->base);
709 }
710 
711 static void cryptd_hash_complete(struct ahash_request *req, int err)
712 {
713 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
714 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
715 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
716 	int refcnt = atomic_read(&ctx->refcnt);
717 
718 	local_bh_disable();
719 	rctx->complete(&req->base, err);
720 	local_bh_enable();
721 
722 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
723 		crypto_free_ahash(tfm);
724 }
725 
726 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
727 {
728 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
729 	struct crypto_shash *child = ctx->child;
730 	struct ahash_request *req = ahash_request_cast(req_async);
731 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
732 	struct shash_desc *desc = &rctx->desc;
733 
734 	if (unlikely(err == -EINPROGRESS))
735 		goto out;
736 
737 	desc->tfm = child;
738 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
739 
740 	err = crypto_shash_init(desc);
741 
742 	req->base.complete = rctx->complete;
743 
744 out:
745 	cryptd_hash_complete(req, err);
746 }
747 
748 static int cryptd_hash_init_enqueue(struct ahash_request *req)
749 {
750 	return cryptd_hash_enqueue(req, cryptd_hash_init);
751 }
752 
753 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
754 {
755 	struct ahash_request *req = ahash_request_cast(req_async);
756 	struct cryptd_hash_request_ctx *rctx;
757 
758 	rctx = ahash_request_ctx(req);
759 
760 	if (unlikely(err == -EINPROGRESS))
761 		goto out;
762 
763 	err = shash_ahash_update(req, &rctx->desc);
764 
765 	req->base.complete = rctx->complete;
766 
767 out:
768 	cryptd_hash_complete(req, err);
769 }
770 
771 static int cryptd_hash_update_enqueue(struct ahash_request *req)
772 {
773 	return cryptd_hash_enqueue(req, cryptd_hash_update);
774 }
775 
776 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
777 {
778 	struct ahash_request *req = ahash_request_cast(req_async);
779 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
780 
781 	if (unlikely(err == -EINPROGRESS))
782 		goto out;
783 
784 	err = crypto_shash_final(&rctx->desc, req->result);
785 
786 	req->base.complete = rctx->complete;
787 
788 out:
789 	cryptd_hash_complete(req, err);
790 }
791 
792 static int cryptd_hash_final_enqueue(struct ahash_request *req)
793 {
794 	return cryptd_hash_enqueue(req, cryptd_hash_final);
795 }
796 
797 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
798 {
799 	struct ahash_request *req = ahash_request_cast(req_async);
800 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
801 
802 	if (unlikely(err == -EINPROGRESS))
803 		goto out;
804 
805 	err = shash_ahash_finup(req, &rctx->desc);
806 
807 	req->base.complete = rctx->complete;
808 
809 out:
810 	cryptd_hash_complete(req, err);
811 }
812 
813 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
814 {
815 	return cryptd_hash_enqueue(req, cryptd_hash_finup);
816 }
817 
818 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
819 {
820 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
821 	struct crypto_shash *child = ctx->child;
822 	struct ahash_request *req = ahash_request_cast(req_async);
823 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
824 	struct shash_desc *desc = &rctx->desc;
825 
826 	if (unlikely(err == -EINPROGRESS))
827 		goto out;
828 
829 	desc->tfm = child;
830 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
831 
832 	err = shash_ahash_digest(req, desc);
833 
834 	req->base.complete = rctx->complete;
835 
836 out:
837 	cryptd_hash_complete(req, err);
838 }
839 
840 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
841 {
842 	return cryptd_hash_enqueue(req, cryptd_hash_digest);
843 }
844 
845 static int cryptd_hash_export(struct ahash_request *req, void *out)
846 {
847 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
848 
849 	return crypto_shash_export(&rctx->desc, out);
850 }
851 
852 static int cryptd_hash_import(struct ahash_request *req, const void *in)
853 {
854 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
855 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
856 	struct shash_desc *desc = cryptd_shash_desc(req);
857 
858 	desc->tfm = ctx->child;
859 	desc->flags = req->base.flags;
860 
861 	return crypto_shash_import(desc, in);
862 }
863 
864 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
865 			      struct cryptd_queue *queue)
866 {
867 	struct hashd_instance_ctx *ctx;
868 	struct ahash_instance *inst;
869 	struct shash_alg *salg;
870 	struct crypto_alg *alg;
871 	u32 type = 0;
872 	u32 mask = 0;
873 	int err;
874 
875 	cryptd_check_internal(tb, &type, &mask);
876 
877 	salg = shash_attr_alg(tb[1], type, mask);
878 	if (IS_ERR(salg))
879 		return PTR_ERR(salg);
880 
881 	alg = &salg->base;
882 	inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
883 				     sizeof(*ctx));
884 	err = PTR_ERR(inst);
885 	if (IS_ERR(inst))
886 		goto out_put_alg;
887 
888 	ctx = ahash_instance_ctx(inst);
889 	ctx->queue = queue;
890 
891 	err = crypto_init_shash_spawn(&ctx->spawn, salg,
892 				      ahash_crypto_instance(inst));
893 	if (err)
894 		goto out_free_inst;
895 
896 	type = CRYPTO_ALG_ASYNC;
897 	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
898 		type |= CRYPTO_ALG_INTERNAL;
899 	inst->alg.halg.base.cra_flags = type;
900 
901 	inst->alg.halg.digestsize = salg->digestsize;
902 	inst->alg.halg.statesize = salg->statesize;
903 	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
904 
905 	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
906 	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
907 
908 	inst->alg.init   = cryptd_hash_init_enqueue;
909 	inst->alg.update = cryptd_hash_update_enqueue;
910 	inst->alg.final  = cryptd_hash_final_enqueue;
911 	inst->alg.finup  = cryptd_hash_finup_enqueue;
912 	inst->alg.export = cryptd_hash_export;
913 	inst->alg.import = cryptd_hash_import;
914 	inst->alg.setkey = cryptd_hash_setkey;
915 	inst->alg.digest = cryptd_hash_digest_enqueue;
916 
917 	err = ahash_register_instance(tmpl, inst);
918 	if (err) {
919 		crypto_drop_shash(&ctx->spawn);
920 out_free_inst:
921 		kfree(inst);
922 	}
923 
924 out_put_alg:
925 	crypto_mod_put(alg);
926 	return err;
927 }
928 
929 static int cryptd_aead_setkey(struct crypto_aead *parent,
930 			      const u8 *key, unsigned int keylen)
931 {
932 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
933 	struct crypto_aead *child = ctx->child;
934 
935 	return crypto_aead_setkey(child, key, keylen);
936 }
937 
938 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
939 				   unsigned int authsize)
940 {
941 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
942 	struct crypto_aead *child = ctx->child;
943 
944 	return crypto_aead_setauthsize(child, authsize);
945 }
946 
947 static void cryptd_aead_crypt(struct aead_request *req,
948 			struct crypto_aead *child,
949 			int err,
950 			int (*crypt)(struct aead_request *req))
951 {
952 	struct cryptd_aead_request_ctx *rctx;
953 	struct cryptd_aead_ctx *ctx;
954 	crypto_completion_t compl;
955 	struct crypto_aead *tfm;
956 	int refcnt;
957 
958 	rctx = aead_request_ctx(req);
959 	compl = rctx->complete;
960 
961 	tfm = crypto_aead_reqtfm(req);
962 
963 	if (unlikely(err == -EINPROGRESS))
964 		goto out;
965 	aead_request_set_tfm(req, child);
966 	err = crypt( req );
967 
968 out:
969 	ctx = crypto_aead_ctx(tfm);
970 	refcnt = atomic_read(&ctx->refcnt);
971 
972 	local_bh_disable();
973 	compl(&req->base, err);
974 	local_bh_enable();
975 
976 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
977 		crypto_free_aead(tfm);
978 }
979 
980 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
981 {
982 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
983 	struct crypto_aead *child = ctx->child;
984 	struct aead_request *req;
985 
986 	req = container_of(areq, struct aead_request, base);
987 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
988 }
989 
990 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
991 {
992 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
993 	struct crypto_aead *child = ctx->child;
994 	struct aead_request *req;
995 
996 	req = container_of(areq, struct aead_request, base);
997 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
998 }
999 
1000 static int cryptd_aead_enqueue(struct aead_request *req,
1001 				    crypto_completion_t compl)
1002 {
1003 	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
1004 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1005 	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
1006 
1007 	rctx->complete = req->base.complete;
1008 	req->base.complete = compl;
1009 	return cryptd_enqueue_request(queue, &req->base);
1010 }
1011 
1012 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
1013 {
1014 	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
1015 }
1016 
1017 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
1018 {
1019 	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
1020 }
1021 
1022 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
1023 {
1024 	struct aead_instance *inst = aead_alg_instance(tfm);
1025 	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
1026 	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
1027 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
1028 	struct crypto_aead *cipher;
1029 
1030 	cipher = crypto_spawn_aead(spawn);
1031 	if (IS_ERR(cipher))
1032 		return PTR_ERR(cipher);
1033 
1034 	ctx->child = cipher;
1035 	crypto_aead_set_reqsize(
1036 		tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
1037 			 crypto_aead_reqsize(cipher)));
1038 	return 0;
1039 }
1040 
1041 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
1042 {
1043 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
1044 	crypto_free_aead(ctx->child);
1045 }
1046 
1047 static int cryptd_create_aead(struct crypto_template *tmpl,
1048 		              struct rtattr **tb,
1049 			      struct cryptd_queue *queue)
1050 {
1051 	struct aead_instance_ctx *ctx;
1052 	struct aead_instance *inst;
1053 	struct aead_alg *alg;
1054 	const char *name;
1055 	u32 type = 0;
1056 	u32 mask = CRYPTO_ALG_ASYNC;
1057 	int err;
1058 
1059 	cryptd_check_internal(tb, &type, &mask);
1060 
1061 	name = crypto_attr_alg_name(tb[1]);
1062 	if (IS_ERR(name))
1063 		return PTR_ERR(name);
1064 
1065 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
1066 	if (!inst)
1067 		return -ENOMEM;
1068 
1069 	ctx = aead_instance_ctx(inst);
1070 	ctx->queue = queue;
1071 
1072 	crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst));
1073 	err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask);
1074 	if (err)
1075 		goto out_free_inst;
1076 
1077 	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
1078 	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
1079 	if (err)
1080 		goto out_drop_aead;
1081 
1082 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
1083 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
1084 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
1085 
1086 	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
1087 	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
1088 
1089 	inst->alg.init = cryptd_aead_init_tfm;
1090 	inst->alg.exit = cryptd_aead_exit_tfm;
1091 	inst->alg.setkey = cryptd_aead_setkey;
1092 	inst->alg.setauthsize = cryptd_aead_setauthsize;
1093 	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
1094 	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
1095 
1096 	err = aead_register_instance(tmpl, inst);
1097 	if (err) {
1098 out_drop_aead:
1099 		crypto_drop_aead(&ctx->aead_spawn);
1100 out_free_inst:
1101 		kfree(inst);
1102 	}
1103 	return err;
1104 }
1105 
1106 static struct cryptd_queue queue;
1107 
1108 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
1109 {
1110 	struct crypto_attr_type *algt;
1111 
1112 	algt = crypto_get_attr_type(tb);
1113 	if (IS_ERR(algt))
1114 		return PTR_ERR(algt);
1115 
1116 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
1117 	case CRYPTO_ALG_TYPE_BLKCIPHER:
1118 		if ((algt->type & CRYPTO_ALG_TYPE_MASK) ==
1119 		    CRYPTO_ALG_TYPE_BLKCIPHER)
1120 			return cryptd_create_blkcipher(tmpl, tb, &queue);
1121 
1122 		return cryptd_create_skcipher(tmpl, tb, &queue);
1123 	case CRYPTO_ALG_TYPE_DIGEST:
1124 		return cryptd_create_hash(tmpl, tb, &queue);
1125 	case CRYPTO_ALG_TYPE_AEAD:
1126 		return cryptd_create_aead(tmpl, tb, &queue);
1127 	}
1128 
1129 	return -EINVAL;
1130 }
1131 
1132 static void cryptd_free(struct crypto_instance *inst)
1133 {
1134 	struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
1135 	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
1136 	struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
1137 
1138 	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
1139 	case CRYPTO_ALG_TYPE_AHASH:
1140 		crypto_drop_shash(&hctx->spawn);
1141 		kfree(ahash_instance(inst));
1142 		return;
1143 	case CRYPTO_ALG_TYPE_AEAD:
1144 		crypto_drop_aead(&aead_ctx->aead_spawn);
1145 		kfree(aead_instance(inst));
1146 		return;
1147 	default:
1148 		crypto_drop_spawn(&ctx->spawn);
1149 		kfree(inst);
1150 	}
1151 }
1152 
1153 static struct crypto_template cryptd_tmpl = {
1154 	.name = "cryptd",
1155 	.create = cryptd_create,
1156 	.free = cryptd_free,
1157 	.module = THIS_MODULE,
1158 };
1159 
1160 struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
1161 						  u32 type, u32 mask)
1162 {
1163 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1164 	struct cryptd_blkcipher_ctx *ctx;
1165 	struct crypto_tfm *tfm;
1166 
1167 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1168 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1169 		return ERR_PTR(-EINVAL);
1170 	type = crypto_skcipher_type(type);
1171 	mask &= ~CRYPTO_ALG_TYPE_MASK;
1172 	mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
1173 	tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
1174 	if (IS_ERR(tfm))
1175 		return ERR_CAST(tfm);
1176 	if (tfm->__crt_alg->cra_module != THIS_MODULE) {
1177 		crypto_free_tfm(tfm);
1178 		return ERR_PTR(-EINVAL);
1179 	}
1180 
1181 	ctx = crypto_tfm_ctx(tfm);
1182 	atomic_set(&ctx->refcnt, 1);
1183 
1184 	return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
1185 }
1186 EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);
1187 
1188 struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
1189 {
1190 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1191 	return ctx->child;
1192 }
1193 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);
1194 
1195 bool cryptd_ablkcipher_queued(struct cryptd_ablkcipher *tfm)
1196 {
1197 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1198 
1199 	return atomic_read(&ctx->refcnt) - 1;
1200 }
1201 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_queued);
1202 
1203 void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
1204 {
1205 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1206 
1207 	if (atomic_dec_and_test(&ctx->refcnt))
1208 		crypto_free_ablkcipher(&tfm->base);
1209 }
1210 EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);
1211 
1212 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
1213 					      u32 type, u32 mask)
1214 {
1215 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1216 	struct cryptd_skcipher_ctx *ctx;
1217 	struct crypto_skcipher *tfm;
1218 
1219 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1220 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1221 		return ERR_PTR(-EINVAL);
1222 
1223 	tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
1224 	if (IS_ERR(tfm))
1225 		return ERR_CAST(tfm);
1226 
1227 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1228 		crypto_free_skcipher(tfm);
1229 		return ERR_PTR(-EINVAL);
1230 	}
1231 
1232 	ctx = crypto_skcipher_ctx(tfm);
1233 	atomic_set(&ctx->refcnt, 1);
1234 
1235 	return container_of(tfm, struct cryptd_skcipher, base);
1236 }
1237 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
1238 
1239 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
1240 {
1241 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1242 
1243 	return ctx->child;
1244 }
1245 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
1246 
1247 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
1248 {
1249 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1250 
1251 	return atomic_read(&ctx->refcnt) - 1;
1252 }
1253 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
1254 
1255 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
1256 {
1257 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1258 
1259 	if (atomic_dec_and_test(&ctx->refcnt))
1260 		crypto_free_skcipher(&tfm->base);
1261 }
1262 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
1263 
1264 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
1265 					u32 type, u32 mask)
1266 {
1267 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1268 	struct cryptd_hash_ctx *ctx;
1269 	struct crypto_ahash *tfm;
1270 
1271 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1272 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1273 		return ERR_PTR(-EINVAL);
1274 	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
1275 	if (IS_ERR(tfm))
1276 		return ERR_CAST(tfm);
1277 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1278 		crypto_free_ahash(tfm);
1279 		return ERR_PTR(-EINVAL);
1280 	}
1281 
1282 	ctx = crypto_ahash_ctx(tfm);
1283 	atomic_set(&ctx->refcnt, 1);
1284 
1285 	return __cryptd_ahash_cast(tfm);
1286 }
1287 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1288 
1289 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1290 {
1291 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1292 
1293 	return ctx->child;
1294 }
1295 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1296 
1297 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1298 {
1299 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1300 	return &rctx->desc;
1301 }
1302 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1303 
1304 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1305 {
1306 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1307 
1308 	return atomic_read(&ctx->refcnt) - 1;
1309 }
1310 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1311 
1312 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1313 {
1314 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1315 
1316 	if (atomic_dec_and_test(&ctx->refcnt))
1317 		crypto_free_ahash(&tfm->base);
1318 }
1319 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1320 
1321 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1322 						  u32 type, u32 mask)
1323 {
1324 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1325 	struct cryptd_aead_ctx *ctx;
1326 	struct crypto_aead *tfm;
1327 
1328 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1329 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1330 		return ERR_PTR(-EINVAL);
1331 	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1332 	if (IS_ERR(tfm))
1333 		return ERR_CAST(tfm);
1334 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1335 		crypto_free_aead(tfm);
1336 		return ERR_PTR(-EINVAL);
1337 	}
1338 
1339 	ctx = crypto_aead_ctx(tfm);
1340 	atomic_set(&ctx->refcnt, 1);
1341 
1342 	return __cryptd_aead_cast(tfm);
1343 }
1344 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1345 
1346 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1347 {
1348 	struct cryptd_aead_ctx *ctx;
1349 	ctx = crypto_aead_ctx(&tfm->base);
1350 	return ctx->child;
1351 }
1352 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1353 
1354 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1355 {
1356 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1357 
1358 	return atomic_read(&ctx->refcnt) - 1;
1359 }
1360 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1361 
1362 void cryptd_free_aead(struct cryptd_aead *tfm)
1363 {
1364 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1365 
1366 	if (atomic_dec_and_test(&ctx->refcnt))
1367 		crypto_free_aead(&tfm->base);
1368 }
1369 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1370 
1371 static int __init cryptd_init(void)
1372 {
1373 	int err;
1374 
1375 	err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN);
1376 	if (err)
1377 		return err;
1378 
1379 	err = crypto_register_template(&cryptd_tmpl);
1380 	if (err)
1381 		cryptd_fini_queue(&queue);
1382 
1383 	return err;
1384 }
1385 
1386 static void __exit cryptd_exit(void)
1387 {
1388 	cryptd_fini_queue(&queue);
1389 	crypto_unregister_template(&cryptd_tmpl);
1390 }
1391 
1392 subsys_initcall(cryptd_init);
1393 module_exit(cryptd_exit);
1394 
1395 MODULE_LICENSE("GPL");
1396 MODULE_DESCRIPTION("Software async crypto daemon");
1397 MODULE_ALIAS_CRYPTO("cryptd");
1398